JPS5951127A - Suction device for engine - Google Patents

Suction device for engine

Info

Publication number
JPS5951127A
JPS5951127A JP57163632A JP16363282A JPS5951127A JP S5951127 A JPS5951127 A JP S5951127A JP 57163632 A JP57163632 A JP 57163632A JP 16363282 A JP16363282 A JP 16363282A JP S5951127 A JPS5951127 A JP S5951127A
Authority
JP
Japan
Prior art keywords
supercharging
engine
valve
signal
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57163632A
Other languages
Japanese (ja)
Other versions
JPH0320577B2 (en
Inventor
Haruo Okimoto
沖本 晴男
Ikuo Matsuda
松田 郁夫
Asao Tadokoro
朝雄 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP57163632A priority Critical patent/JPS5951127A/en
Publication of JPS5951127A publication Critical patent/JPS5951127A/en
Publication of JPH0320577B2 publication Critical patent/JPH0320577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE:To secure good supercharging performance at the whole rotation range, by having the timed superchaging controlled by engine load and speed and the continuous supercharging selected according to the engine load and speed. CONSTITUTION:At a supercharging range, a solenoid valve 17 is set in a state of being normally opened. Therefore, supercharged air is continuously fed to a combustion chamber 1 and thereby continuous supercharging takes place. The amount of supercharged air supplied at this time is varied by a sub-throttle valve 18 according to engine load. At the supercharging range of low or medium engine speed, it comes into a timed supercharging state causing the solenoid valve 17 to be intermittently opened or closed at the specified timing according to the engine load and speed.

Description

【発明の詳細な説明】 本発明はエンジンの吸気装置、特に詳細には過給機と、
過給タイミングを制御するタイミング弁とを備えたエン
ジンの吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine intake system, particularly a supercharger,
The present invention relates to an engine intake device including a timing valve that controls supercharging timing.

吸入空気あるいは混合気を過給機によって加圧してエン
ジンの燃焼室に供給することにより、充填効率を高め、
エンジンの出方性能向上を図ることが従来より広く行な
われている。また、過給機による充填効率を一層向上さ
せるために例えば特開昭56−85522号公報に示さ
れているように、過給機下流の過給通路に、エンジン出
力軸の回転角に同期して間欠的に開閉するタイミング弁
を設け、該タイミング弁によって過給タイミングを制御
するようにした吸気装置も公知となっている。
By pressurizing intake air or air-fuel mixture with a supercharger and supplying it to the engine's combustion chamber, charging efficiency is increased.
BACKGROUND ART It has been widely practiced to improve engine output performance. In addition, in order to further improve the charging efficiency of the supercharger, for example, as shown in Japanese Patent Application Laid-Open No. 56-85522, a supercharging passage downstream of the supercharger is installed in synchronization with the rotation angle of the engine output shaft. There is also known an intake device that is provided with a timing valve that opens and closes intermittently, and that controls supercharging timing using the timing valve.

前述のように自然吸気通路と過給通路とを分設した吸気
装置においては、両道路の吸気慣性の違い等により、第
1図に示すように、エンジン高速域では連続過給によっ
て最大トルクが得られ、低、中速域では断続的に過給気
を供給するいわゆるタイムド過給によって最大トルクが
得られる。これは、ソレノイド弁が一旦閉じて加圧エア
を吸気通路に蓄圧し、この蓄圧した多量の加圧エアを吸
入行程でソレノイド弁が開くことにより、瞬間的に過給
して過給量が増大するためであり、高速域においてタイ
ムド過給時のトルクが落ちるのは、高速域では吸気慣性
が大きいため、このような状態のときタイムド過給する
と吸気慣性の効果が低下し過給量が少なくなることに起
因すると考えられる。
As mentioned above, in an intake system that has separate natural intake passages and supercharging passages, due to the difference in intake inertia between the two roads, as shown in Figure 1, continuous supercharging increases the maximum torque in the engine high-speed range. In the low to medium speed range, maximum torque can be obtained by so-called timed supercharging, which supplies supercharging air intermittently. This is because the solenoid valve closes once to accumulate pressurized air in the intake passage, and when the solenoid valve opens during the intake stroke, this accumulated large amount of pressurized air is instantly supercharged, increasing the amount of supercharging. This is because the torque during timed supercharging decreases in the high-speed range because the intake inertia is large in the high-speed range, so if timed supercharging is performed in such a state, the effect of the intake inertia decreases and the amount of supercharging decreases. This is thought to be due to the fact that

