JPS5950493B2 - Laminate manufacturing method and coextrusion die used therein - Google Patents

Laminate manufacturing method and coextrusion die used therein

Info

Publication number
JPS5950493B2
JPS5950493B2 JP55135794A JP13579480A JPS5950493B2 JP S5950493 B2 JPS5950493 B2 JP S5950493B2 JP 55135794 A JP55135794 A JP 55135794A JP 13579480 A JP13579480 A JP 13579480A JP S5950493 B2 JPS5950493 B2 JP S5950493B2
Authority
JP
Japan
Prior art keywords
resin
die
base material
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55135794A
Other languages
Japanese (ja)
Other versions
JPS5761524A (en
Inventor
幹夫 片桐
幸生 迫田
国衛 広重
幸男 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Polychemicals Co Ltd
Original Assignee
Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Polychemicals Co Ltd filed Critical Mitsui Polychemicals Co Ltd
Priority to JP55135794A priority Critical patent/JPS5950493B2/en
Publication of JPS5761524A publication Critical patent/JPS5761524A/en
Publication of JPS5950493B2 publication Critical patent/JPS5950493B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は、積層物の製造方法及びそれに用いる共押出ダ
イに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a laminate and a coextrusion die used therein.

本発明は、特にポリオレフィン樹脂、エチレン系共重合
体、ポリエステル、ナイロン等の熱可塑性樹脂の複数層
の共押出熔融樹脂ウェブを、紙、アルミ箔、セロハンあ
るい(j各種プラステイツクフイルムなどの基材に押出
しコーティングしてラミネート物を製造する方法および
その方法を実施するための装置に関するもグであり、さ
らに詳しくは前記ウェブの基材側の柚脂層が良好な接着
性を有すると同時に、基材と接しない側のコーティング
樹脂膜表面の酸化および分解が少な<、したがつてヒー
トシール性に優れ、ヒートシール性の経時変化も小さく
、かつ樹脂の酸化臭、分解臭の少ないラミネート物を製
造する方法およびその方法を実施するための装置に関す
るものである。従来、包装用,剥離紙用などのラミネー
ト物を製造する方法として、ポリオレフイン樹脂やエチ
レン系共重合体及びポリエステル、ナイロンなどの樹脂
を押出機で熔融混練した後、押出ダイより押出して熔融
樹脂ウエブを作り、これを接着向上のためのアンカーコ
ート処理、コロナ放電処理、フレーム処理などの適当な
前処理を施したセロハン,各種プラスチツクフイルム、
紙、アルミ箔などの基材に圧着して貼合せ、同時に冷却
するいわゆる押出コーテイング法が広<用いられている
The present invention particularly relates to a coextruded molten resin web of multiple layers of thermoplastic resins such as polyolefin resins, ethylene copolymers, polyesters, and nylon. This article relates to a method for producing a laminate by extrusion coating on a material and an apparatus for carrying out the method, and more specifically, the citrus oil layer on the base material side of the web has good adhesion, and at the same time, There is little oxidation and decomposition of the surface of the coating resin film on the side that does not contact the base material.Therefore, the laminate has excellent heat sealability, little change in heat sealability over time, and low resin oxidation and decomposition odors. It relates to a manufacturing method and an apparatus for carrying out the method. Conventionally, as a method for manufacturing laminates for packaging, release paper, etc., resins such as polyolefin resin, ethylene copolymer, polyester, and nylon are used. After being melted and kneaded in an extruder, it is extruded through an extrusion die to create a molten resin web, which is then subjected to appropriate pretreatments such as anchor coating, corona discharge treatment, and flame treatment to improve adhesion. film,
The so-called extrusion coating method is widely used, in which materials are pressure-bonded to a base material such as paper or aluminum foil, and cooled at the same time.

この場合、ポリオレフイン樹脂やエチレン系共重合体及
びポリエステル、ナイロンなどの樹脂膜をコーテイング
する主たる理由は、基材にヒートシール性、防湿性、防
脂性、耐衝撃性、剥離性、保護効果、その他の性質を付
与することにある。従来行なわれている通常のポリオレ
フイン樹脂その他の押出コーテイング加工法においては
、基材へポリオレフイン樹脂その他を充分な強度で接着
せしめるためには押出機、ダイの中における樹脂の温度
を通常300℃以上の非常な高温にする必要がある。そ
の理由は基材との接着のために樹脂の熔融粘度を下げて
基材への濡れを良くすると同時に、ポリエチレン、ポリ
プロピレンのようなポリオレフイン樹脂は基材に良く接
着するために必要とされる極性基を通常充分な数だけ有
していないため、熔融樹脂ウエブがエアギヤツプと呼ば
れるダイ出口から冷却ロールとニツプロールとの圧着地
点までの距離を通過する間に熔融ポリオレフインを空気
によつて酸化させるためである。例えば、低密度ポリエ
チレンの押出コーテイング加工においては、アダプター
部の樹脂温度で320ないし330℃、ダイ出口の熔融
樹脂ウエブ温度300ないし315℃というような高い
温度条件を用いることによつて熔融ポリエチレンを適度
に酸化させている。このようにポリオレフイン樹脂を始
めとする熱可塑性樹脂の押出コーテイングにおいては、
熔融樹脂ウエブの酸化状態に影響するウエブ温度がウエ
ブと基材との接着を左右する重要な因子になつている。
前述のように公知の押出コーテイング法では、ウエブと
基材との間に充分な接着強度を生じせしめるために通常
300℃以上に樹脂温度を上げる必要があるが、一方こ
のような高温でポリオレフイン樹脂その他を基材に対し
て押出コーテイングしたラミネート物は特に包装材料と
して用いる場合いくつかの欠点を有している。
In this case, the main reasons for coating the base material with a resin film such as polyolefin resin, ethylene copolymer, polyester, or nylon are to provide the base material with heat-sealing properties, moisture-proofing properties, grease-proofing properties, impact resistance, releasability, protective effects, etc. The goal is to give the characteristics of In the conventional extrusion coating process for polyolefin resins and other materials, in order to bond the polyolefin resins and other materials to the substrate with sufficient strength, the temperature of the resin in the extruder and die is usually set at 300°C or higher. It needs to be very hot. The reason for this is that in order to adhere to the base material, the melt viscosity of the resin is lowered to improve wetting to the base material, and at the same time, polyolefin resins such as polyethylene and polypropylene have the necessary polarity to adhere well to the base material. This is because the molten polyolefin is oxidized by air while the molten resin web passes through a distance called an air gap from the die exit to the crimping point between the cooling roll and the nip roll. be. For example, in the extrusion coating process of low-density polyethylene, high temperature conditions such as a resin temperature of 320 to 330°C at the adapter part and a molten resin web temperature of 300 to 315°C at the die exit are used to moderate the molten polyethylene. It is oxidized to In this way, in extrusion coating of thermoplastic resins such as polyolefin resins,
Web temperature, which affects the oxidation state of the molten resin web, has become an important factor that affects the adhesion between the web and the base material.
As mentioned above, in the known extrusion coating method, it is usually necessary to raise the resin temperature to over 300°C in order to generate sufficient adhesive strength between the web and the substrate. Laminates made by extrusion coating other substrates have several drawbacks, particularly when used as packaging materials.

すなわち、公知の方法によるポリオレフイン樹脂その他
と基材とのラミネート物においては、ポリオレフイン樹
脂その他が押出時に高温度に加熱されるため、しばしば
樹脂の熱劣化、すなわち酸化、分解、架橋などが起り、
その結果コート樹脂層のヒートシール性が低下し、さら
に経時と共にこの低下が激しくなつていくという問題が
ある。
That is, in a laminate of a polyolefin resin or other material and a base material by a known method, since the polyolefin resin or other material is heated to a high temperature during extrusion, thermal deterioration of the resin, that is, oxidation, decomposition, crosslinking, etc., often occurs.
As a result, there is a problem in that the heat sealing properties of the coated resin layer deteriorate, and this deterioration becomes more severe as time passes.

例えば、本発明者の試験では、低密度ポリエチレンを樹
脂温度(アダブター部)320℃の条件で基材セロハン
に対して40μの厚さで押出コーテイングして製造した
ラミネート物を環境温度50℃の下に20日間放置して
おくと、そのヒートシール強度は加工して3日後に測定
した値の約50%まで低下するという結果が得られてい
る。また公知の押出コーテイング加工法で製造されたポ
リオレフイン樹脂又は他の熱可塑性樹脂と基材とのラミ
ネート物の持つ他の欠点として、ポリオレフイン樹脂そ
の他が高温で加工されるため樹脂の酸化、分解が起り、
いわゆる「ラミ臭」と称される独特の臭気がコーテイン
グ層に生ずることが挙げられる。
For example, in the inventor's test, a laminate manufactured by extrusion coating low-density polyethylene to a thickness of 40 μm on a cellophane base material at a resin temperature (adapter part) of 320°C was coated at an environmental temperature of 50°C. It has been found that when left for 20 days, the heat seal strength decreases to about 50% of the value measured 3 days after processing. Another disadvantage of laminates of polyolefin resins or other thermoplastic resins and base materials produced by known extrusion coating processing methods is that polyolefin resins and other materials are processed at high temperatures, which can cause oxidation and decomposition of the resin. ,
One example of this is that a unique odor, so-called "litter odor", is generated in the coating layer.

