JPS5950393A - Container for storing safely nuclear fissile material solution in critical - Google Patents

Container for storing safely nuclear fissile material solution in critical

Info

Publication number
JPS5950393A
JPS5950393A JP58132964A JP13296483A JPS5950393A JP S5950393 A JPS5950393 A JP S5950393A JP 58132964 A JP58132964 A JP 58132964A JP 13296483 A JP13296483 A JP 13296483A JP S5950393 A JPS5950393 A JP S5950393A
Authority
JP
Japan
Prior art keywords
container
wall
neutron
fissile material
safe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58132964A
Other languages
Japanese (ja)
Inventor
ハンス・ピルク
ユルゲン・ホ−フマン
ヴエルナ−・ボイエルレ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH filed Critical Nukem GmbH
Publication of JPS5950393A publication Critical patent/JPS5950393A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/20Disposal of liquid waste
    • G21F9/22Disposal of liquid waste by storage in a tank or other container

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発ψlは、核分裂性物質溶液、特にプルトニウム溶液
を臨界安全に貯蔵するための容器に関する。
DETAILED DESCRIPTION OF THE INVENTION The unexploded ψl relates to a container for the criticality safe storage of fissile material solutions, in particular plutonium solutions.

核分裂性物質を臨界安全Qて取扱いないしは貯蔵する事
が出来るためには、これを臨界未満量であるいは安全な
幾何学的Φ件で取扱うかないしは貯蔵しなければならな
い。安全な、臨界未満量での核分裂性物質の貯蔵は、こ
れまで公知の貯蔵容器では非常に非合理的および非経済
的であり、たとえば硝酸プルトニウム溶液の臨界量は、
200 P Pu、/lの濃度゛(再処理の際に常用で
ある)で、溶液101でもPu2に7であって非常に少
量にすぎない。この溶液の貯蔵のためには、多数の小さ
い個々の容器を使用しなげればならず、これら容器はさ
らに全部が安全な相互間隔に設置しなければならない。
In order to be able to handle or store fissile material with criticality safety, it must be handled or stored in subcritical quantities or in safe geometric conditions. The storage of fissile material in safe, subcritical quantities has hitherto been highly irrational and uneconomical in known storage vessels; for example, the critical quantity of plutonium nitrate solution is
At a concentration of 200 P Pu,/l (commonly used in reprocessing), even solution 101 contains 7 to 2 Pu2, which is only a very small amount. For the storage of this solution, a large number of small individual containers have to be used, which all have to be placed at a safe distance from each other.

このような容器貯蔵の取扱いおよび操作は非常に費用が
かかりかつわずられしい。それに加えて、多数の個々の
容器は比較的大きな設置面積ないしは設置容、積を必要
とする。
The handling and operation of such container storage is very expensive and cumbersome. In addition, a large number of individual containers requires a relatively large footprint.

安全な幾何学的条件での核分裂性物質の貯蔵には、安全
な層厚を有する扁平タンク、安全な直径を有す゛る筒状
シリンダー容器、または環状間隙容器を使用する事が出
来る。このような核分裂性物質溶液の数m°を幾何学的
条件による安全な容器中に貯蔵しようとすれば、極めて
大きい全高および全長、従って建造物の大きさが生じる
か、あるいは核分裂性物質溶液をまたしても相並んで安
全な相互間距離にあるいくつかの幾何学的に安全な容器
中に貯蔵しなければならない。
For the storage of fissile material in safe geometric conditions, flat tanks with safe layer thicknesses, cylindrical containers with safe diameters, or annular interstitial containers can be used. Storing several meters of such a fissile material solution in a geometrically secure container would result in extremely large overall heights and lengths, and thus the size of buildings, or Again, they must be stored side by side in several geometrically secure containers at a safe distance from each other.