また一方、タイミング弁は当然、エンジン回転数が上昇
するにつれ高速で開閉を繰り返すようになり、タイミン
グ弁を電磁式にした場合、このタイミング弁が高速域で
はエンジン回転に追随できなくなることもある。したが
ってこの点からも、高速域においてはタイミング弁を常
開にした連続過給が好ましいといえる。
On the other hand, the timing valve naturally repeats opening and closing at high speed as the engine speed increases, and if the timing valve is an electromagnetic type, the timing valve may not be able to follow the engine rotation at high speeds. Therefore, from this point of view as well, it can be said that continuous supercharging with the timing valve always open is preferable in the high speed range.

本発明は上記事情に鑑みてなされたものてあり、高速域
では連続過給、低、中速域ではタイムド過給というよう
に、過給方式をエンジン回転数にしたがって切り替え得
る、構造の簡単なエンジンの吸気装置を提供することを
目的とするものである。
The present invention has been made in view of the above circumstances, and has a simple structure that allows the supercharging method to be switched according to the engine speed, such as continuous supercharging in the high speed range and timed supercharging in the low and medium speed range. The purpose of this invention is to provide an intake system for an engine.

本発明のエンジンの吸気装置は、前述したような自然吸
気通路と、過給機およびタイミング弁が介設された過給
通路とを有するエンジンの吸気装置において、タイミン
グ弁として電磁式開閉弁を用いるとともに、エンジンの
回転数を検出する回転数検出器と、過給域において、該
検出器によって検出したエンジンの回転数が設定値を下
回るときには前記開閉弁を間欠的に開閉するとともに設
定値以上のときには該開閉弁を常開にする制御回路とを
設けたことを特徴とするものである。
An engine intake system according to the present invention uses an electromagnetic on-off valve as a timing valve in an engine intake system having a natural intake passage as described above and a supercharging passage in which a supercharger and a timing valve are interposed. In addition, a rotation speed detector detects the engine rotation speed, and in the supercharging region, when the engine rotation speed detected by the detector is lower than a set value, the on-off valve is intermittently opened and closed, and when the engine rotation speed is higher than the set value. In some cases, the valve is characterized by being provided with a control circuit that keeps the on-off valve normally open.

上記構成により、過給方式はエンジン回転数にしたがっ
て確実に切り替えられ、またその構造も極めて簡単であ
る。
With the above configuration, the supercharging method can be reliably switched according to the engine speed, and its structure is also extremely simple.

以下、図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の1実施例によるエンジンの吸気装置を
示すものである。エンジンの燃焼室1には、自然吸気ポ
ート2、過給ポート3、および排気ポート4が開口され
、各ポー1−2.3.4には各々自然吸気通路5、過給
通路6、排気通路7が連通されている。そして自然吸気
ボート2、過給ポート3、排気ポート4にはそれぞれ、
吸気弁8、過給弁9、排気弁]0が設けられている。
FIG. 2 shows an engine intake system according to one embodiment of the present invention. A natural intake port 2, a supercharging port 3, and an exhaust port 4 are opened in the combustion chamber 1 of the engine, and each port 1-2.3.4 has a natural intake passage 5, a supercharging passage 6, and an exhaust passage. 7 are connected. And for the naturally aspirated boat 2, supercharging port 3, and exhaust port 4, respectively.
An intake valve 8, a supercharging valve 9, and an exhaust valve ]0 are provided.