このラミネート物を包装材として用いた場合、コーテイ
ング層が包装体において基材よりも内側に位置するため
、この臭気は内容物に容易に転移し、しばしば内容物の
臭いや昧に問題を起している。さらに公知の方法で得ら
れたポリオレフイン樹脂又はその他の熱可塑性樹脂のラ
ミネート物は、樹脂の熱劣化のためその物理的性質およ
び化学的性質が悪化するという欠点もまた存在する。
When this laminate is used as a packaging material, because the coating layer is located inside the package than the base material, this odor is easily transferred to the contents, often causing problems with the odor and odor of the contents. ing. Furthermore, laminates of polyolefin resins or other thermoplastic resins obtained by known methods also have the disadvantage that their physical and chemical properties deteriorate due to thermal deterioration of the resin.

このように公知の押出コーテイング加工法において製造
されたポリオレフイン樹脂を始めとする熱可塑性樹脂と
基材とのラミネート物は、樹脂の熱劣化のため前述のよ
うに包装材料としていくつかの欠点を有するものになつ
ているのである。また、包装材料以外の用途、例えば剥
離紙,工程紙などの用途にポリオレフイン樹脂又はポリ
エステル,ナイロンなどと紙または布から成る構成のラ
ミネート物を押出コーテイング加工で製造する場合も、
押出コーテイング層と基材の間に充分な接着力を生じせ
しめるには熔融樹脂の温度を通常300℃以上にする必
要があるが、こうして得られたラミネート物のコーテイ
ング樹脂表面は熱による酸化を受けているため剥離性能
が低下している。このように公知の押出コーテイング加
工では、基材との接着のために樹脂温度を非常に高くす
る必要があるが、このような条件で加工したラミネート
物は樹脂表面の酸化のために実用物性にいくつかの欠点
を持つという大きな矛盾が存在しているのである。
As described above, laminates of thermoplastic resins such as polyolefin resins and base materials produced by known extrusion coating processing methods have several drawbacks as packaging materials, as described above, due to thermal deterioration of the resins. It has become a thing. In addition, when manufacturing laminates made of polyolefin resin, polyester, nylon, etc. and paper or cloth for uses other than packaging materials, such as release paper and process paper, by extrusion coating,
In order to generate sufficient adhesion between the extruded coating layer and the substrate, the temperature of the molten resin usually needs to be higher than 300°C, but the coating resin surface of the laminate thus obtained is susceptible to oxidation due to heat. Because of this, the peeling performance is reduced. In this known extrusion coating process, it is necessary to raise the resin temperature to a very high temperature in order to adhere to the base material, but laminates processed under these conditions have poor physical properties due to oxidation of the resin surface. There is a great contradiction in that it has several drawbacks.

このような公知方法の欠点を解消する方法として、近年
一部では共押出の利用が考えられている。
As a method to overcome the drawbacks of such known methods, in recent years some use of coextrusion has been considered.

この方法は第2図に示す通り押出機を2台使用し、一方
の押出機で熔融ウエブの基材側に当る樹脂Aをエアギヤ
ツプ通過中にその表面に接着に必要な空気酸化を生じせ
しめるべく、300℃以上の温度で混練し、他方の押出
機で基材と反対側の層の樹脂Bを押出コーテイングが可
能で、かつエアギヤツプ通過中にできるだけ酸化しない
ような比較的低い樹脂温度で混練してTダイに導くもの
である。しかしながら、この方法においてはTダイに導
入する2つの樹脂の温度に大きな差を付けておいても、
Tダイを通過する間にダイと樹脂との間に熱交換が行な
われ、実際にはダイ出口における高温と低温の樹脂の温
度差は通常10〜20℃に縮小されてしまう。従つて熔
融ウエブの高温側層α1は勿論低温側層β1もエアギヤ
ツプ通過中にかなりの酸化を受けることは避けられず、
結果として全体のウエブが酸化生成物による臭気を帯び
ることになる。本発明者はこれらの従来公知のポリオレ
フイン樹脂を始めとする熱可塑性樹脂の押出コーテイン
グ加工における前述の欠点をことごとく解消することを
目的として鋭意検討した結果本発明を得るに到つたもの
である。
This method uses two extruders as shown in Fig. 2, and one extruder is used to generate the air oxidation necessary for adhesion on the surface of resin A, which is on the base material side of the molten web, while passing through an air gap. The resin B is kneaded at a temperature of 300°C or higher, and the other extruder is used to extrude and coat the resin B on the opposite side of the base material, and the resin is kneaded at a relatively low temperature so as to prevent oxidation as much as possible while passing through the air gap. This leads to T-die. However, in this method, even if there is a large difference in the temperature of the two resins introduced into the T-die,
Heat exchange takes place between the die and the resin while passing through the T-die, and in reality the temperature difference between the hot and cold resin at the die exit is usually reduced to 10-20°C. Therefore, it is inevitable that not only the high-temperature side layer α1 but also the low-temperature side layer β1 of the molten web undergoes considerable oxidation while passing through the air gap.
As a result, the entire web becomes odorous due to oxidation products. The present inventors have conducted intensive studies aimed at eliminating all of the above-mentioned drawbacks in extrusion coating processing of thermoplastic resins including conventionally known polyolefin resins, and as a result, they have arrived at the present invention.

即ち、本発明の目的は、複数層の熱可塑性樹脂から成り
且つ基材に押出コートされるべき共押出熔融ウエブの基
材側の樹脂層を十分に高温に、基材の反対側の樹脂層を
十分に低温に維持することを可能にする積層物の改良製
造方法及びそれに用いるダイを提供するにある。
That is, an object of the present invention is to heat the resin layer on the base material side of a coextruded molten web consisting of multiple layers of thermoplastic resin and to be extrusion coated on the base material to a sufficiently high temperature, and to heat the resin layer on the opposite side of the base material to a sufficiently high temperature. An object of the present invention is to provide an improved method for manufacturing a laminate that makes it possible to maintain the laminate at a sufficiently low temperature, and a die used therein.

本発明の他の目的は、前記共押出熔融ウエブの基材と接
する側の樹脂層が基材と良好な接着性を示し、しかも基
材と接しない側の樹脂層の酸化及び分解が抑制され、従
つて耐層間剥離性やヒートシール性に優れ、ヒートシー
ルの経時劣化も少なく、樹脂層のフレーバ一(香昧)保
持性も良好なラミネートの製造を可能にする積層物の製
造方法及び装置を提供するにある。
Another object of the present invention is that the resin layer on the side in contact with the base material of the coextruded molten web exhibits good adhesion to the base material, and that oxidation and decomposition of the resin layer on the side not in contact with the base material is suppressed. , Therefore, a method and apparatus for producing a laminate that makes it possible to produce a laminate that has excellent delamination resistance and heat-sealing properties, little deterioration of heat-sealing over time, and good flavor retention of the resin layer. is to provide.

本発明によれば、複数層の熱可塑性樹脂を共押出ダイを
通して熔融ウエブに共押出し、これを基材上にコーテイ
ングしてラミネートを製造する方法において、基材に接
する側の樹脂を基材に接しない側の樹脂よりも高温に維
持して前記ダイに導入し、基材に接する側の樹脂に対す
るダイ内流路を高温に、基材に接しない側の樹脂に対す
るダイ内流路を低温に設定し、これら複数のダイ内樹脂
流路間に断熱用空間を設けて、該空間内にガスを流し、
前記複数の樹脂層に温度差をもたせて共押出を行うこと
を特徴とするラミネート物の製造方法が提供される。
According to the present invention, in a method for producing a laminate by coextruding a plurality of layers of thermoplastic resin into a molten web through a coextrusion die and coating the web on a substrate, the resin on the side in contact with the substrate is coated on the substrate. The resin is maintained at a higher temperature than the resin on the side that is not in contact with the die and introduced into the die, and the flow path in the die for the resin on the side that is in contact with the base material is set to a high temperature, and the flow path in the die for the resin on the side that is not in contact with the base material is set to a low temperature. setting, providing a heat insulating space between the plurality of resin flow paths in the die, and flowing gas into the space,
There is provided a method for producing a laminate, characterized in that coextrusion is performed with a temperature difference between the plurality of resin layers.

本発明によれば更に、2個のダイボデイとその中間に位
置する少なくとも1個の仕切部材とから成り、各ダイボ
デ゛イと仕切部材との間或いは更に各仕切部材間に複数
個の樹脂流路が形成され、仕切部材の先端において複数
個の樹脂流路が合流し、その下部において一つのダイラ
ンドを形成している共押出ダイにおいて、該仕切部材の
内部にガス流路となる断熱用空間を設け、該空間の一方
の端部にガス導入口、他方の端部にガス排出口を夫々設
け、且つ該ガス流路で区画されるダイ部分に夫々別個の
温度制御機構を設けてなることを特徴とする積層用共押
出ダイが提供される。
According to the present invention, the present invention further includes two die bodies and at least one partition member located between them, and a plurality of resin flow channels between each die body and the partition member or between each partition member. In a coextrusion die in which a plurality of resin flow channels merge at the tip of a partition member and form one die land at the bottom thereof, a heat insulating space that becomes a gas flow path is provided inside the partition member. A gas inlet is provided at one end of the space, a gas outlet is provided at the other end of the space, and a separate temperature control mechanism is provided in each die portion divided by the gas flow path. A laminating coextrusion die featuring features is provided.

