JPS5950930B2 - Method and device for measuring SO↓2 concentration by fluorescence analysis - Google Patents

Method and device for measuring SO↓2 concentration by fluorescence analysis

Info

Publication number
JPS5950930B2
JPS5950930B2 JP8852777A JP8852777A JPS5950930B2 JP S5950930 B2 JPS5950930 B2 JP S5950930B2 JP 8852777 A JP8852777 A JP 8852777A JP 8852777 A JP8852777 A JP 8852777A JP S5950930 B2 JPS5950930 B2 JP S5950930B2
Authority
JP
Japan
Prior art keywords
gas
concentration
flow path
fluorescence
sample gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8852777A
Other languages
Japanese (ja)
Other versions
JPS5423592A (en
Inventor
頼行 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanagimoto Seisakusho Co Ltd
Original Assignee
Yanagimoto Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanagimoto Seisakusho Co Ltd filed Critical Yanagimoto Seisakusho Co Ltd
Priority to JP8852777A priority Critical patent/JPS5950930B2/en
Priority to US05/917,845 priority patent/US4254339A/en
Publication of JPS5423592A publication Critical patent/JPS5423592A/en
Publication of JPS5950930B2 publication Critical patent/JPS5950930B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】 本発明は蛍光法による502濃度測定において、新規の
ベース安定機構を採用した測定方法及び装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring method and apparatus that employs a novel base stabilization mechanism in measuring 502 concentration using a fluorescence method.

SO_2分子は紫外線領域において三つの吸収波長或を
有し、このいずれかの波長域に含まれる紫外線で励起す
ると、蛍光紫外線を発生する。
SO_2 molecules have three absorption wavelengths in the ultraviolet range, and when excited by ultraviolet light in any of these wavelength ranges, they generate fluorescent ultraviolet light.

本発明は、試料ガス中のSO_2が発する蛍光紫外線の
強度を測定することにより、SO_2濃度を求める方法
において、特殊のバックグラウンド現象による測定値ベ
ースの変動を解消することを目的とするものである。
The present invention aims to eliminate fluctuations in the measured value base due to special background phenomena in a method for determining SO_2 concentration by measuring the intensity of fluorescent ultraviolet light emitted by SO_2 in a sample gas. .

そこで、発明者はまずベース変動の原因を解明するため
、ゼロガス成分とベース安定性との関係を種々に調査検
討した。
Therefore, in order to elucidate the cause of base fluctuations, the inventors first conducted various investigations into the relationship between zero gas components and base stability.

その結果、まず、Noあるいは希ガスからなるゼロガス
はバックグラウンドレベルが比較的大きく不安定である
のに対し、SO_2を除去した空気の場合にはバックグ
ラウンドレベルが比較的小さく安定していることが確認
された。この原因を特に、Noと空気との場合の差に限
つて考察すれば、空気中の大部分を占める窒素以外の成
分、すなわち、酸素の有無に起因している。第1図は上
の見地から高純度N2ガス(99.99%以上)に対す
る。
As a result, first, the background level of zero gas consisting of No or rare gases is relatively large and unstable, whereas in the case of air from which SO_2 has been removed, the background level is relatively small and stable. confirmed. If the cause of this is considered in particular to the difference between No and air, it is due to the presence or absence of a component other than nitrogen, that is, oxygen, which occupies most of the air. From the above perspective, FIG. 1 corresponds to high purity N2 gas (99.99% or more).