上記自然吸気通路5の上流端はエアクIJ −す11に
接続され、そして該自然吸気通路5には、上流側から順
に、吸気流量を検出するエアフローメータ12と、主ス
ロットル弁13と、燃料噴射弁J4とが設けられている
。また過給通路6の上流端は、上記エアフローメータ1
2と主スロットル弁13との間において自然吸気通路5
に開口され、該過給通路6には、公知の電磁クラッチ(
図示せず)を介してエンジンによって駆動されるエアポ
ンプ式の過給機15と、該過給機15の下流側に配され
後述する制御回路16によって駆動されて該過給通路6
を開閉するソレノイド弁17が設げられている。そして
過給通路6には、自然吸気通路5の主スロットル弁13
と連動する補助スロットル弁18が設けられている。
The upstream end of the natural intake passage 5 is connected to an air intake valve 11, and the natural intake passage 5 includes, in order from the upstream side, an air flow meter 12 for detecting the intake air flow rate, a main throttle valve 13, and a fuel injection valve. A valve J4 is provided. Further, the upstream end of the supercharging passage 6 is connected to the air flow meter 1.
2 and the main throttle valve 13.
The supercharging passage 6 is connected to a known electromagnetic clutch (
an air pump type supercharger 15 that is driven by the engine via an air pump (not shown);
A solenoid valve 17 for opening and closing is provided. The main throttle valve 13 of the naturally aspirated passage 5 is connected to the supercharging passage 6.
An auxiliary throttle valve 18 is provided which operates in conjunction with the auxiliary throttle valve 18.

上記制御回路16には、例えばエンジン出力軸に取り付
けた歯車とピンクアップコイルとの組合せからなる電磁
式、あるし・はその他、光電式等のクランク角七ンサ1
9が出力するクランク角信号S+と、前記主スロットル
弁130開度を検出するスロットル弁開度センザ20が
出力する、電圧信号からなるスロットル弁開度信号S2
、それにエアフローメータ12が出力する吸気流量信号
S3が入力される。
The control circuit 16 includes, for example, an electromagnetic type, a photoelectric type, etc., consisting of a combination of a gear attached to the engine output shaft and a pink-up coil, and a crank angle sensor 1, such as a photoelectric type.
A throttle valve opening signal S2 consisting of a crank angle signal S+ outputted by the main throttle valve 9 and a voltage signal outputted by the throttle valve opening sensor 20 that detects the opening degree of the main throttle valve 130.
, and an intake flow rate signal S3 output from the air flow meter 12 is input thereto.

制御回路16は例えばマイクロコンピュータからなるも
のであり、吸気流量信号S3に対応した噴射弁駆動信号
S4を出力し、吸気流量に見合った所定の噴射量で燃料
噴射を行なうように、燃料噴射弁14を駆動する。
The control circuit 16 is composed of, for example, a microcomputer, and outputs an injection valve drive signal S4 corresponding to the intake flow rate signal S3, and controls the fuel injection valve 14 so that fuel injection is performed at a predetermined injection amount commensurate with the intake flow rate. to drive.

前述した過給機15は制御回路ICからの過給機駆動信
号Soにより過給域において駆動され、したがって過給
弁9およびソレノイド弁17が開かれれば燃焼室1に過
給気が供給され、過給がなされる。このソレノイド弁1
7も、上述の制御回路16が出力するソレノイド弁駆動
信号S5によって駆動される。以下、このソレノイド弁
17の駆動について、第3図を参照して詳しく説明する
The aforementioned supercharger 15 is driven in the supercharging region by the supercharger drive signal So from the control circuit IC, and therefore, when the supercharging valve 9 and the solenoid valve 17 are opened, supercharging air is supplied to the combustion chamber 1. Supercharging is performed. This solenoid valve 1
7 is also driven by the solenoid valve drive signal S5 output from the control circuit 16 described above. Hereinafter, the driving of this solenoid valve 17 will be explained in detail with reference to FIG. 3.

第3図は、制御回路16内の、ソレノイド1弁駆動回路
16aの構成を示すブロック図である(なお該制御回路
16内の、前述した燃料噴射系の制御に関する部分は省
略しである)。
FIG. 3 is a block diagram showing the configuration of a single solenoid valve drive circuit 16a in the control circuit 16 (the portions of the control circuit 16 related to the control of the fuel injection system described above are omitted).