たとえば安全な幾何学的条件の貯蔵タンク中に、20 
Q y−Pu/lの濃度を有する硝酸プルトニウム溶液
5 m8を貯蔵するには、以下の方法がある: ソノつどプルトニウムの安全量を収容する個々の容器中
に貯蔵する場合、この場合、この核分裂性物質溶液に対
し、そのつど101の内容積を有する容器−500個が
必要とされろ。この溶液に対する安全な層厚は約7cm
であるので、貯蔵容器の幅を4mとすれば、約18mの
全高が得られる。貯蔵のために筒状容器を選択する場合
、この安全な直径は約18儒である。これから内容積5
 msの貯蔵容器に対しては約196mの全高が生じる
。60σの外径を有する環、状間隙容器に対しては、約
6mの安全な層厚が必要とされる。この前提条件下では
、内容積5m。
For example, 20
There are the following ways to store 5 m8 of plutonium nitrate solution with a concentration of Q y-Pu/l: When stored in individual containers containing a safe amount of plutonium each time, in this case this fission For the sexual substance solution, 500 containers each with an internal volume of 101 are required. The safe layer thickness for this solution is approximately 7 cm.
Therefore, if the width of the storage container is 4 m, a total height of about 18 m is obtained. If a cylindrical container is selected for storage, this safe diameter is approximately 18 Fahrenheit. From now on, the internal volume is 5
For a storage vessel of ms, a total height of approximately 196 m results. For an annular gap vessel with an external diameter of 60σ, a safe layer thickness of approximately 6 m is required. Under these preconditions, the internal volume is 5m.

の貯蔵容器は約49mの全高を有しなければならない。The storage container shall have a total height of approximately 49 m.

従って、上述1−だ貯蔵容器はその全長からみて許″容
しえない程度に大きくかつ非経済的である。核分裂性物
質溶液を、安全な量で個々の容器中に取扱いないしは貯
蔵するのは、使用すべき個々の容器が多数のために同様
に経済的でな(10 許容しうる大きさの唯1つの容器中に大量の核分裂性物
質溶液を貯蔵しようとする場合、これは核分裂性物質溶
液がたとえば毒物質としてガドリニウムを均一に加えら
れているときにのみ可能である。しかしこれは通常の場
合にはあまり重要でない、その理由はプルトニウムな焼
料要素に加工する前に1.中性子毒物質を費用のかかる
工程で再び核分裂性物質から分離しなければならないか
らである。それに加えて、核分裂性物質溶液中での中性
子毒物質の均一な分配の管理は困難であり、ガドリニウ
ムの消費量は比較的大きく、ガドリニウムは稀少であり
、従って高価である。
Accordingly, the storage vessels described above are unacceptably large and uneconomical in terms of their overall length. It is difficult to handle or store fissile material solutions in safe quantities in individual vessels. , it is equally uneconomical due to the large number of individual containers to be used (10). This is only possible if the solution is homogeneously added with, for example, gadolinium as a poisonous substance.However, this is of little importance in the normal case, because 1. neutron poisoning is added before processing into plutonium firing elements. This is because the material has to be separated from the fissile material again in an expensive process. In addition, controlling the uniform distribution of the neutron poison in the fissile material solution is difficult, and the amount of gadolinium consumed is relatively large, and gadolinium is rare and therefore expensive.

従って、本発明の課題は2、核分裂性物質溶液、特にプ
ルトニウム溶液を臨界安全に貯蔵するための、取扱い易
い大きさを有し、相当する所要スペースにより非経済的
であることもない容器を提供する事であった。
Therefore, it is an object of the present invention to provide a container for storing fissile material solutions, in particular plutonium solutions, in critical safety, which has an easy-to-handle size and is not uneconomical due to the corresponding space requirements. It was something to do.

この課題は本発明によれば、容器が中性子毒物質を含有
する、スペーサにより固定間隔に設けられた分離壁によ
り、開口により互いに連絡されている、幾何学的臨界安
全条件のいくつかの仕切室に分割されている事によって
解決されろ。仕切室は、容器を充填する際、核分裂性物
質溶液が1つの仕切室から次の仕切室中へ移動する事が
出来るように配置されている。この方法で、貯蔵容器は
簡単に、核分裂性物質溶液で完全に充填する事が出来る
This problem is solved according to the invention by several compartments in geometric criticality safety conditions, the containers of which contain neutron poisonous substances and which are connected to each other by openings by separating walls provided at fixed intervals by spacers. The solution is that it is divided into . The compartments are arranged so that the fissile material solution can pass from one compartment into the next during filling of the container. In this way, the storage container can easily be completely filled with fissile material solution.