。混入比と、測定されるべきSO_2フ濃度に換算した
バックグラウンド値との関係を測定し、グラフで示した
ものである。このグラフによれば、00濃度が約0〜1
%程度の範囲におけるバックグラウンド値は、00を混
入しない場合の約1.6pμ功ゝらO、3ppn程度ま
できhr急激に降下5し、00濃度1〜3%の変態領域
を経てバックグラウンド値は約1.5p卯似下の平坦で
きわめてゆるやかな減少を描いていくことがわかる。こ
のようにガス中の02濃度がバツクグラウンド値を支配
する原因は、なお今後の解明を待たなければならないが
、特に微量の02濃度領域において急激なバツクグラウ
ンド値の降下が生ずることからみて、次のように考えら
れる。すなわち、照射紫外線に近接した波長(190〜
201nm)を吸収する02ガスが、一部分03に変化
して極微量のバツクグラウンド成分(たとえば、蛍光室
壁面の光学塗料から揮発する炭化水素類等)に作用し、
その励起発光をクエンチングすると共に、この03は0
2が照射紫外線の散乱光や洩光を吸収し、それ自体は光
電素子による検出波長でのエネルギー放射の度合が少い
状態において安定するのではなかろうか。上のように考
えると、ゼロガス成分中においてベース安定化に寄与す
るのは、02そのものより、むしろ03が重要な役目を
果たしていることになり、発明者はその仮説を確かめる
ために、初めから200〜450ppn(703を含む
02+03+N2系ゼロガスによるバツクグラウンド値
を測定してみた。
. The relationship between the mixing ratio and the background value converted to the SO_2 concentration to be measured is measured and shown in a graph. According to this graph, the 00 concentration is about 0 to 1
The background value in the range of about 0.0% is about 1.6ppμ when 00 is not mixed, then it reaches about 3ppn, then it drops rapidly in 5 hours, and after passing through a metamorphosis region of 00 concentration of 1 to 3%, the background value decreases. It can be seen that there is a flat and extremely gradual decline below approximately 1.5p Uzani. The reason why the 02 concentration in the gas dominates the background value still needs to be clarified in the future, but given that the background value drops particularly sharply in the region of trace 02 concentration, the following It can be thought of as follows. In other words, wavelengths close to the irradiated ultraviolet rays (190~
The 02 gas, which absorbs 201 nm), partially changes to 03 and acts on minute amounts of background components (for example, hydrocarbons volatilized from the optical paint on the wall of the fluorescent chamber),
In addition to quenching the excited emission, this 03 is 0
2 absorbs the scattered light and leaked light of the irradiated ultraviolet rays, and itself becomes stable in a state where the degree of energy emission at the detection wavelength by the photoelectric element is small. Considering the above, it is 03 that contributes to base stabilization in the zero gas component rather than 02 itself, and in order to confirm this hypothesis, the inventors developed 200 from the beginning. ~450ppn (I tried measuring the background value using 02+03+N2 series zero gas containing 703.

第2図はこの測定結果を示すグラフであり、第1図の0
2バツクグラウンド曲線をそのまま転記した曲線Aに対
し、曲線Bは酸素又は空気をオゾナイザに通し、蛍光室
においてAと等量の02濃度及びこれにほぼ比例して2
00〜450PPn(7)03濃度2を得た場合のバツ
クグラウンド曲線である。曲線A,Bを比較すると、オ
ゾナイザを介して03を実質的に蛍光室に導入した場合
のベースは、02導入の場合よりもさらに低位において
安定し、ベース曲線の変動もきわめて小さくなり、03
がべ5ース安定化の主要な働きをすることが確認された
。本発明は試料ガス及び基準ガスに03を混入すること
により測定ベースを安定化した蛍光分析法にSO2測定
技術を提供しようとするものである。
Figure 2 is a graph showing the results of this measurement.
2 In contrast to curve A, which is a transcription of the background curve as it is, curve B is obtained by passing oxygen or air through an ozonizer, and in a fluorescent room, the concentration of 02 is equal to that of A, and the concentration of 02 is approximately proportional to this.
00-450PPn(7)03 concentration 2 is obtained. Comparing curves A and B, when 03 is substantially introduced into the fluorescent room through an ozonizer, the base is stable at a lower level than when 02 is introduced, and the fluctuations in the base curve are also extremely small.
It was confirmed that the 5-base stabilizer plays a major role in stabilizing the base. The present invention attempts to provide an SO2 measurement technique for fluorescence analysis in which the measurement base is stabilized by mixing 03 into the sample gas and the reference gas.