クランク角センサ19が出力するクランク角信号S1は
、回転数検出回路21に入力され、該回転数検出回路2
1においてエンジン回転数が検出される。この回転数検
出回路21が出力するエンジン回転数信号S6は、スロ
ットル弁開度センサ20が出力するスロットル弁開度信
号3とともに、過給パルス発生回路22に入力される。
The crank angle signal S1 outputted by the crank angle sensor 19 is input to the rotation speed detection circuit 21.
1, the engine speed is detected. The engine rotation speed signal S6 outputted by the rotation speed detection circuit 21 is inputted to the supercharging pulse generation circuit 22 together with the throttle valve opening signal 3 outputted by the throttle valve opening sensor 20.

この過給パルス発生回路22は、上記エンジン回転数信
号S6と、エンジン負荷に対応するスロットル弁開度信
号S2に基づき、エンジン回転数に対応する周期(例え
ば4サイクルエンジンにあってはクランクシャフト2回
転毎に1回の周期)を有し、エンジン負荷および回転数
の増大に応じて増大す゛るパルス巾のパルス信号S7を
発生させる。
This supercharging pulse generating circuit 22 generates a cycle corresponding to the engine speed (for example, in the case of a 4-cycle engine, the crankshaft 2 It generates a pulse signal S7 with a pulse width that increases as the engine load and engine speed increase as the engine load and engine speed increase.

上記スロットル弁開度センサ20が出力するスロットル
弁開度信号S2は、過給域判別回路23にも入力され、
該過給域判別回路23はスロットル弁開度信号S2かも
、エンジンが過給域で運転されているか否かを判別し、
過給域で運転されている場合には、過給信号S8を発し
て前記過給パルス発生回路22に入力する。過給パルス
発生回路22はこの過給信号S8が入力された。ときの
み、すなわちエンジンが過給域で運転されているときの
み前記パルス信号S7を出力する。このパルス信号S7
は、過給タイミング設定回路24に入力される。
The throttle valve opening signal S2 outputted by the throttle valve opening sensor 20 is also input to the supercharging region determination circuit 23,
The supercharging region determination circuit 23 also uses the throttle valve opening signal S2 to determine whether or not the engine is being operated in the supercharging region.
When operating in the supercharging region, a supercharging signal S8 is generated and input to the supercharging pulse generation circuit 22. This supercharging signal S8 is input to the supercharging pulse generation circuit 22. The pulse signal S7 is output only when the engine is being operated in the supercharging region. This pulse signal S7
is input to the supercharging timing setting circuit 24.

なお上記過給域判別回路23は、基準電圧発生回路23
aから出力される基準電圧信号S9(過給域と非過給域
の境界のスロットル弁開度を担持する)と、スロットル
弁開度信号S2とを比較回路23bにおいて比較し、ス
ロットル弁開度信号S2の、基準電圧信号S9に対する
大小を検出して過給域を判別するものである。
Note that the supercharging area discrimination circuit 23 is a reference voltage generation circuit 23.
The comparison circuit 23b compares the reference voltage signal S9 (carrying the throttle valve opening at the boundary between the supercharging region and the non-supercharging region) outputted from the controller a with the throttle valve opening signal S2, and determines the throttle valve opening. The supercharging region is determined by detecting the magnitude of the signal S2 with respect to the reference voltage signal S9.

過給タイミング設定回路24には、クランク角信号S1
も入力され、前記パルス信号S7はこのクランク角信号
S1に基づいて、例えば吸気弁8が閉じる直前に立ち上
がる、というようにクランク角に対して同期がとられる
。同期がとられたパルス信号S7’は切替回路25を介
して駆動回路26に送られるようになっている。この切
替回路25にはその他、前記過給信号S8および、過給
方式判別回路27がらの切替信号S+oが入力されるよ
うになっている。
The supercharging timing setting circuit 24 receives a crank angle signal S1.
is also input, and the pulse signal S7 is synchronized with the crank angle based on the crank angle signal S1 such that, for example, it rises just before the intake valve 8 closes. The synchronized pulse signal S7' is sent to the drive circuit 26 via the switching circuit 25. In addition, the supercharging signal S8 and the switching signal S+o from the supercharging method determination circuit 27 are input to the switching circuit 25.