臨J界安全な配置を保証するために、個々の室の間の分
離壁は、たとえば均一に合金混入された中性子毒物質を
含有する特殊鋼薄板が゛ら成るか、または有利にはその
間に中性子毒物質が埋込まれている2枚の特殊鋼薄板か
ら成る3、シかしながら、中性子毒物質は分離壁土にか
ぶせておく事も出来る。仕切室壁間の間隔は、系全体が
安全率を備えて臨界未満状態にとどまるように選択され
ており、スペーサの取り付けにより相当に安全にされる
In order to ensure a criticality-safe arrangement, the separating walls between the individual chambers may consist, for example, of special steel sheets containing homogeneously alloyed neutron poisonous substances, or advantageously a It consists of two special steel thin plates in which a neutron poisonous substance is embedded.However, the neutron poisonous substance can also be placed over the separation wall soil. The spacing between the compartment walls is chosen such that the entire system remains subcritical with a safety factor, which is made considerably safer by the installation of spacers.

全容器の外部安全性を保証するために、この容器はたと
えばコンクリートから成る支持外壁を備えている1、安
全な間隔の保証のために、分離壁はスペーサにより互い
に結合されている。
In order to ensure the external safety of the entire container, this container is provided with a supporting outer wall, for example made of concrete.1 To ensure a safe spacing, the separating walls are connected to one another by spacers.

容器が円筒形に構成されかつ分離壁が円形かつ同心に容
器内に配置されている場合に特に有利であることが判明
した。
It has been found to be particularly advantageous if the container is of cylindrical design and the separating wall is arranged circularly and concentrically within the container.

たとえば、毒物質として分離壁土にそのつと2龍厚さの
・・フニウム薄板を使用するこのような無限多重環状間
隙容器にとって安全な層厚は実際に5Crnに丁ぎない
が、このいわゆるリングスラブを無限にはめあって配置
して唯1つの容器にする事も出来る、しかしこのことは
毒物質を有しないリングスラブにおいては完全に除外さ
れている。この方法では毒物質として2龍のハフニウム
薄板を備え、多重環状間隙容器が必要とされ、これは硝
酸プルトニウム溶液5 m8を収容しかつその外径が1
.5mであるべきである、多重環状間隙容器に対しては
2.9mの全高を必要とするにすぎないが1.5mの外
径を有する毒物質を有しない環状間隙容器に対する全高
はなお30mより上であるcl もちろん、多重環状間隙容器のほかに、長方形および正
方形の単一仕切室を有する長方形および正方形の容器も
使用しつる。
For example, the safe layer thickness for such an infinitely multiple annular gap vessel using one and two-thick thick slabs of funium for the separation wall soil as a poisonous substance is actually less than 5 Crn, but this so-called ring slab can be made into infinity. It is also possible to arrange them in a mating manner to form a single container, but this is completely excluded for ring slabs that do not contain toxic substances. This method requires a multi-annular interstitial vessel with two hafnium plates as the poisonous substance, which contains 5 m8 of plutonium nitrate solution and whose outer diameter is 1 m8.
.. For a multi-annular gap vessel which should be 5 m, a total height of only 2.9 m is required, but for a non-toxic annular gap vessel with an external diameter of 1.5 m the total height is still less than 30 m. Of course, in addition to multi-annular interstitial containers, rectangular and square containers with rectangular and square single compartments may also be used.

また、二重壁の間に水分検出器を配置し、これにより分
離壁の損傷を確実に指示するのが有利である事が立証さ
れている。スペーサを同様に中性子吸収性物質で加毒す
る゛のも有利である。
It has also proven advantageous to arrange a moisture detector between the double walls, thereby reliably indicating damage to the separating wall. It is also advantageous to poison the spacer with a neutron-absorbing substance.