5第3図は、上述した本発明の方法を実施するための
流路構成を示すものである。第3図において、1は試料
ガス入口、2は試料ガスのためのフイルタ、3はスパン
ガス入口、4はゼロガス入口、そして5はゼロガスのた
めのフイルタであ4る。スパンガス入口3及びゼロガス
入口4から延びる各流路はコツク6において選択的に1
本の流路7に接続され、この流路7はコツク8に導かれ
て、試料ガス入口1から延びる流路9と、選択的に測定
流路10に接続される。コツク8を始端とする測定流路
10には順次、浸透除湿器11.キヤピラリ一12、炭
化水素カツタ一13、蛍光室14、及び流量計15が配
置され、流量計15を通つた測定後のガスは真空吸引流
路16,17を経てポンプ18に吸引され、排気流路1
9より排出される。吸引流路16にはバキユームゲージ
20が、下流の吸引流路17にはバキユームレギユレー
タ21がそれぞれ挿入されていると共に、これらの吸引
流路16,17は浸透除湿器11の真空チヤネル22に
よつて接続されている。測定流路10において蛍光室1
4の入口側にはオゾン供給流路23が合流している。
5. FIG. 3 shows a flow path configuration for carrying out the method of the present invention described above. In FIG. 3, 1 is a sample gas inlet, 2 is a filter for sample gas, 3 is a span gas inlet, 4 is a zero gas inlet, and 5 is a filter for zero gas. Each flow path extending from the span gas inlet 3 and the zero gas inlet 4 is selectively connected to one
The main flow path 7 is guided to a stop 8, and is connected to a flow path 9 extending from the sample gas inlet 1 and selectively to a measurement flow path 10. The measuring channel 10 starting from the pot 8 is sequentially equipped with a osmotic dehumidifier 11. A capillary 12, a hydrocarbon cutter 13, a fluorescent chamber 14, and a flowmeter 15 are arranged, and the measured gas passing through the flowmeter 15 is sucked into the pump 18 via vacuum suction channels 16 and 17, and is then discharged into the exhaust flow. Road 1
It is discharged from 9. A vacuum gauge 20 is inserted into the suction flow path 16 and a vacuum regulator 21 is inserted into the downstream suction flow path 17, and these suction flow paths 16 and 17 are connected to the vacuum channel 22 of the osmotic dehumidifier 11. It is connected accordingly. Fluorescence chamber 1 in measurement channel 10
An ozone supply flow path 23 joins the inlet side of 4.

この供給流路23は空気入口24から活性炭フイルタ2
5、シリカゲノレフイルタ26、キヤピラリ一27を介
して除塵及び除湿した空気をオゾナイザ28に導入し、
本発明に従つてゼロガス等に所望の比率で03を混入し
た直後にこれを蛍光室14に供給できるようになつてい
る。蛍光室14における体分子の励起発光はホトマルチ
プライヤ29で検知され、信号増幅器30で増幅後、記
録又は読取処理されるようになつている。
This supply channel 23 is connected from the air inlet 24 to the activated carbon filter 2.
5. Introduce the dust-free and dehumidified air to the ozonizer 28 via the silica gel filter 26 and the capillary 27,
According to the present invention, it is possible to supply zero gas or the like to the fluorescent chamber 14 immediately after mixing 03 in a desired ratio. The excited light emission of body molecules in the fluorescence chamber 14 is detected by a photomultiplier 29, amplified by a signal amplifier 30, and then recorded or read.

31はホトマルチプライヤ29のための電源である。31 is a power source for the photomultiplier 29;

第4図は前記蛍光室14への紫外線照射及びホトマルチ
プライヤ29に関する具体的構成を示すものである。
FIG. 4 shows a specific configuration regarding ultraviolet irradiation to the fluorescent chamber 14 and the photomultiplier 29.