上記過給方式判別回路27は、電圧信号からなるエンジ
ン回転数信号S6と、基準電圧発生回路27aが発する
基準電圧信号S++ (中速域と高速域の境界となる所
定のエンジン回転数を担持する)との大小を比較回路2
7bにおいて比較し、エンジン回転数が上記所定の回転
数以上のとき、すなわちエンジンが高速域で運転されて
いるときに上記切替信号S+。
The supercharging method determination circuit 27 receives an engine rotational speed signal S6 consisting of a voltage signal and a reference voltage signal S++ (which carries a predetermined engine rotational speed that is the boundary between the medium speed range and the high speed range) and the reference voltage signal S++ generated by the reference voltage generation circuit 27a. ) comparison circuit 2
7b, when the engine rotation speed is equal to or higher than the predetermined rotation speed, that is, when the engine is operated in a high speed range, the switching signal S+.

を発するものである。切替回路25は、この切替信号S
+oが入力されたとき、一定信号である過給信号S8を
駆動回路26に送り、その他のときはパルス信号87′
を駆動回路26に送る。勿論、エンジンが低負荷の無過
給域で運転されているときには前述したように過給信号
S8が出力されず、したがってパルス信号S7/も出力
されないから、たとえ上記切替信号S10が切替回路2
5に入力されても、該切替回路25からはいずれの信号
も出力されない。28は電磁クラッチ駆動回路で、過給
域判別回路23からの過給信号S8を受けて電磁クラッ
チを作動してエンジンにより過給機15を駆動する。
It is something that emits. The switching circuit 25 receives this switching signal S
When +o is input, the supercharging signal S8, which is a constant signal, is sent to the drive circuit 26, and at other times, the pulse signal 87' is sent.
is sent to the drive circuit 26. Of course, when the engine is operated in a low-load non-supercharging region, the supercharging signal S8 is not output as described above, and therefore the pulse signal S7/ is not output, so even if the switching signal S10 is
5, no signal is output from the switching circuit 25. Reference numeral 28 denotes an electromagnetic clutch drive circuit which operates an electromagnetic clutch upon receiving the supercharging signal S8 from the supercharging range discriminating circuit 23, thereby driving the supercharger 15 by the engine.

エンジンが高速の過給域で運転され、過給信号S8が駆
動回路26に入力されると、駆動回路26は一定信号か
らなる弁開信号をソレノイド弁駆動信号S5として出力
し、ソレノイド弁17を常開状態に設定する。したがっ
てソレノイド弁17を通して過給気が連続的に燃焼室1
に供給され、連続過給がなされる。
When the engine is operated in a high-speed supercharging region and the supercharging signal S8 is input to the drive circuit 26, the drive circuit 26 outputs a valve opening signal consisting of a constant signal as the solenoid valve drive signal S5, and the solenoid valve 17 is activated. Set to always open. Therefore, supercharging air is continuously supplied to the combustion chamber 1 through the solenoid valve 17.
is supplied to provide continuous supercharging.

なおこのときの過給気供給量は、補助スロットル弁18
によってエンジン負荷に応じて変えられる。
Note that the amount of supercharging air supplied at this time is determined by the auxiliary throttle valve 18.
can be changed according to the engine load.

また、エンジンが低、中速の過給域で運転され、パルス
信号87′が駆動回路26に入力されると、駆動回路2
6はこのパルス信号S 7’(1)パルス11]に対応
したパルス巾のパルス信号ヲソレノイド弁駆動信号S5
として出力し、ソレノイド弁17を、該パルス信号S7
’のパルス巾に応じた開時間、そして所定のタイミング
で断続的に開閉させる。前述の通りこのパルス数に対応
しているので、ソレノイド弁17の開時間はエンジン負
荷および回転数に対応したものとなり、過給気供給量が
これらエンジン負荷および回転数によって制御されたタ
イムド過給がなされる。
Further, when the engine is operated in a low to medium speed supercharging range and the pulse signal 87' is input to the drive circuit 26, the drive circuit 2
6 is a pulse signal with a pulse width corresponding to this pulse signal S 7' (1) Pulse 11] is a solenoid valve drive signal S5
and outputs the solenoid valve 17 as the pulse signal S7.
The opening time corresponds to the pulse width of ', and the valve is opened and closed intermittently at a predetermined timing. As mentioned above, since it corresponds to this number of pulses, the opening time of the solenoid valve 17 corresponds to the engine load and rotation speed, and the amount of supercharging air supplied is controlled by these engine loads and rotation speeds. will be done.