次に、添付図面につき本発明を詳述する・第1図は、円
筒形の貯蔵容器を縦断面図で不才°。容器1は円形で、
同心的に互いに開隔を、置いて存在する分離壁2により
環状間隙の形のいくつかの仕切室3に分割されろ。容器
lは蕃の最上個所に充填口8および排気管9を有する。
The invention will now be described in more detail with reference to the accompanying drawings. FIG. 1 shows a cylindrical storage container in longitudinal section. Container 1 is circular;
It is divided into several compartments 3 in the form of an annular gap by separating walls 2 which are concentrically spaced apart from each other. The container 1 has a filling port 8 and an exhaust pipe 9 at the top of the stem.

容器1は、たとえばコンクリートからなる外、部の支持
壁4中に収納されている。分離壁2は、どこでも容器1
の底までは延びていないので、容器の均一な充填を許す
開口10が残存する。
The container 1 is housed in an outer support wall 4 made of concrete, for example. Separation wall 2 is everywhere container 1
does not extend to the bottom of the container, so that an opening 10 remains which allows uniform filling of the container.

しかし、容器底に転置して取付けりれた、中性子毒物質
を有する薄板11によりこの範囲も臨界安全に保たれる
。スペーサ5(図面には部分的にしか示されていない)
により、分離壁2は間隔を置いて保持され、環状間隙形
の仕切室3の安全な層厚が保証される。容器1の排出は
、排出弁6により行なわれる。容器は、容器内部および
分離壁2を管理する事が出来るために、取り外し可能な
蓋′rを備えている。分離壁2の完全な状態は、たとえ
ば中性子束測定計により外部からも監視しうる。しかし
、特に水分検出器が使用され、該検出器は、分離壁が2
つの層から成り、その間に中性子毒物質が存在するとき
には、特に簡単に分離壁2中へ設置する事が出来る。
However, this area is also maintained criticality safe by the thin plate 11 containing the neutron poisonous substance, which is disposed and mounted on the bottom of the vessel. Spacer 5 (only partially shown in the drawing)
As a result, the separating walls 2 are kept at a distance and a safe layer thickness of the annular gap-shaped compartment 3 is ensured. The container 1 is discharged by means of a discharge valve 6. The container is equipped with a removable lid 'r in order to be able to control the inside of the container and the separation wall 2. The integrity of the separation wall 2 can also be monitored from the outside, for example with a neutron flux meter. However, in particular moisture detectors are used, which detectors have two separating walls.
It can be installed particularly easily in the separating wall 2 if it consists of two layers and a neutron poisonous substance is present between them.

第2図は、多重環状間隙容器の横断面図を示し、第3図
は有利な実施形の分離壁を示し、その場合中性子毒物質
は、たとえば薄板12の形で、分離壁の両方の壁部分1
3’、14の間に取付けられている。
FIG. 2 shows a cross-sectional view of a multi-annular gap vessel, and FIG. 3 shows a separation wall of an advantageous embodiment, in which the neutron poisonous substance, for example in the form of a lamella 12, is placed on both walls of the separation wall. part 1
It is installed between 3' and 14.

分離壁2はたとえば特殊鋼薄板から成り、それらに均一
に中性子毒物質ホウ素、カドミウム、/’ 7 = ラ
ムおよび/またはガドリニウムが添加合金化されている
。しかしながら中性子毒物質は薄板の形で分離壁2上に
かぶせておくかまたは有利には粉末状または薄板の形で
両方の壁部分13.14の間に存在する事も出来る。
The separating wall 2 consists, for example, of special steel sheets, to which the neutron poisonous substances boron, cadmium, /' 7 = ram and/or gadolinium are added and alloyed uniformly. However, the neutron poison substance can also be placed over the separating wall 2 in the form of a sheet or present between the two wall parts 13, 14, preferably in the form of a powder or sheet.