本発明によれば、上述した如く共押出ダイ内の仕切部材
内に断熱用空間を設けてこの空間に積極的にガスを流し
、しかもこの断熱用空間で区画される各ダイ部分に温度
制御機構を設けることにより、熔融共押出ウエブの基材
側樹脂層と反対側の樹脂層との間に所定の温度差をもた
せて共押出を行うことが可能となり、この結果として、
共押出ウエブの基材側樹脂層と基材との層間接着力を十
分に高め、しかも基材と反対側の樹脂層の酸化や劣化を
防止して、低温ヒートシール性を良好にし、ヒートシー
ル強度の経時劣化を防ぎ、臭気のないヒートシール面を
もつたラミネート物を製造することが可能となる。
According to the present invention, as described above, a heat insulating space is provided in the partition member in the coextrusion die, gas is actively flowed into this space, and each die portion divided by the heat insulating space has a temperature control mechanism. By providing this, it becomes possible to perform coextrusion with a predetermined temperature difference between the resin layer on the base material side of the melt coextruded web and the resin layer on the opposite side, and as a result,
Sufficiently increases the interlayer adhesion between the resin layer on the base side of the coextruded web and the base material, and prevents oxidation and deterioration of the resin layer on the opposite side of the base material, improving low-temperature heat sealability. It is possible to prevent deterioration of strength over time and to produce a laminate with an odor-free heat-sealing surface.

本発明の好適な態様においては、前述した断熱用空間か
らの排出ガスを熔融共押出ウエブの片面乃至は両面に吹
付ける。
In a preferred embodiment of the present invention, the exhaust gas from the above-mentioned heat insulating space is blown onto one or both sides of the molten coextruded web.

このように、断熱用空間に通じたガスをウエブに吹付け
ることにより、前述した利点に加えて更に、高温の樹脂
ウエブから発生する樹脂の低分子量物や分解物が吹飛ば
され、ラミネート物の臭気の原因物質が効果的に除去さ
れ、その結果ラミネート物を包装体として使用するとき
のフレーバー保持性を飛躍的に増進さ,せることができ
る。しかも、熔融ウエブの基材と反対側の面に不活性ガ
スを吹付ければ、この面の樹脂層の酸化劣化が一層有効
に防止され、また熔融ウエブの基材側面に、オゾン、酸
素等を吹付ければこの面の樹脂層の酸化により、基材と
の接着.性が一層向上するという付加点な利点も達成さ
れる。本発明を、添付図面に示す例に基ずき以下に詳細
に説明する。
In this way, by blowing the gas that communicates with the heat insulating space onto the web, in addition to the above-mentioned advantages, low molecular weight substances and decomposition products of the resin generated from the high temperature resin web are blown away, and the laminate is Odor-causing substances are effectively removed, and as a result, flavor retention when the laminate is used as a packaging material can be dramatically improved. Moreover, if an inert gas is sprayed on the side of the molten web opposite to the base material, oxidative deterioration of the resin layer on this side can be more effectively prevented, and ozone, oxygen, etc. When sprayed, the resin layer on this side oxidizes and adheres to the base material. The additional advantage of further improved performance is also achieved. The invention will be explained in more detail below on the basis of examples shown in the accompanying drawings.

第1図は従来公知の代表的な押出コーテイング.用ダイ
とラミネート部(冷却ロールおよびニツプロール)とを
示し、押出機内で少なくとも300℃以上の温度で熔融
混練された樹脂Xはヒーター5および6によつて加熱さ
れた押出コーテイング用ダイのダイボデイ1にあけられ
た樹脂通路2を通りマニホールド3に導かれる。
Figure 1 shows a typical known extrusion coating. The resin X melted and kneaded in the extruder at a temperature of at least 300°C is transferred to the die body 1 of the extrusion coating die heated by heaters 5 and 6. It passes through the opened resin passage 2 and is guided to the manifold 3.

マニホールド3内でダイ巾方向に拡げられた熔融樹脂は
調整ボルトによつて位置調整された2枚のダイリツプで
形成されるダイ出口4を通つてダイの外に押出されて熔
融樹脂ウエブとなり、エアギヤツプAを通過する間に空
気によつてその表面が酸化され、基材7に触れると同時
に表面をゴムで被覆されたニツプロール9と金属製の冷
却ロール8によつて基材7に圧着される。この場合、熔
融樹脂ウエブの基材側の面α面は基材7と強固に接着す
るためにできるだけ酸化していることが望ましく、一方
基材7に当らない面β面はヒートシール性,臭気などの
点からできるだけ酸化しないことが望ましいわけである
が、この従来公知の方法では熔融樹脂ウエブのα面とβ
面の酸化度を別々に変えることは不可能であり、結果と
してα面に要求される酸化度とβ面に要求される酸化度
の中間に妥協点としてある狭い酸化度の範囲を設定し、
それに合わせるよう樹脂温度、エアギャップ、引取速度
などの加工条件を調整している。このためラミネート加
工の条件が何らかの原因で変動した場合、それによつて
熔融樹脂ウエブの酸化状態が変動し、酸化度が妥協点と
しての狭い適正範囲を越えてしまうと、接着不良または
ヒートシール不良その他の不良現象が現われ、実際の押
出コーテイングの加工においてしばしば問題になつてい
る。この問題の一つの解決法として2層共押出ダイを用
いた方法が一部で行われている。
The molten resin spread in the width direction of the die within the manifold 3 is pushed out of the die through the die outlet 4 formed by two die lips whose position is adjusted by adjustment bolts, becomes a molten resin web, and is passed through the air gap. While passing through A, its surface is oxidized by air, and as soon as it touches the base material 7, it is pressed onto the base material 7 by a nip roll 9 whose surface is coated with rubber and a metal cooling roll 8. In this case, it is desirable that the surface α on the base material side of the molten resin web is oxidized as much as possible in order to firmly adhere to the base material 7, while the surface β that does not contact the base material 7 has good heat sealability and odor. From these points of view, it is desirable to avoid oxidation as much as possible, but in this conventionally known method, the α and β faces of the molten resin web
It is impossible to change the oxidation degree of each surface separately, and as a result, a narrow oxidation degree range is set as a compromise between the oxidation degree required for the α-face and the oxidation degree required for the β-face.
Processing conditions such as resin temperature, air gap, and take-off speed are adjusted to match this. Therefore, if the laminating conditions change for some reason, the oxidation state of the molten resin web will change, and if the oxidation degree exceeds the narrow appropriate range as a compromise, it will cause poor adhesion, poor heat sealing, etc. This defective phenomenon appears and often becomes a problem in the actual processing of extrusion coatings. As one solution to this problem, a method using a two-layer coextrusion die has been used in some cases.

第2図はこの方法に用いられている2層共押出ダイとラ
ミネート部(冷却ロールおよびニツプロール)とを示し
たものである。第1押出機内で例えば320℃の樹脂温
度で熔融混練された樹脂Aはヒーター21によつて例え
ば320℃に加熱されたダイボデイ一10にあけられた
樹脂通路23を通りマニホールド13に導かれ、ダイ全
巾に広がつた後、ダイボデイ一10と仕切板12の間に
形成された樹脂流路15を通つて仕切板12の先端の合
流部17に向う。一方、第2押出機内で例えば270℃
で熔融混練された樹脂Bはヒーター22によつて例えば
270℃に加熱されたダイボデイ一11にあけられた樹
脂通路24を通り、マニホールド14に導かれ、ダイ全
巾に広がつた後、ダイボデイ一11と仕切板12の間に
形成された樹脂流路16を通つて合流部17に向う。こ
こで仕切板12はダイボデイ一10の温度320℃とダ
イボデイ一11の温度270℃との中間の温度になるた
めダイ内を流れる樹脂Aの温度は流入時の320℃より
も低くなる一方、ダイ内を流れる樹脂Bの温度は流入時
の270℃よりも高くなつて合流部17で合流する。従
つてダイ出口18より共押出された高温の樹脂Aと低温
の樹脂Bとのダイ出口18における温度差はダイ流入時
の温度差より相当小さくなつてしまう。このように熔融
ウエブの高温側層α,の温度が適正温度より低くなる結
果、基材7との接着が充分に出にくくなり、同時に熔融
ウエブの低温側層β,も目標温度より高くなつて高温側
層α,と共にエアギヤツプ通過中にかなりの酸化を受け
るようになり、全体として臭気を帯びたラミネ一I 卜
物が作られることになつてしまい、又、低温シール性、
ヒートシール性の経時変化についても依然として問題を
残している。第3図は本発明による2層共押出ダイとラ
ミネート部を示したものである。
FIG. 2 shows the two-layer coextrusion die and laminating section (cooling roll and nip roll) used in this method. Resin A melted and kneaded at a resin temperature of, for example, 320°C in the first extruder is guided to the manifold 13 through a resin passage 23 opened in the die body 10, which is heated to, for example, 320°C by a heater 21. After spreading over the entire width, it passes through the resin flow path 15 formed between the die body 10 and the partition plate 12 and heads for the confluence 17 at the tip of the partition plate 12. Meanwhile, in the second extruder, for example, 270°C
The melted and kneaded resin B passes through a resin passage 24 opened in the die body 11 which is heated to, for example, 270°C by a heater 22, is guided to the manifold 14, spreads over the entire width of the die, and then passes through the die body 11. The resin passes through a resin flow path 16 formed between the resin flow path 11 and the partition plate 12 to the merging portion 17 . Here, the temperature of the partition plate 12 is between the temperature of 320°C of the die body 10 and the temperature of 270°C of the die body 11, so the temperature of the resin A flowing inside the die is lower than the 320°C when it flows into the die. The temperature of the resin B flowing therein becomes higher than 270° C. at the time of inflow, and the resin B merges at the merging portion 17. Therefore, the temperature difference at the die exit 18 between the high temperature resin A and the low temperature resin B coextruded from the die exit 18 is considerably smaller than the temperature difference when they enter the die. As a result of the temperature of the high-temperature side layer α of the molten web becoming lower than the appropriate temperature, sufficient adhesion with the base material 7 is difficult to occur, and at the same time, the temperature of the low-temperature side layer β of the molten web also becomes higher than the target temperature. Together with the high-temperature side layer α, it undergoes considerable oxidation during passage through the air gap, resulting in the creation of an odor-bearing laminate as a whole.
There still remains a problem regarding changes in heat sealability over time. FIG. 3 shows a two-layer coextrusion die and laminate section according to the present invention.