すなわち励起用光源としては、この場合Xe放電管32
を用い、これを周期100ミリ秒、点灯時間1マイタロ
秒でパルス点灯させ、スリツト33、レンズ34及びフ
イルタ35を介し、波長190〜230nmを好ましく
選択して蛍光室14内に照射するようにした。ホトマル
チプライヤ29は蛍光室14側面より、同様なフイルタ
35″, 35″″及びレンズ34″を介して励起物質
からの蛍光を検知できるようにしてある。本発明方法を
実施するための装置は以上の通りに構成され、コツク6
及び8を介して測定流路10に導入されるゼロガス又は
スパンガス、あるいはコツク8を介して測定流路10に
導入される試料ガスには、蛍光室14の手前において0
3供給流路23からの03含有空気が供給され、これに
よつてバツクグランドを安定な低い値にする所望の03
濃度を達成することができる。
That is, in this case, the Xe discharge tube 32 is used as the excitation light source.
This was pulse-lit with a cycle of 100 milliseconds and a lighting time of 1 microsecond, and a wavelength of 190 to 230 nm was preferably selected and irradiated into the fluorescence chamber 14 through a slit 33, a lens 34, and a filter 35. . The photomultiplier 29 is configured to detect fluorescence from the excited substance from the side of the fluorescence chamber 14 through similar filters 35'', 35'''' and a lens 34''. The apparatus for implementing the method of the present invention is constructed as described above, and the apparatus is constructed as described above.
The zero gas or span gas introduced into the measurement channel 10 via the gas and 8, or the sample gas introduced into the measurement channel 10 via the gas chamber 8, has zero gas or span gas introduced into the measurement channel 10 through the
The 03-containing air from the 3 supply channel 23 is supplied to the desired 03-containing air to bring the background to a stable low value.
concentration can be achieved.

浸透除湿器11はガス中の水分を凝縮させることなく浸
透法により分子の状態で除去できるものであり、SO。
溶解による損失が生じない。除湿されたガスは、キヤピ
ラリ一12を通り、カツタ一13において、SO。蛍光
測定の主要な妨害成分である芳香族炭化水素を除去され
てから蛍光室14に送られるものである。本発明の装置
は以上のように構成されるので、0,供給流路23の流
路抵抗と、測定流路10の流路抵抗とを所望の比率に設
定しておくことにより、測定流路10中のガスに常時ほ
ぼ一定の比率で空気又は純酸素を合流させ、安定で低レ
ベルのバツクグランド値とすることができるものである
The osmotic dehumidifier 11 is a device that can remove moisture in gas in the form of molecules by an osmotic method without condensing it.
No losses occur due to dissolution. The dehumidified gas passes through the capillary 12 and is turned to the SO in the cutter 13. It is sent to the fluorescence chamber 14 after aromatic hydrocarbons, which are the main interfering components in fluorescence measurement, are removed. Since the apparatus of the present invention is configured as described above, by setting the flow path resistance of the supply flow path 23 and the flow path resistance of the measurement flow path 10 to a desired ratio, the measurement flow path By constantly adding air or pure oxygen to the gas in 10 at a substantially constant ratio, a stable and low background value can be achieved.

なお、第5図は測定流路10にN。In addition, in FIG. 5, N is connected to the measurement channel 10.