なお過給弁9は、吸気弁8、排気弁1oとともに、カム
シャフト等の動弁機構によって駆動されるが、勿論、そ
の閉弁時期は吸気弁8の閉弁時期より遅れるように設定
されるとともに少なくとも上記ソレノイド弁17が開い
ている間は開き続けるように設定される。
The supercharging valve 9, along with the intake valve 8 and the exhaust valve 1o, is driven by a valve mechanism such as a camshaft, but of course its closing timing is set to be later than the closing timing of the intake valve 8. Also, the solenoid valve 17 is set to remain open at least while the solenoid valve 17 is open.

第4図に、以上説明のようにして設定される無過給域、
タイムド過給域、および連続過給域の範囲を示す。
FIG. 4 shows the non-supercharging area set as explained above,
The ranges of timed supercharging region and continuous supercharging region are shown.

なお上記実施例では、エンジン負荷の大小によって過給
域、無過給域を設定するようになっているが、過給域を
エンジン負荷および回転数によって設定すれば、無過給
域、クィムド過給域、および連続過給域を、第5図のよ
うに設定することも可能である。
In the above embodiment, the supercharging region and non-supercharging region are set depending on the size of the engine load, but if the supercharging region is set according to the engine load and rotation speed, the non-supercharging region and the quim supercharging region are set. It is also possible to set the feeding area and continuous supercharging area as shown in FIG.

また上記実施例においては、高速の過給域においてソレ
ノイド弁17が一定開度の常開にされるとき、過給気供
給量は補助スロットル弁18によって制御されるが、該
ソレノイド弁17をデユーティ制御し、その開度をエン
ジン負荷あるいは回転数に応じて変えて過給気供給量を
制御するようにしてもよい。
Further, in the above embodiment, when the solenoid valve 17 is kept open at a constant opening in the high-speed supercharging region, the amount of supercharging air supplied is controlled by the auxiliary throttle valve 18, but the solenoid valve 17 is Alternatively, the amount of supercharging air supplied may be controlled by controlling the amount of supercharging air and changing the degree of opening according to the engine load or engine speed.

さらに、上記過給機は非過給域でも常時エンジンにより
駆動されるようにしてもよいが、この場合、非過給時に
はソレノイド弁の上流側過給通路から排気ガス浄化用の
2次エアとして加圧エアを排気ガス中に導入などして過
給機によって加圧されたエアを、ソレノイド弁−上流側
過給通路から放出する必要がある。
Furthermore, the above-mentioned supercharger may be always driven by the engine even in the non-supercharging region, but in this case, when the supercharging is not performed, the secondary air for exhaust gas purification is supplied from the supercharging passage on the upstream side of the solenoid valve. It is necessary to introduce pressurized air into the exhaust gas and release the air pressurized by the supercharger from the solenoid valve-upstream supercharging passage.

以上詳細に説明した通り本発明のエンジンの吸気装置は
、タイミング弁を電磁式開閉弁とした極めて簡単な構成
により、タイムド過給と連続過飽とをエンジン回転数に
応じて切り替え得るものであり、したがって本装置によ
れば全回転域において良好な過給性能を得ることが可能
となり、また高速域でのタイミング弁の追随遅れも防止
できる。
As explained in detail above, the engine intake system of the present invention has an extremely simple configuration in which the timing valve is an electromagnetic on-off valve, and can switch between timed supercharging and continuous supersaturation depending on the engine speed. Therefore, according to the present device, it is possible to obtain good supercharging performance in the entire rotation range, and it is also possible to prevent the timing valve from following the delay in the high speed range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は過給方式の違いによるトルク特性の差を説明す
るグラフ、 第2図は本発明の1実施例を示す概略図、第3図は第2
図の実施例における制御回路の一部を示すブロック図、 第4図は第2図の実施例における過給方式設定を示すグ
ラフ、 第5図は過給方式設定の他の例を示すグラフである。 5・・・自然吸気通路   6・・・過給通路15・・
・過給機     16・・・制御回路16a・・・ソ
レノイド弁駆動回路 】7・・・ソレノイド弁 19・・・クランク角センサ
Fig. 1 is a graph explaining the difference in torque characteristics due to the difference in supercharging system, Fig. 2 is a schematic diagram showing one embodiment of the present invention, and Fig. 3 is a graph explaining the difference in torque characteristics due to the difference in supercharging system.
A block diagram showing a part of the control circuit in the embodiment shown in the figure; Fig. 4 is a graph showing the supercharging method settings in the embodiment shown in Fig. 2; and Fig. 5 is a graph showing another example of the supercharging method settings. be. 5...Natural intake passage 6...Supercharging passage 15...
・Supercharger 16... Control circuit 16a... Solenoid valve drive circuit] 7... Solenoid valve 19... Crank angle sensor