第1押出機内で例えば320℃で熔融混練された樹脂A
はヒーター41と熱電対43によつて例えば320℃に
加熱され温度制御されたダイボデイ一25にあけられた
樹脂通路29を通りマニホールド31に導かれ、ダイ全
巾に広がつた後、ダイボデイ一25と仕切板の基材側プ
ロツク27との間に形成された樹脂流路33を通つて合
流部35へ向う。ここで仕切板の基材側プロツク27は
ヒーター39と熱電対45によつて例えば320℃に加
熱され温度制御されており、更にこのプロツク27は、
仕切板にあけられたガス導入口37から空気、窒素その
他のガスを、ダイ全巾にわたつて形成されたガス流路(
断熱用空間)38に導入して流しダイの両端から排出す
ることによつて、仕切板の基材とは反対側のプロツク2
8と断熱されている。従つて樹脂Aは樹脂通路29から
マニホールド31を通り、樹脂流路33を経て合流点3
5へ到達するまで、ダイに導入された時の樹脂温度例え
ば320℃をそのまま保つことが可能である。一方、第
2押出機で例えば270℃で熔融混練された樹脂Bは、
ヒーター42と熱電対44によつて例えば270℃に加
熱され温度制御されたダイボデイ一26にあけられた樹
脂通路30を通り、マニホールド32に導かれ、ダイ全
巾に広がつた後、ダイボデイ一26と仕切板の基材とは
反対側のプロツク28との間に形成された樹脂流路34
を通つて合流部35へ向う。ここで仕切板の基材とは反
対側のプロツク28はヒーター40と熱電対46によつ
て例えば270℃に加熱され温度制御されており、更に
前述のようにこのプロツク28は、仕切板にあけられた
ガス導入口37から空気、窒素その他のガスをダイ全巾
にわたつて形成されたガス流路38に導入して流し、ダ
イの両端から排出することによつて、仕切板の基材側プ
ロツク27と断熱されている。従つて樹脂Bは樹脂通路
30からマニホールド32を通り、樹脂流路34を経て
合流点35へ到達するまで、ダイに導入された時の樹脂
温度例えば270℃をそのまま保つことが可能である。
合流点35において合流し積層化した樹脂流はダイ出口
36から押出されて熔融ウエブになる。この熔融ウエブ
の基材側の高温の層α2は基材7と強固な接着力を生じ
るに充分な高温にあり、又、熔融ウエブの基材とは反対
側の層β2は押出コーテイング加工が可能でかつウエブ
表面の酸化が殆んど起らない比較的低い温度に保つこと
が可能であり、これらの2層から成る熔融ウエブを冷却
口ール8とニツプロール9の間で基材7に圧着すると同
時に冷却することによつて基材7との接着が充分に強固
であり、かつヒートシール面の酸化が非常に少なくその
ため低温シール性に優れ、ヒートシール性の経時劣化が
なく、又樹脂の酸化及び分解による臭気が少ないラミネ
ート物を製造することが可能になる。このように、従来
の共押出ダイにおいては両側のダイジョーをその外面か
ら各々ヒーターと熱電対を用いてそれぞれの目的とする
温度に加熱し温度制御していた結果、中間の仕切板は温
度勾配を持つたまま平衡状態になつて両側のダイジョー
の設定温度の中間の温度に落付く他はなかつたため、高
温の樹脂Aはマニホールド及び樹脂流路においてその仕
切板に接触する面を冷やされる一方、低温の樹脂Bはマ
ニホールド及び樹脂流路においてその仕切板に接触する
面を熱せられて、その結果両方の樹脂の合流点における
高温の樹脂Aと低温の樹脂Bとの温度差はダイへ流入す
る直前における両樹脂の温度差よりかなり縮小していた
のに対し、本発明は仕切板の中央にダイ全巾にわたつて
ガス流路を設け、仕切板を基材側プロツクと基材と反対
側のプロツクに別け、ガス流路にガスを流すことによつ
てこれらのプロツク間を断熱し、更にそれぞれのプロツ
クにヒーターと熱電対を設けて、これらのプロツクをそ
れぞれの側のダイジョーの設定温度にそろえて加熱し温
度制御することによつて、高温の樹脂Aも低温の樹脂B
もダイ内を流動して合流点に達するまでそれぞれの樹脂
温度に等しい壁面温度持つた流路を流れることが可能に
なり、その結果、合流点ににおける高温の樹脂Aと低温
の樹脂Bとの温度差をダイへ流入する直前の温度差と等
しく保つことを可能にしたものである。
Resin A melt-kneaded at, for example, 320°C in the first extruder
is guided to the manifold 31 through a resin passage 29 opened in the die body 25, which is heated to, for example, 320° C. and whose temperature is controlled by a heater 41 and a thermocouple 43, and spreads over the entire width of the die. The resin passes through a resin flow path 33 formed between the base material-side block 27 of the partition plate and heads toward the merging portion 35 . Here, the base material side block 27 of the partition plate is heated to, for example, 320°C and temperature controlled by a heater 39 and a thermocouple 45, and furthermore, this block 27 is
Air, nitrogen, and other gases are introduced from the gas inlet 37 made in the partition plate through a gas flow path (
By introducing the heat insulating space into the heat insulating space 38 and discharging it from both ends of the sink die, it is possible to
8 and is insulated. Therefore, the resin A passes through the manifold 31 from the resin passage 29, passes through the resin flow passage 33, and reaches the confluence point 3.
It is possible to maintain the resin temperature at the time of introduction into the die, for example, 320° C., until the temperature reaches 5.5. On the other hand, resin B melt-kneaded at 270°C in the second extruder, for example,
The resin passes through a resin passage 30 opened in the die body 26 which is heated to, for example, 270° C. by a heater 42 and a thermocouple 44 and whose temperature is controlled, and is guided to the manifold 32 and spread over the entire width of the die. and the block 28 on the opposite side of the partition plate base material.
Head to the confluence section 35 through the intersection. Here, the temperature of the block 28 on the opposite side of the partition plate from the base material is heated to, for example, 270° C. by a heater 40 and a thermocouple 46, and as described above, this block 28 has a hole in the partition plate. By introducing air, nitrogen, or other gas from the gas inlet 37 formed in the die into the gas flow path 38 formed over the entire width of the die, and discharging it from both ends of the die, the base material side of the partition plate is It is insulated from block 27. Therefore, the resin B passes through the manifold 32 from the resin passage 30, passes through the resin flow path 34, and until it reaches the confluence point 35, it is possible to maintain the resin temperature at, for example, 270° C. when it is introduced into the die.
The resin flows that merge and become laminated at the confluence point 35 are extruded from the die outlet 36 to become a molten web. The high-temperature layer α2 on the base material side of this molten web is at a high enough temperature to create strong adhesive force with the base material 7, and the layer β2 on the opposite side of the molten web from the base material can be subjected to extrusion coating processing. The molten web consisting of these two layers can be pressed onto the base material 7 between the cooling hole 8 and the nip roll 9. By cooling at the same time, the adhesion with the base material 7 is sufficiently strong, and there is very little oxidation on the heat-sealing surface, so it has excellent low-temperature sealing properties, there is no deterioration of heat-sealing properties over time, and the resin It becomes possible to produce a laminate with less odor due to oxidation and decomposition. In this way, in conventional coextrusion dies, the temperature is controlled by heating the die jaws on both sides to the desired temperature from the outside using heaters and thermocouples. There was no other choice but to reach an equilibrium state while holding it and settle down to a temperature between the set temperatures of the die jaws on both sides, so the high temperature resin A is cooled on the surface that contacts the partition plate in the manifold and resin flow path, while the low temperature Resin B is heated at the surface that contacts the partition plate in the manifold and resin flow path, and as a result, the temperature difference between the high temperature resin A and the low temperature resin B at the confluence point of both resins is as low as 100% before they flow into the die. However, in the present invention, a gas flow path is provided in the center of the partition plate over the entire width of the die, and the partition plate is connected to the substrate side and the opposite side of the substrate. The blocks are separated into blocks, and the blocks are insulated by flowing gas through the gas flow path, and each block is equipped with a heater and thermocouple to adjust the temperature of these blocks to the set temperature of the die jaw on each side. By heating and controlling the temperature, high-temperature resin A can also be heated to low-temperature resin B.
It becomes possible for resin to flow through the die and flow through a channel whose wall surface temperature is equal to the temperature of each resin until it reaches the confluence point, and as a result, the high temperature resin A and the low temperature resin B at the confluence point This makes it possible to maintain the temperature difference equal to the temperature difference immediately before flowing into the die.