ガスからなるゼロガスを1.51/Minで流す場合に
おいてオゾン供給流路23への空気流入量を20〜20
0m1/Minとした場合のオゾナイザ28における発
生オゾン濃度%と、これにもとづいて蛍光室14に到達
したオゾン濃度〔Ppn〕、及び蛍光室14内の酸素濃
度の関係を示すものである。これらのグラフによれば空
気流量を増せばオゾン発生濃度はある程度まで減少する
が蛍光室14内でのオゾン濃度は450ppn程度まで
は、空気量にほぼ比例して増加し、第2図に示した範囲
での好ましいベース値を設定しうることが明らかである
When flowing zero gas consisting of gas at a rate of 1.51/min, the amount of air flowing into the ozone supply channel 23 is set to 20 to 20
It shows the relationship between the ozone concentration % generated in the ozonizer 28, the ozone concentration [Ppn] that has reached the fluorescent chamber 14 based on this, and the oxygen concentration in the fluorescent chamber 14 when the ozonizer 28 is 0 m1/Min. According to these graphs, increasing the air flow rate reduces the ozone generation concentration to a certain extent, but the ozone concentration in the fluorescent room 14 increases almost in proportion to the air volume up to about 450 ppn, as shown in Figure 2. It is clear that a preferred base value within a range can be established.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は0。 濃度一バツクグランド特性を示すグラフ、第2図は0。
濃度と対比した0。−0,系濃度のバツクグランド特性
を示すダラフ、第3図は本発明の流路構成例を示すフロ
ーチヤート、第4図は第3図流路中の蛍光室−光検知系
の具体例を示す断面略図、第5図はオゾナイザとこれに
接続された蛍光室における空気量、0。濃度及び0。濃
度の関係を示すグラフである。1 ・・・・・・試料ガ
ス入口、3 ・・・・・・スパンガス入口、4 ・・・
・・・ゼロガス入口、10・・・・・・測定流路、14
・・・・・・蛍光室、23・・・・・・0,供給流路、
29・・・・・・ホトマルチプライヤ、32・・・・・
・Xe放電管(励起光源)。
Figure 1 is 0. A graph showing concentration-background characteristics, Figure 2 is 0.
0 versus concentration. -0, Drought showing the background characteristics of the system concentration, Figure 3 is a flowchart showing an example of the flow path configuration of the present invention, and Figure 4 shows a specific example of the fluorescence chamber-light detection system in the flow path shown in Figure 3. The schematic cross-sectional view shown in FIG. 5 shows the amount of air in the ozonizer and the fluorescent chamber connected thereto, 0. concentration and 0. It is a graph showing the relationship between concentrations. 1...Sample gas inlet, 3...Span gas inlet, 4...
... Zero gas inlet, 10 ... Measurement channel, 14
...Fluorescent room, 23...0, supply flow path,
29...Photomultiplier, 32...
-Xe discharge tube (excitation light source).

Claims (1)

【特許請求の範囲】 1 試料ガスSO_2吸収領域の紫外線を照射し、これ
による試料ガスの励起発光強度を測定することにより、
SO_2濃度を求めるにあたり、SO_2濃度のゼロ又
はスパン値に対応する基準値を設定すべく選択された基
準ガス並びに試料ガスにO_3を混入し、前記O_3混
入後のガスについて測定した光強度をもつて前記基準値
及び測定値とすることを特徴とする蛍光分析法によるS
O_2濃度測定方法。 2 基準ガスを構成するゼロガス要素がN_2からなる
ことを特徴とする特許請求の範囲第1項記載の方法。 3 試料ガス及び基準ガスに照射する紫外線をパルス点
灯することを特徴とする特許請求の範囲第1項記載の方
法。 4 試料ガス流路と、ゼロ又はスパン値設定用の基準ガ
ス流路の下流端を一括して、励起用紫外線光源、及び蛍
光検出手段と関連配置された蛍光室に導くための測定流
路を構成し、この測定流路における前記蛍光室の手前に
O_3を合流させるための流路を接続したことを特徴と
する蛍光分析法によるSO_2濃度測定装置。 5 O_3合流路が空気入口から少くともフィルタを介
してオゾナイザに達し、このオゾナイザの出口を前記蛍
光室の手前に直結したものからなる特許請求の範囲第4
項記載の装置。
[Claims] 1. By irradiating ultraviolet rays in the sample gas SO_2 absorption region and measuring the excitation emission intensity of the sample gas,
To determine the SO_2 concentration, O_3 is mixed into the selected reference gas and sample gas to set a reference value corresponding to the zero or span value of the SO_2 concentration, and the light intensity measured for the gas after the O_3 is mixed is used. S by a fluorescence analysis method characterized in that the reference value and the measured value are
O_2 concentration measurement method. 2. The method according to claim 1, wherein the zero gas element constituting the reference gas consists of N_2. 3. The method according to claim 1, characterized in that the sample gas and the reference gas are irradiated with ultraviolet light in pulses. 4. A measurement flow path is provided that connects the downstream end of the sample gas flow path and the reference gas flow path for setting zero or span values to a fluorescence chamber arranged in conjunction with an excitation ultraviolet light source and fluorescence detection means. An apparatus for measuring SO_2 concentration using a fluorescence analysis method, characterized in that a flow path for merging O_3 is connected to the measurement flow path before the fluorescence chamber. 5 O_3 confluence path reaches an ozonizer from the air inlet through at least a filter, and the outlet of the ozonizer is directly connected to the front of the fluorescent room.
Apparatus described in section.
JP8852777A 1977-06-29 1977-07-22 Method and device for measuring SO↓2 concentration by fluorescence analysis Expired JPS5950930B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8852777A JPS5950930B2 (en) 1977-07-22 1977-07-22 Method and device for measuring SO↓2 concentration by fluorescence analysis
US05/917,845 US4254339A (en) 1977-06-29 1978-06-22 Method for the fluorimetric quantitative determination of SO2 in gases and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8852777A JPS5950930B2 (en) 1977-07-22 1977-07-22 Method and device for measuring SO↓2 concentration by fluorescence analysis