Claims (1)

【特許請求の範囲】[Claims] 自然吸気通路と、過給機を備えた過給通路と、該過給機
下流の過給通路に設けられエンジン出力軸の回転角に同
期して間欠的に開閉する電磁式開閉弁と、エンジンの回
転数を検出する回転数検出器と、過給域において、該検
出器によって検出したエンジンの回転数が設定値を下回
るときには前記開閉弁を間欠的に開閉するとともに設定
値以上のときには該開閉弁を常開にする制御回路とを設
けたことを特徴とするエンジンの吸気装置。
A natural intake passage, a supercharging passage provided with a supercharger, an electromagnetic on-off valve that is provided in the supercharging passage downstream of the supercharger and opens and closes intermittently in synchronization with the rotation angle of the engine output shaft, and an engine. a rotational speed detector that detects the rotational speed of the engine, and in the supercharging region, when the engine rotational speed detected by the detector is below a set value, the on-off valve is intermittently opened and closed, and when it is above the set value, the on-off valve is opened and closed; An engine intake device characterized by being provided with a control circuit that keeps a valve normally open.
JP57163632A 1982-09-20 1982-09-20 Suction device for engine Granted JPS5951127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57163632A JPS5951127A (en) 1982-09-20 1982-09-20 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57163632A JPS5951127A (en) 1982-09-20 1982-09-20 Suction device for engine

Publications (2)

Publication Number Publication Date
JPS5951127A true JPS5951127A (en) 1984-03-24
JPH0320577B2 JPH0320577B2 (en) 1991-03-19

Family

ID=15777618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57163632A Granted JPS5951127A (en) 1982-09-20 1982-09-20 Suction device for engine

Country Status (1)

Country Link
JP (1) JPS5951127A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140584A2 (en) 2008-05-15 2009-11-19 Xdx Innovative Refrigeration, Llc Surged vapor compression heat transfer system with reduced defrost

Also Published As

Publication number Publication date
JPH0320577B2 (en) 1991-03-19

Similar Documents

Publication Publication Date Title
JPS59162312A (en) Electronically controlled engine
JPS6355326A (en) Exhauster for engine
JPS5951127A (en) Suction device for engine
SE522080C2 (en) Four-stroke internal combustion engine with variable combing times
JPH0424534B2 (en)
JP3824375B2 (en) Diesel engine control device
JP2515812B2 (en) Control device for engine with supercharger
JP3804126B2 (en) Control device for engine with mechanical supercharger
JPS5844242A (en) Intake device for engine with supercharger
JPH0861135A (en) Intake air quantity control device for engine
JPH02146253A (en) Fuel injection device of internal combustion engine
JPS59150935A (en) Fuel injecting apparatus for engine
JPH0586951A (en) Control device for mechanical type supercharger containing engine
JPH06101484A (en) Swirl control device for internal combustion engine
JPS6223542A (en) Fuel injection control device for internal-combustion engine with supercharger
JPS59108855A (en) Feeding method of lpg for engine
JP2724717B2 (en) Engine fuel control device
JPH0396651A (en) Exhaust gas reflux controller of diesel engine
JPH0343388Y2 (en)
JPS61250363A (en) Control device for fuel in engine
JPH0122909Y2 (en)
JPS5977031A (en) Intake device of engine
JPS6045737A (en) Controller for engine with regulated number of cylinders
JPS6232225A (en) Engine provided with exhaust turbo-supercharger
JPS6232223A (en) Engine ignition timing control device