本発明は、更に、前記の構造を有する共押出ダイの両端
のガス排出口に、排出ガスを熔融ウエブの片面或いは両
面に吹付けるべく設計した部品を取付け、仕切板のガス
流路に空気、オゾン、又は窒素などの不活性ガスを流す
と同時に熔融ウエブの片面或いは両面にこの排出ガスを
吹付けることによつてラミネート物を製造する方法をも
含むものである。
The present invention further provides parts designed to blow exhaust gas onto one or both sides of the molten web to the gas exhaust ports at both ends of the coextrusion die having the above structure, and air to the gas flow path of the partition plate. It also includes a method of manufacturing a laminate by flowing an inert gas such as ozone or nitrogen and simultaneously blowing the exhaust gas onto one or both sides of a molten web.

以下、添付した図面によつてその詳細を説明する。第4
図は熔融ウエブの高温側の面α。
The details will be explained below with reference to the attached drawings. Fourth
The figure shows surface α on the high temperature side of the molten web.

に排出ガスを吹付けるための部品を取付けた本発明によ
るフラツトダイの側面図を、又第5図は当該ダイの正面
図をそれぞれ示したものである。又、第6図は第4図に
おけるA−A’断面を示したものである。以下主として
第6図を用い、第4図を援用しながら説明する。
FIG. 5 shows a side view of a flat die according to the present invention with a part for blowing exhaust gas attached thereto, and FIG. 5 shows a front view of the die. Further, FIG. 6 shows a cross section taken along line AA' in FIG. 4. The following description will be made mainly using FIG. 6 and with reference to FIG. 4.

第6図における共押出ダイの仕切板28にあけられたガ
ス導入口37を通じて、空気、オゾン、窒素その他の不
活性ガスなどから選ばれたガスをダイ内に導入し、ガス
流路38を通してダイの両端にあけられたガス排出口5
1及び53よりダイ外へガスを排出する。ここでダイ両
端の排出口51及び53には熔融ウエブへ排出ガスを吹
付けるための部品52及び54がそれぞれ取付けられて
おり、この吹付部品にあけられた吹出口55からダイ排
出ガスが熔融ウエブに吹付けられることになる。用いる
ガスが空気、オゾン又はそれらの混合ガスの場合は熔融
ウエブの基材側の面α2にガスの吹付けを行ない、窒素
その他の不活性ガスの場合は熔融ウエブの基材とは反対
側の面β。にガスの吹付けを行なうものである。また空
気を用いる場合、熔融ウエブの両側に吹付けを行なうこ
ともできる。これらの場合、本発明による共押出ダイの
仕切板中のガス流路にガス流を導入して流すことによつ
て、ガス流路の両側の仕切板プロクの間を断熱し、その
結果、ダイに導入された高温の樹脂Aと低温の樹脂Bと
を導入時の温度のままで合流積層してダイ出口から押出
し、この熔融ウエブを基材と圧着することによつて接着
強度が強固で、ヒートシール性に優れた臭いの少ないラ
ミネート物を製造することを可能にしただけでなく、ダ
イからの排出ガスを熔融ウエブに吹付けて高温の熔融ウ
エブから発生する樹脂の低分子量物や分解物を吹飛ばす
ことによつてラミネート物の臭気の原因物質を除去し、
臭気を更に飛躍的に少なくすることを可能にしたもので
ある。ダイ仕切板プロツクの断熱と熔融ウエブへの吹付
けに空気を用いた場合、熔融ウエブの基材側面にのみ吹
付けても良く、又両側に吹付けても良い。いずれの場合
もラミネート物の臭気原因になつている熔融ウエブから
発生する樹脂の低分子量物や分解物の除去に有効である
。又、前記の空気の替りにオゾン又はオゾンと空気の混
合ガスを用いる場合には、熔融ウエブの基材側面に吹付
ける。これによつて臭気原因物質を除去すると同時に熔
融ウエブ基材側面の酸化を促進し、基材との接着力を更
に改良することが可能になる。更に前記の空気の替りに
窒素又はその他の不活性ガスを用いる場合には熔融ウエ
ブの基材とは反対側の面に吹付ける。これによつて臭気
原因物質を除去すると同時に熔融ウエブの基材とは反対
側の面の酸化を更に一段と抑制することができ、ラミネ
ート物の低臭化を更に効果的に計り、同時に低温シール
性の向上、ヒートシール性の経時劣化を効率よく防止す
ることが可能になるものである。なお本発明は当然のこ
とながら前記で説明した2層共押出に限るものではなく
、3層以上の共押出にも用いることがで゛きるもので゛
ある。
A gas selected from air, ozone, nitrogen and other inert gases is introduced into the die through the gas inlet 37 made in the partition plate 28 of the coextrusion die in FIG. Gas outlet 5 opened at both ends of
Gas is discharged from 1 and 53 to the outside of the die. Parts 52 and 54 for spraying the exhaust gas onto the molten web are attached to the exhaust ports 51 and 53 at both ends of the die, respectively, and the die exhaust gas is sent to the molten web from the air outlet 55 formed in the spraying parts. It will be sprayed on. When the gas used is air, ozone, or a mixture thereof, the gas is blown onto the surface α2 on the base material side of the molten web, and when nitrogen or other inert gas is used, the gas is blown onto the surface α2 on the side of the molten web opposite to the base material. Surface β. This involves spraying gas onto the area. When air is used, it is also possible to spray both sides of the molten web. In these cases, by introducing and flowing a gas flow into the gas flow path in the partition plate of the coextrusion die according to the present invention, the space between the partition plate procs on both sides of the gas flow path is insulated, and as a result, the die The high-temperature resin A and the low-temperature resin B introduced into the machine are laminated together at the same temperature as when they were introduced, extruded from the die exit, and this molten web is pressure-bonded to the base material, so that the adhesive strength is strong. This not only makes it possible to produce laminates with excellent heat-sealability and low odor, but also eliminates low-molecular-weight and decomposed resin products generated from the high-temperature molten web by blowing the exhaust gas from the die onto the molten web. Removes odor-causing substances from laminates by blowing away the
This makes it possible to dramatically reduce odor. When air is used for heat insulation of the die partition plate block and for spraying onto the molten web, the air may be sprayed only on the side of the base material of the molten web, or may be sprayed on both sides. In either case, it is effective in removing low molecular weight substances and decomposed substances of resin generated from the molten web, which are the cause of odor in laminates. Further, when ozone or a mixed gas of ozone and air is used instead of the air, it is sprayed onto the side surface of the base material of the molten web. This makes it possible to remove odor-causing substances and at the same time promote oxidation of the side surface of the molten web base material, thereby further improving the adhesive strength with the base material. Further, when nitrogen or other inert gas is used instead of the air, it is sprayed onto the side of the molten web opposite to the substrate. This makes it possible to remove odor-causing substances and at the same time further suppress oxidation on the side of the molten web opposite to the base material, more effectively reducing the odor of the laminate, and at the same time improving low-temperature sealing properties. This makes it possible to effectively prevent heat sealability from deteriorating over time. Naturally, the present invention is not limited to the two-layer coextrusion described above, but can also be used for three or more layer coextrusion.

本発明に用いる樹脂は、低密度、中密度、高密度のポリ
エチレン、ポリプロピレン、ポリブテン、ポリ−4−メ
チルベンゼン−1などのポリオレフイン樹脂、およびエ
チレンとプロピレンの共重合体、エチレンまたはプロピ
レンとブテンー1、ベンゼン−1などのα−オレフイン
との共重合体、およびエチレンとアクリル酸またはメタ
アクリル酸との共重合体またはこれらの部分イオン架橋
体(アイオノマー)、およびエチレンとアクリル酸エス
テルまたはメタアクリル酸エステルの共重合体、及びエ
チレンと酢酸ビニル、プロピオン酸ビニルなどのカルボ
ン酸ビニルエステルとの共重合体、及びポリエチレンテ
レフタレート、ポリテトラメチレンテレフタレートなど
のポリエステル、及び6−ナイロン、6−6ナイロン、
共重合ナイロンなどのポリアミド樹脂などが拳げられる
が、これに限るものではなく、押出コーテイング成形が
可能な樹脂であれば良い。又、上記の樹脂の2種以上の
ブレンド物、及び上記の樹脂又はこれらのブレンド物に
対してスリツプ剤、アンチプロック剤、帯電防止剤、防
曇剤、酸化防止剤、紫外線吸収剤、難燃剤、粘着剤、充
填剤などを添加した樹脂組成物を本発明に用いることが
できる。共押出ウエブ中の複数個の樹脂層は、同一乃至
は同種の樹脂から構成されていても、或いは互いに異な
つた種類の樹脂であつてもよい。
The resins used in the present invention include polyolefin resins such as low density, medium density, and high density polyethylene, polypropylene, polybutene, poly-4-methylbenzene-1, and copolymers of ethylene and propylene, ethylene or propylene and butene-1, and copolymers of ethylene and propylene, ethylene or propylene and butene-1. , copolymers with α-olefins such as benzene-1, copolymers of ethylene and acrylic acid or methacrylic acid, or partially ionic crosslinked products thereof (ionomers), and ethylene and acrylic esters or methacrylic acid. Copolymers of esters, copolymers of ethylene and carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate, and polyesters such as polyethylene terephthalate and polytetramethylene terephthalate, and 6-nylon, 6-6 nylon,
Polyamide resins such as copolymerized nylon can be used, but the material is not limited thereto, and any resin that can be formed by extrusion coating may be used. In addition, blends of two or more of the above resins, and slip agents, anti-blocking agents, antistatic agents, antifogging agents, antioxidants, ultraviolet absorbers, and flame retardants for the above resins or blends thereof. A resin composition to which , an adhesive, a filler, etc. are added can be used in the present invention. The plurality of resin layers in the coextruded web may be composed of the same or the same type of resin, or may be composed of different types of resin.