Publications (2)

Publication Number Publication Date
JPS5423592A JPS5423592A (en) 1979-02-22
JPS5950930B2 true JPS5950930B2 (en) 1984-12-11

Family

ID=13945303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8852777A Expired JPS5950930B2 (en) 1977-06-29 1977-07-22 Method and device for measuring SO↓2 concentration by fluorescence analysis

Country Status (1)

Country Link
JP (1) JPS5950930B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103198B2 (en) * 1987-03-27 1994-12-14 三菱電機株式会社 Vortex flowmeter
JPH06103197B2 (en) * 1987-03-27 1994-12-14 三菱電機株式会社 Vortex flowmeter
JP5684675B2 (en) * 2011-08-12 2015-03-18 Jfeスチール株式会社 Analysis method and analyzer

Also Published As

Publication number Publication date
JPS5423592A (en) 1979-02-22

Similar Documents

Publication Publication Date Title
US7069769B2 (en) Ultraviolet photoacoustic ozone detection
Parker et al. Some experiments with spectrofluorimeters and filter fluorimeters
US5661036A (en) Process for the detection of sulfur
Okabe et al. Ambient and source SO2 detector based on a fluorescence method
Skala A New Instrument for the Continuous Measurement of Condensation Nuclei.
Lawrence Quenching and radiation rates of CO (a 3Π)
JPS5810131Y2 (en) Sulfur dioxide fluorescence detection device
US20060246594A1 (en) Method and apparatus for detecting the presence of elemental mercury in a gas sample
US20110201123A1 (en) Low cost, high accuracy ozone sensing
JP2003065958A (en) Method and apparatus for analysing sulfur
US4254339A (en) Method for the fluorimetric quantitative determination of SO2 in gases and apparatus therefor
Jones et al. OCS formation in the reaction of OH with CS2
Schwarz et al. Fluorescence detection of sulfur dioxide in air at the parts per billion level
US5132227A (en) Monitoring formaldehyde
US4205956A (en) Nickel carbonyl analyzer
US3795812A (en) Sulfur dioxide pollution monitor
Robinson et al. Non-flame atomic absorption in the vacuum ultraviolet region: The direct determination of mercury in air at the 184.9-nm resonance line
JPS5950930B2 (en) Method and device for measuring SO↓2 concentration by fluorescence analysis
US3166676A (en) Ultra-violet gas analysis apparatus to determine the relative gaseous concentration in an anesthetic system
KR102074696B1 (en) Potable NOX Measurement System
KR102074700B1 (en) Potable NOX Measurement System
CN209979488U (en) Detection of SO by ultraviolet fluorescence2Device for the preparation of
Schneider et al. Characterization of New Excimer Pumped UV Laser Dyes I. p‐Terphenyls
JP6179934B2 (en) Method and apparatus for detecting NOx gas in ozone-containing gas
CN114112956A (en) Gas detection method and device