スペーサ5により確保される分離壁2の相互間隔は、分
裂物質溶液の種類およびイオン濃度、およびそれに加え
て使用された分裂物質の種類および量に左右される・し
かし、これは一般に3〜γCの間である。
The mutual spacing between the separation walls 2 ensured by the spacers 5 depends on the type and ion concentration of the fissile substance solution, as well as the type and amount of the fissile substance used. However, this is generally between 3 and γC. It is between.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による毒物質を有1−る貯蔵容器の実施例を
示すもので、第1図は円筒形貯蔵容器の縦断面図であり
、第2図は多重環状間隙容器の横断面図であり、第3図
は有利な実施例の分離壁を示す略図である。 ■・・・容′器、2・・・分離壁、3・・・仕切室、牛
・・・支持外壁、5・・・スペーサ、6・・・排出弁、
7・・・蓋、8・・・充填口、9・・・排気管、10・
・・開口、11・・・容器底の薄板、12・・・薄板状
の中性勇毒物質、13.14・・・壁部分
The figures show an embodiment of a storage container containing a poisonous substance according to the invention, in which FIG. 1 is a longitudinal sectional view of a cylindrical storage container and FIG. 2 is a cross-sectional view of a multi-annular interstitial container. FIG. 3 is a schematic representation of the separating wall of an advantageous embodiment. ■... Container, 2... Separation wall, 3... Partition, cow... Supporting outer wall, 5... Spacer, 6... Discharge valve,
7... Lid, 8... Filling port, 9... Exhaust pipe, 10.
...Opening, 11...Thin plate at the bottom of the container, 12...Thin plate-shaped neutral eutoxic substance, 13.14...Wall portion

Claims (1)

【特許請求の範囲】 ■ 容器(1)が、中性子毒物質を含有づ−ろ、スペー
サ(5)Kより固定間隔に設けられた分離壁(2)によ
って、開口(10)により互いに結合された、幾何学的
条件による臨界安全ないくつかの仕切室に分割されてい
る事を特徴とする、核分裂性物質溶液を臨界安全に貯蔵
1−るための容器。 2、容器(1)が円塔形に構成され、分離壁(2)が円
形かつ同心的に容器(1)中に配置されている、特許請
求の範囲第1項記載の容器。 3、分離壁(2)が二重壁として構成され、中性子毒物
質(12)が二重壁の両方の壁部分(13,14)の間
に存在する、特許請求の範囲第1項または第2項記載の
容器。 4、二重壁の両壁部分(13、l 4− )の間に水分
検出器が配置されている、特許請求の範囲第1項〜第δ
項のいずれが1項記載の容器1.5 スペーサ(5)も
同様に中性子物質が加えられている、特許請求の範囲第
1項〜第4項のいずれか1項記載の容器3、
[Claims] ■ Containers (1) containing neutron poisonous substances are connected to each other by an opening (10) by a separating wall (2) provided at a fixed distance from a spacer (5) K. A container for storing a fissile material solution in a criticality-safe manner, characterized by being divided into several criticality-safe compartments according to geometric conditions. 2. Container according to claim 1, wherein the container (1) is of cylindrical construction and the separating wall (2) is arranged circularly and concentrically in the container (1). 3. The separating wall (2) is constructed as a double wall, and the neutron poisonous substance (12) is present between both wall parts (13, 14) of the double wall. Container according to item 2. 4. Claims 1 to δ, in which a moisture detector is disposed between both wall portions (13, l 4- ) of the double wall.
5. A container 3 according to any one of claims 1 to 4, in which the spacer (5) is also added with a neutron substance;
JP58132964A 1982-08-26 1983-07-22 Container for storing safely nuclear fissile material solution in critical Pending JPS5950393A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3231751 1982-08-26
DE32317514 1982-08-26

Publications (1)

Publication Number Publication Date
JPS5950393A true JPS5950393A (en) 1984-03-23

Family

ID=6171742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132964A Pending JPS5950393A (en) 1982-08-26 1983-07-22 Container for storing safely nuclear fissile material solution in critical