例えば、共押出樹脂ウエブが同一乃至は同種の2個の樹
脂層から構成されている場合にも、基材側に位置する一
方を高温、他方を低温で熔融押出することにより、層間
接着性とヒートシール性との望ましい組合せが得られる
ことは既に前述した通りである。また共押出ウエブの基
材側樹脂層を、基材との接着性の点で一層望ましいエチ
レン系共重合体やナイロンとし、基材と反対側の樹脂層
をヒートシール性の点で望ましいオレフイン樹脂層とし
得ることが当業者には容易に了解されよう。また本発明
に用いる基材は、クラフト紙、クルパツタ、製袋用紙な
どの紙、および板紙、アルミ箔、天然または合成繊維の
織布および不織布、セロハン、延伸および未延伸ポリプ
ロピレンフイルム、延伸および未延伸ナイロンフイルム
、延伸ポリエステノレフイノレム、その他ビニロン、ポ
リカーボネート、ポリ塩化ビニル、ポリスチレンなどの
樹脂のフイルムおよびシートを含むものである。
For example, even when a coextruded resin web is composed of two resin layers of the same or the same type, the interlayer adhesion can be improved by melt-extruding one layer located on the base material side at a high temperature and the other at a low temperature. As already mentioned above, a desirable combination with heat sealability can be obtained. In addition, the resin layer on the base material side of the coextruded web is made of ethylene copolymer or nylon, which is more desirable in terms of adhesiveness with the base material, and the resin layer on the opposite side to the base material is made of olefin resin, which is more desirable in terms of heat sealability. A person skilled in the art will readily understand that it can be a layer. In addition, the substrates used in the present invention include papers such as kraft paper, kurupata, bag-making paper, paperboard, aluminum foil, woven and non-woven fabrics of natural or synthetic fibers, cellophane, stretched and unstretched polypropylene films, stretched and unstretched polypropylene films, etc. It includes nylon film, stretched polyester vinyl film, and other resin films and sheets such as vinylon, polycarbonate, polyvinyl chloride, and polystyrene.

本発明に用いる紙、板紙、アルミ箔、織布および不織布
などの基材に対しては、そのまま熔融樹脂ウエブを押出
コーテイングしてもよいが、より,好ましくは熱ロール
または赤外線ヒーターなどによる予熱処理、およびフレ
ーム処理、コロナ放電処理など接着性向上のための前処
理を施した方がよい。また本発明に用いるセロハンおよ
び延伸ポリプロピレンフイルム、延伸ナイロンフイルム
な,どの各種のプラスチツクフイルムに対しては、通常
の押出コーテイング加工で用いられる接着性向上のため
のアンカーコート処理が施される必要がある場合もある
。用いられるアンカーコート剤としてはアルキルチタネ
ート系、ポリエチレンイミン系、イソシアネート系その
他のアンカーコート剤がある。複数個の樹脂層間の温度
差は、樹脂の種類を勘案した上で、前述した本発明の目
的が達成されるように決定される。
The base materials used in the present invention, such as paper, paperboard, aluminum foil, woven fabric, and non-woven fabric, may be coated with the molten resin web by extrusion as they are, but are more preferably preheated using a hot roll or an infrared heater. It is better to perform pre-treatment to improve adhesion, such as flame treatment, corona discharge treatment, etc. Furthermore, the various plastic films used in the present invention, such as cellophane, stretched polypropylene film, and stretched nylon film, need to be subjected to an anchor coating treatment to improve adhesion, which is used in ordinary extrusion coating processing. In some cases. Examples of anchor coating agents that can be used include alkyl titanate, polyethyleneimine, isocyanate, and other anchor coating agents. The temperature difference between the plurality of resin layers is determined in consideration of the type of resin so as to achieve the above-mentioned object of the present invention.

多くの場合、樹脂の熔融温度から分解温度迄の範囲内で
、両樹脂層の温度差が少なくとも20℃以上、特に40
℃以上となるように設定することが有利である。本発明
を次の例で説明する。
In many cases, within the range from the melting temperature to the decomposition temperature of the resin, the temperature difference between the two resin layers is at least 20°C or more, especially 40°C.
It is advantageous to set the temperature to be at least ℃. The invention is illustrated by the following example.

実施例 1 M14g/10分、密度0.923g/Cnfのポリエ
チレンAを第1押出機で熔融混練し、樹脂温度325℃
で第3図に示す本発明の共押出Tダイの基材側マニホー
ルド31に送り込んだ。
Example 1 Polyethylene A having an M of 14 g/10 minutes and a density of 0.923 g/Cnf was melt-kneaded in a first extruder, and the resin temperature was 325°C.
Then, it was fed into the base material side manifold 31 of the coextrusion T-die of the present invention shown in FIG.

この時ダイボデイ一25と仕切板の基材側プロツク27
の温度を325℃に設定した。一方Ml7g/10分、
密度0.920g/CIll3ポリエチレンBを第2押
出機で熔融混練し、樹脂温度260℃で本Tダイの基材
とは反対側のマニホールド32に送り込んだこの時ダイ
ボデイ一26と仕切板の基材とは反対側のプロツク28
の温度を260℃に設定した。2つのマニホールドから
の樹脂流A及びBを合流点35で合流させた後、ダイリ
ツプ36より押出し、同時に仕切板中のガス導入口37
から空気を20Ncnf/Hrの流量で導入し、ガス流
路38に流してダイの両端の出口51及び53より排出
し、導管52及び54を経由して吹出口55から熔融ウ
エブの基材側の面に対して吹付けながら、この熔融ウエ
ブを予めコロナ放電処理を施した未晒クラフト紙に対し
て加工速度150m/分、エアギヤツプ140mm、コ
ート総厚20μの条件で押出コーテイングした。
At this time, the die body 1 25 and the base material side block 27 of the partition plate
The temperature was set at 325°C. On the other hand, Ml7g/10min,
Polyethylene B with a density of 0.920 g/CIll3 was melt-kneaded in a second extruder and fed into the manifold 32 on the opposite side from the base material of the main T-die at a resin temperature of 260° C. At this time, the base material of the die body 26 and the partition plate Block 28 on the opposite side
The temperature was set at 260°C. After the resin flows A and B from the two manifolds are combined at the confluence point 35, they are extruded from the die lip 36, and at the same time, they are extruded from the gas inlet 37 in the partition plate.
Air is introduced at a flow rate of 20Ncnf/Hr from the gas flow path 38, and is discharged from the outlets 51 and 53 at both ends of the die, via the conduits 52 and 54, and from the outlet 55 on the base material side of the molten web. While spraying onto the surface, this molten web was extrusion coated onto unbleached kraft paper which had been previously subjected to corona discharge treatment under conditions of a processing speed of 150 m/min, an air gap of 140 mm, and a total coating thickness of 20 μm.

この時、コート総厚20μに占めるポリエチレンAの割
合が50%に、又ポリエチレンBの割合が50%になる
よう2つの押出機の押出量を調整している。得られたラ
ミネート物の物性の測定結果を表−1に従来公知の方法
で押出コーテイング加工した比較例−1と併せて示す。
本実施例で得られたラミネート物は臭気が著しく少なく
、又、ヒートシール強度に優れていることが認められる
。とし、次式から算出した。
At this time, the extrusion rates of the two extruders were adjusted so that the proportion of polyethylene A and polyethylene B in the total coating thickness of 20 μm was 50% and 50%, respectively. The measurement results of the physical properties of the obtained laminate are shown in Table 1 together with Comparative Example 1, which was subjected to extrusion coating using a conventionally known method.
It is recognized that the laminate obtained in this example has significantly less odor and has excellent heat seal strength. It was calculated from the following formula.

接着性〔%〕=B/A×100 注2) ヒートシール強度測定条件 シール圧力 3kg/Cm2 シール時間 1秒 剥離速度 300mm/分 剥離角度 90゜ 注3) 臭気比較試験 ポリエチレン面の臭気を官能試験によ つて比較し、臭気が少なくて良好とした 人の数を示す。Adhesiveness [%] = B/A x 100 Note 2) Heat seal strength measurement conditions Seal pressure 3kg/Cm2 Seal time 1 second Peeling speed 300mm/min Peeling angle 90° Note 3) Odor comparison test A sensory test was conducted to determine the odor from polyethylene surfaces. It was found to be good with less odor. Shows the number of people.

比較例 1 MI4g/10分、密度0.923g/Cm3のポリエ
チレンを押出機で樹脂温度325℃に熔融混練し、32
5℃に温度制御された第1図に示す公知のTダイに送り
込み、ダイ出口より熔融ウエブとして押出し、予めコロ
ナ放電処理を施した未晒クラフト紙に対して加工速度1
50m/分、エアギヤツプ140mm、コート厚さ20
μの条件で押出コーテイングした。
Comparative Example 1 Polyethylene with an MI of 4 g/10 minutes and a density of 0.923 g/Cm3 was melt-kneaded using an extruder at a resin temperature of 325°C.
It is fed into a known T-die shown in Fig. 1 whose temperature is controlled at 5°C, extruded from the die exit as a molten web, and processed at a processing speed of 1 for unbleached kraft paper that has been previously subjected to corona discharge treatment.
50m/min, air gap 140mm, coat thickness 20
Extrusion coating was performed under μ conditions.

得られたラミネート物の物性の測定結果を表−1に示.
す。実施例 2 MFI20g/ 10分、密度0.91のポリプロピレ
ンを第1押出機で樹脂温度300℃で熔融混練し、第3
図に示す本発明の共押出Tダイの基材側マニホ.−ルド
31に送り込んだ。
Table 1 shows the measurement results of the physical properties of the obtained laminate.
vinegar. Example 2 Polypropylene with an MFI of 20 g/10 minutes and a density of 0.91 was melt-kneaded in the first extruder at a resin temperature of 300°C, and the third
The base material side manifold of the coextrusion T-die of the present invention shown in the figure. - I sent it to Ludo 31.

なおこの時、ダイボデーイ一25と仕切板の基材側プロ
ツク27の温度を300℃にそれぞれ設定している。一
方、同じポリプロピレンを第2押出機で樹脂温度260
℃で熔融混練し、本Tダイの基材とは反対側のマニホー
ルド32に送り込んだ。なお、この時ダイボデイ一26
と仕切板の基材とは反対側のプロツク28の温度を26
0℃に設定した。2つのマニホールドからの樹脂流を合
流点35で合流させた後、ダイリツプ36より押出し、
同時に仕切板中のガス導入口37から空気を20Nm3
/Hrの流量で導入し、ガス流路38に流してダイの両
端の出口51及び53より排出し、導管52及び54を
経由して吹出口55から熔融ウエブの基材側の面に対し
て吹付け、この熔融ウエブを20μ厚さの2軸延伸ポリ
プロピレンフイルム基材に対して加工速度120m/分
、エアギヤツプ90mm、コート総厚20μの条件で押
出コーテイングした。
At this time, the temperatures of the die body 25 and the substrate side block 27 of the partition plate were set at 300°C. On the other hand, the same polypropylene was used in a second extruder at a resin temperature of 260
The mixture was melted and kneaded at ℃ and fed into the manifold 32 on the opposite side of the T-die from the base material. In addition, at this time, Daibody 126
and the temperature of block 28 on the opposite side of the partition plate from the base material to 26
The temperature was set at 0°C. After the resin flows from the two manifolds are combined at a confluence point 35, they are extruded from a die lip 36,
At the same time, 20Nm3 of air is introduced from the gas inlet 37 in the partition plate.
/Hr, flows through the gas flow path 38, is discharged from the outlets 51 and 53 at both ends of the die, and passes through the conduits 52 and 54 from the outlet 55 to the surface of the base material side of the molten web. After spraying, this molten web was extruded and coated onto a biaxially stretched polypropylene film substrate having a thickness of 20 μm under conditions of a processing speed of 120 m/min, an air gap of 90 mm, and a total coating thickness of 20 μm.

この時、コート総厚20μに占める高温ポリプロピレン
層の割合が50%に、又低温の層の割合が50%になる
よう2つの押出機の押出量を調整している。得られたラ
ミネート物の物性の測定結果を表−2及び表−3に従来
公知の方法で押出コーテイング加工した比較例−2と併
せて示す。本実施例で得られたラミネート物はヒートシ
ール性、熱間シール性の両方において従来法による製品
より優れていることが認められる。注1) 熱間シール
性測定方法 2枚のラミネート物をヒートシール する際、各々の片方の端にそれぞれ45 gの錘りを付けておき、ヒートシール 後、シールバ一が離れると同時にその 荷重が23゜の角度で剥離力として働く ようにし、シール部の剥離距離を測定 する。
At this time, the extrusion rates of the two extruders were adjusted so that the ratio of the high temperature polypropylene layer to the total coating thickness of 20 μm was 50% and the ratio of the low temperature layer was 50%. The measurement results of the physical properties of the obtained laminate are shown in Tables 2 and 3 together with Comparative Example 2, which was subjected to extrusion coating using a conventionally known method. It is recognized that the laminate obtained in this example is superior to products produced by conventional methods in both heat-sealability and hot-sealability. Note 1) Hot sealing property measurement method When heat sealing two laminates, attach a 45 g weight to one end of each, and after heat sealing, as soon as the seal bar is separated, the load is The peeling force was applied at an angle of 23°, and the peeling distance of the sealed portion was measured.

なお、ヒートシールはシール圧力3 kg/Cnl2シール時間0.5秒で行なつた。For heat sealing, the sealing pressure is 3. kg/Cnl2 sealing time was 0.5 seconds.

剥離距離が小さい方が熱間シール性が良いことを意味す
る。
A smaller peel distance means better hot sealing properties.

比較例 2 実施例−2で用いたのと同じポリプロピレンを押出機内
で樹脂温度300℃で熔融混練し、300℃に温度制御
された第1図に示す公知のTダイに送り込み、ダイ出口
より熔融ウエブとして押出し、これを20μ厚さの2軸
延伸ポリプロピレンフイルム基材に対して加工速度12
0m/分、エアギヤツプ90m、コート厚さ20μの加
工条件で押出コーテイングした。
Comparative Example 2 The same polypropylene used in Example 2 was melt-kneaded in an extruder at a resin temperature of 300°C, fed into a known T-die shown in Figure 1 whose temperature was controlled at 300°C, and melted from the die outlet. It is extruded as a web and processed at a processing speed of 12 on a biaxially stretched polypropylene film base material with a thickness of 20μ.
Extrusion coating was performed under processing conditions of 0 m/min, air gap of 90 m, and coating thickness of 20 μm.

得られたラミネート物の物性の測定結果を表−2、表−
3に示ず。実施例 3 M17g/10分、密度0.917g/CTn3のポリ
エチレンを第1押出機で熔融混練し、樹脂温度320℃
で第3図に示す本発明による共押出Tダイの基材側マ,
ニホールド31に送り込んだ。
The measurement results of the physical properties of the obtained laminate are shown in Table-2 and Table-
Not shown in 3. Example 3 Polyethylene with M17g/10 minutes and density 0.917g/CTn3 was melt-kneaded in the first extruder, and the resin temperature was 320°C.
The base material side ma of the coextrusion T-die according to the present invention shown in FIG.
I sent it to Nifold 31.

この時ダイボデイ一25と仕切板の基材側プロツク27
の温度を320℃に設定した。一方、MI5g/10分
のエチレン−メタアクリル酸共重合体のZnイオンによ
るアイオノマーを第2押出機で熔融混練し、樹脂温度3
00℃で本Tダイの基材とは反対側のマニホールド32
に送り込んだ。この時ダイボデイ一26と仕切板の基材
とは反対側のプロツク28の温度を300℃に設定した
。これらの2つの樹脂流を合流点35で合流させた後、
ダイリツプ36より押出し、同時に仕切板中のガス導入
口37から窒素を10Nm3/Hrの流量で導入し、ガ
ス流路38に流してダイ両端の出口51及び53より排
出し、吹出口55から熔融ウエブの基材とは反対側の面
に吹付けながら、この熔融ウエブを、予め有機チタネー
ト系AC剤を用いてアンカーコート処理を施した紙/P
E/A1構成の基材のAl面に対して、加工速度120
m/分、エアギヤツプ140mm、コート総厚23μ
(内ポリエチレン13μ、アイオノマー10μ)の条件
でポリエチレンがAl箔に接するように押出コーテイン
グを行なつた。得られたラミネート物は充分な接着強度
を有し、かつ殆んど臭気を感じさせず、又各種ヒートシ
ール性にも優れていることが認められた。表−4に本ラ
ミネート物のヒートシール強度を、又表−5に熱間シー
ル性を示す。
At this time, the die body 1 25 and the base material side block 27 of the partition plate
The temperature was set at 320°C. On the other hand, an ionomer made of Zn ions of an ethylene-methacrylic acid copolymer with an MI of 5 g/10 min was melt-kneaded in a second extruder, and the resin temperature was 3.
At 00°C, the manifold 32 on the opposite side of the T-die base material
I sent it to. At this time, the temperature of the die body 26 and the block 28 on the side opposite to the base material of the partition plate was set at 300°C. After combining these two resin streams at the confluence point 35,
The molten web is extruded from the die lip 36, and at the same time, nitrogen is introduced at a flow rate of 10 Nm3/Hr from the gas inlet 37 in the partition plate, flows through the gas flow path 38, and is discharged from the outlets 51 and 53 at both ends of the die. While spraying the molten web onto the surface opposite to the base material of
For the Al surface of the base material with E/A1 configuration, the processing speed was 120
m/min, air gap 140mm, total coat thickness 23μ
Extrusion coating was performed under the following conditions (inner polyethylene 13μ, ionomer 10μ) so that the polyethylene was in contact with the Al foil. It was found that the obtained laminate had sufficient adhesive strength, almost no odor, and was excellent in various heat sealing properties. Table 4 shows the heat sealing strength of this laminate, and Table 5 shows the hot sealing properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来一般に用いられている押出コーテイング用
ダイとラミネート部の概略を示したものである。 第2図は公知のダイ内接着型の2層共押出ダイとラミネ
ート部の概略を示したものである。第3図は本発明によ
る共押出ダイとラミネート部の概略を示したものである
。第4図は本発明による共押出ダイにダイからの排出ガ
スを熔融ウエブに吹付けるための吹付け部品を取付けた
ところを概略的に示す側面図であり、又、第5図はその
正面図である。更に第6図は第4図におけるA−A″断
面を示したものである。引照数字25,26はダイボデ
イ一 27,28は仕切部材、29,30,31,32
,33,34は樹脂流路、36はダイランド、38はガ
ス流路、41,42は加熱機構、43,44は温度検出
機構を夫々示す。
FIG. 1 schematically shows a conventional extrusion coating die and a laminating section. FIG. 2 schematically shows a known in-die adhesive type two-layer coextrusion die and a laminate section. FIG. 3 schematically shows a coextrusion die and a laminating section according to the present invention. FIG. 4 is a side view schematically showing a coextrusion die according to the present invention with a spraying part for spraying exhaust gas from the die onto a molten web, and FIG. 5 is a front view thereof. It is. Furthermore, FIG. 6 shows a cross section taken along the line A-A'' in FIG.
, 33 and 34 are resin flow paths, 36 is a die land, 38 is a gas flow path, 41 and 42 are heating mechanisms, and 43 and 44 are temperature detection mechanisms, respectively.