Country Status (3)

Country Link
EP (1) EP0102562B1 (en)
JP (1) JPS5950393A (en)
DE (1) DE3367819D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195191A (en) * 2012-03-19 2013-09-30 Toshiba Corp Fissile material housing tank and fissile material housing method
JP2014153121A (en) * 2013-02-06 2014-08-25 Toshiba Corp Radioactive waste liquid sedimentation separating device and sedimentation separating method
JP2015105884A (en) * 2013-11-29 2015-06-08 株式会社東芝 Radioactive substance removal system and radioactive substance removal method
CN108962414A (en) * 2018-06-15 2018-12-07 中国核电工程有限公司 A kind of plutonium solution basin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036097A1 (en) * 2006-06-15 2009-03-18 Belgonucleaire SA Criticality prevention devices and methods in nuclear fuel production
CN110739093B (en) * 2019-09-23 2022-11-18 中国核电工程有限公司 Critical safety control method for solution storage tank in nuclear fuel post-treatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1584978A1 (en) * 1966-08-30 1970-06-25 Pintsch Bamag Ag Process and device for the decontamination of radioactive waste water by decay
US3882313A (en) * 1972-11-07 1975-05-06 Westinghouse Electric Corp Concentric annular tanks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195191A (en) * 2012-03-19 2013-09-30 Toshiba Corp Fissile material housing tank and fissile material housing method
JP2014153121A (en) * 2013-02-06 2014-08-25 Toshiba Corp Radioactive waste liquid sedimentation separating device and sedimentation separating method
JP2015105884A (en) * 2013-11-29 2015-06-08 株式会社東芝 Radioactive substance removal system and radioactive substance removal method
CN108962414A (en) * 2018-06-15 2018-12-07 中国核电工程有限公司 A kind of plutonium solution basin
CN108962414B (en) * 2018-06-15 2021-09-17 中国核电工程有限公司 Plutonium solution storage tank

Also Published As

Publication number Publication date
EP0102562A1 (en) 1984-03-14
DE3367819D1 (en) 1987-01-08
EP0102562B1 (en) 1986-11-20

Similar Documents

Publication Publication Date Title
US3845315A (en) Packaging for the transportation of radioactive materials
US10026514B2 (en) Canister apparatus and basket for transporting, storing and/or supporting spent nuclear fuel
EP0896721B1 (en) Container for nuclear fuel transportation
JPH04357498A (en) Storage cask for radioactive structure and manufacture thereof
US11676736B2 (en) Ventilated metal storage overpack (VMSO)
JPH0476595B2 (en)
JP6775062B1 (en) Nuclear fuel debris container with porous columnar inserts
JPS5950393A (en) Container for storing safely nuclear fissile material solution in critical
US4476394A (en) Insertion canister for radioactive material transportation and/or storage containers
US6770897B2 (en) Container for nuclear fuel transportation
EP0343410A2 (en) Shipping cask for nuclear fuel
JPH01119799A (en) Storage method of fissionable material
US5998800A (en) Pipe overpack container for trasuranic waste storage and shipment
JP2560084B2 (en) Neutron poison for nuclear fuel material storage container
EP0078107A1 (en) An improved container for irradiated nuclear fuel
JP2006220485A (en) Radioactive material storage
JPH09211192A (en) Transportation method for nuclear fuel material
JPH0719033Y2 (en) Drip tray
JP2000314797A (en) Nuclear fuel storage tank with built-in plate-like neutron absorber
JPH0769475B2 (en) Nuclear reactor decommissioning method
RU2089948C1 (en) Container for transportation and/or storage of spent nuclear fuel
DE8224105U1 (en) STORAGE TANK FOR FUEL SOLUTIONS
Dragičević et al. New Radioactive Waste Packaging Type and Storage System at the Krško NPP
JP2003315488A (en) Spent nuclear fuel housing container
JPH0312596A (en) Multilayer slab tank with shielding material