Claims (1)

【特許請求の範囲】 1 複数層の熱可塑性樹脂を共押出ダイを通して熔融ウ
ェブに共押出し、これを基材上にコーティングしてラミ
ネートを製造する方法において、基材に接する側の樹脂
を基材に接しない側の樹脂よりも高温に維持して前記ダ
イに導入し、基材に接する側の樹脂に対するダイ内流路
を高温に、基材に接しない側の樹脂に対するダイ内流路
を低温に設定し、これら複数がダイ内樹脂流路間に断熱
用空間を設けて、該空間内にガスを流し、前記複数の樹
脂層に温度差をもたせて共押出を行うことを特徴とする
ラミネート物の製造方法。 2 前記断熱用空間からの排出ガスを、ダイから押出さ
れる熔融ウェブの片面乃至は両面に吹付けることを特徴
とする特許請求の範囲第1項記載の方法。 3 断熱用空間に通すガスが空気、オゾン或いはこれら
の混合ガスであり、この排出ガスを熔融ウエブの基材側
の面に吹付ける特許請求の範囲第2項記載の方法。 4 断熱用空間に通すガスが不活性ガスでありこの排出
ガスを熔融ウェブの基材と反対側の面に吹付ける特許請
求の範囲第2項記載の方法。 5 断熱用空間に通すガスが空気であり、この排出ガス
を熔融ウェブの両側の面に吹付ける特許請求の範囲第2
項記載の方法。 6 2個のダイボディとその中間に位置する少なくとも
1個の仕切部材とから成り、各ダイボディと仕切部材と
の間或いは更に仕切部材間に複数個の樹脂流路が形成さ
れ、仕切部材の先端において複数個の樹脂流路が合流し
、その下部において一つのダイランドを形成している共
押出ダイにおいて、該仕切部材の内部にガス流路となる
断熱用空間を設け、該空間の一方の端部にガス導入口、
他方の端部にガス排出口を夫々設け、且つ該ガス流路で
区画されるダイ部分に夫々別個の温度制御機構を設けて
なることを特徴とする積層用共押出ダイ。 7 前記ガス排出口に、前記共押出ダイからの熔融樹脂
ウェブの片面乃至は両面にガスを吹付けるためのガス吹
付機構を接続させて成る特許請求の範囲第6項記載のダ
イ。
[Scope of Claims] 1. In a method of manufacturing a laminate by coextruding multiple layers of thermoplastic resin into a molten web through a coextrusion die and coating this onto a base material, the resin on the side in contact with the base material is The resin is maintained at a higher temperature than the resin on the side not in contact with the base material and introduced into the die, the flow path in the die for the resin on the side in contact with the base material is set to a high temperature, and the flow path in the die for the resin on the side not in contact with the base material is set to a low temperature. A laminate characterized in that a heat insulating space is provided between the resin channels in the die, a gas is flowed into the space, and coextrusion is performed by creating a temperature difference between the plurality of resin layers. How things are manufactured. 2. The method according to claim 1, characterized in that the exhaust gas from the heat insulating space is blown onto one or both sides of the molten web extruded from a die. 3. The method according to claim 2, wherein the gas passed through the heat insulating space is air, ozone, or a mixture thereof, and the exhaust gas is sprayed onto the surface of the molten web on the base material side. 4. The method according to claim 2, wherein the gas passed through the heat insulating space is an inert gas, and the exhaust gas is blown onto the surface of the molten web opposite to the base material. 5 The gas passed through the heat insulating space is air, and the exhaust gas is blown onto both sides of the molten web.
The method described in section. 6 Consisting of two die bodies and at least one partition member located between them, a plurality of resin channels are formed between each die body and the partition member or further between the partition members, and at the tip of the partition member In a coextrusion die in which a plurality of resin flow paths merge to form one die land at the bottom thereof, a heat insulating space that becomes a gas flow path is provided inside the partition member, and one end of the space is provided. gas inlet,
A coextrusion die for lamination, characterized in that gas discharge ports are provided at the other end, and separate temperature control mechanisms are provided in die portions partitioned by the gas flow paths. 7. The die according to claim 6, wherein a gas blowing mechanism for blowing gas onto one or both sides of the molten resin web from the coextrusion die is connected to the gas outlet.
JP55135794A 1980-10-01 1980-10-01 Laminate manufacturing method and coextrusion die used therein Expired JPS5950493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55135794A JPS5950493B2 (en) 1980-10-01 1980-10-01 Laminate manufacturing method and coextrusion die used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55135794A JPS5950493B2 (en) 1980-10-01 1980-10-01 Laminate manufacturing method and coextrusion die used therein

Publications (2)

Publication Number Publication Date
JPS5761524A JPS5761524A (en) 1982-04-14
JPS5950493B2 true JPS5950493B2 (en) 1984-12-08

Family

ID=15159976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55135794A Expired JPS5950493B2 (en) 1980-10-01 1980-10-01 Laminate manufacturing method and coextrusion die used therein

Country Status (1)

Country Link
JP (1) JPS5950493B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3532996A1 (en) * 1985-09-16 1987-03-26 Battenfeld Fischer Blasform EXTRUSION HEAD
JPS6270918U (en) * 1985-10-24 1987-05-06
JPS62107924U (en) * 1985-12-26 1987-07-10
US4895744A (en) * 1986-06-26 1990-01-23 General Electric Company Method of making a multi-layer parison
US4798526A (en) * 1986-07-17 1989-01-17 General Electric Company Modular extrusion head
DE29500803U1 (en) * 1995-01-19 1995-03-02 Röhm GmbH & Co. KG, 64293 Darmstadt Two-channel coextrusion die
US5641445A (en) * 1995-07-25 1997-06-24 Cadillac Rubber & Plastics, Inc. Apparatus and method for extruding multi-layered fuel tubing
CN1078125C (en) * 1997-04-17 2002-01-23 埃冯知识产权管理公司 Apparatus and method for extruding multi-layered fuel tubing
JP4816639B2 (en) * 2005-03-10 2011-11-16 ダイキン工業株式会社 Chlorotrifluoroethylene copolymer-containing laminate and method for producing the same
JP2008012821A (en) * 2006-07-06 2008-01-24 Pura Giken:Kk Extrusion molding apparatus for plastic multilayer pipe
JP2011121346A (en) * 2009-12-14 2011-06-23 Kawakami Sangyo Co Ltd T-die for plastic fabrication and production process of laminated material using the same

Also Published As

Publication number Publication date
JPS5761524A (en) 1982-04-14

Similar Documents

Publication Publication Date Title
US7794849B2 (en) Thermoplastic film structures with a low melting point outer layer
US4370187A (en) Process and apparatus for producing a laminated structure composed of a substrate web and a thermoplastic resin web extrusion-coated thereon
JP5685553B2 (en) Multi-layered, heat-shrinkable film comprising a number of microlayers and method for making the same
EP0144642B1 (en) A multi-layer film or sheet material
US5900294A (en) Biaxially oriented multilayer polyolefin film which can be heat-sealed at low temperatures, process for the production thereof, and the uses thereof
JP4908398B2 (en) Composition comprising an ethylene copolymer
JPH056514B2 (en)
US20060172143A1 (en) Extrusion coating process and coated substrates having improved heat seal properties
ZA200503055B (en) Biaxially oriented film comprising a layer consisting of ethylene vinyl alcohol copolymer (evoh)
CN101142082A (en) Label film for a blow moulding method
US5529834A (en) Heat sealable muliilayer film comprising evoh skin and acrylic coating and its method of preparation
JPS6354541B2 (en)
JPS5950493B2 (en) Laminate manufacturing method and coextrusion die used therein
US4741957A (en) Heat sealable multilayer film and method of making same
CA2877743A1 (en) Carton sealing tape
JPS5936856B2 (en) Method and device for manufacturing laminates
JP2001113585A (en) Method of manufacturing foamed laminate
JPS5949915B2 (en) Method for manufacturing laminates
JP2570820B2 (en) Laminated film for print lamination and method for producing the same
JPH0966261A (en) Manufacture of paper-ethylene resin laminate
JPS60250938A (en) Extrusion lamination of propyrene based resin
EP4247640A1 (en) Enhanced bag drop film and packaging using oriented high-density polyethylene
JPH0948099A (en) Polyolefin-base coextrusion multi-layer film
JPH1191051A (en) Laminate, resin or resin composition for forming laminate and method for treating the laminate
JPS60198223A (en) Preparation of multi-layered film