JPS5950369A - Electric quantity measuring device - Google Patents

Electric quantity measuring device

Info

Publication number
JPS5950369A
JPS5950369A JP57160388A JP16038882A JPS5950369A JP S5950369 A JPS5950369 A JP S5950369A JP 57160388 A JP57160388 A JP 57160388A JP 16038882 A JP16038882 A JP 16038882A JP S5950369 A JPS5950369 A JP S5950369A
Authority
JP
Japan
Prior art keywords
light
signal
wavelength
output signal
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57160388A
Other languages
Japanese (ja)
Inventor
Toshiaki Tsukada
敏秋 塚田
Hisakatsu Nemoto
根本 寿克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP57160388A priority Critical patent/JPS5950369A/en
Publication of JPS5950369A publication Critical patent/JPS5950369A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption

Abstract

PURPOSE:To eliminate an error of an output signal, by executing a compensation so as to eliminate an error generated in an optical transfer path of an optical beam after being divided into two by an analyser, in an electric quantity measuring device for measuring an electric quantity by utilizing the polarization of light. CONSTITUTION:A light source 70 consists of light emitting diodes 71, 72 for irradiating the light of wavelength lambda1, lambda2. A polarizer 21 is a wavelength selecting type polarizer, and polarizes light of wavelength lambda2 irradiated from a coupler 80, but does not polarize light of wavelength lambda1. Two lights of wavelength lambda2 passing through an analyzer 30 contain a signal component of an opposite phase to each other, and light of wavelength lambda1 does not contain a signal component in light intensity. In an operating means 110, the first gain adjusting device 111 and the second gain adjusting device 114 adjust the gain of an output signal of the first photoelectric converter 90 and the second photoelectric converter 100, and compensated so as to eliminate an error due to a loss variation generated in an optical transfer path of an optical beam, and an error generated in an output signal Vout can be eliminated.

Description

【発明の詳細な説明】 本発明は、光の偏光を利用して電流、電圧、電力、磁界
等(以下電気量という)を測定する電気量測定装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical quantity measuring device that measures current, voltage, power, magnetic field, etc. (hereinafter referred to as electrical quantity) using polarized light.

第1図はこの種の電気量測定装置における従来例のブロ
ック図である。
FIG. 1 is a block diagram of a conventional example of this type of electrical quantity measuring device.

第1図において、10は光源例えば発光ダイオード、2
0は光応用センサ、30は検光子、40は第1の光電変
換器50は第20光電変換器、60は演算手段である。
In FIG. 1, 10 is a light source such as a light emitting diode;
0 is a light application sensor, 30 is an analyzer, 40 is a first photoelectric converter 50 is a 20th photoelectric converter, and 60 is a calculation means.

光応用センサ20において、21は偏光子、22ハλ/
4板、23は電気光学効果素子、24は磁気光学効果素
子である。電気光学効果素子23には電圧マが印加され
、磁気光学効果素子24には電流iが供給され、これに
よって電気光学効果素子23と磁気光学効果素子24は
通過する光の偏光状態を変える。
In the optical sensor 20, 21 is a polarizer, 22 is a λ/
4 plates, 23 is an electro-optic effect element, and 24 is a magneto-optic effect element. A voltage m is applied to the electro-optic effect element 23, and a current i is supplied to the magneto-optic effect element 24, whereby the electro-optic effect element 23 and the magneto-optic effect element 24 change the polarization state of the light passing therethrough.

光源10から偏光子21とλ/4板22に照射されるこ
とKより円偏光となった光ビームは、電気光学効果素子
23によって印加電圧Vに比例した位相の変化を受けて
楕円偏光となる。この南回偏光となった光ビームは、供
給電流量に比例した偏波面の回転を受け、(け円偏光の
主軸が回転させられる。
The light beam, which has become circularly polarized by being irradiated from the light source 10 onto the polarizer 21 and the λ/4 plate 22, undergoes a phase change proportional to the applied voltage V by the electro-optic effect element 23, and becomes elliptically polarized. . This southerly polarized light beam undergoes rotation of the plane of polarization in proportion to the amount of supplied current, and the principal axis of the circularly polarized light is rotated.

さらに、この光ビームは、検光子30によって特定の直
交する2方向の偏光成分に分解させられ、光強度信号の
偏光成分として第1の光電変換器40と第2の光電変換
器5014与えられる。第1の光電変換器40において
、41はフォトダイオードであり、検光子30によって
特定の直交する2方向の偏光成分に分解された一方の光
強度信号Io(1+3)を光強度に応じた光電流信号に
変換する。ここで、Sldセンサによって生じた信号成
分であり、IOはセ/すかもの信号成分が零のときの光
強度信号である。
Furthermore, this light beam is separated into polarization components in two specific orthogonal directions by the analyzer 30, and the polarization components of the light intensity signal are provided to the first photoelectric converter 40 and the second photoelectric converter 5014. In the first photoelectric converter 40, 41 is a photodiode, which converts one optical intensity signal Io(1+3) decomposed into polarization components in two specific orthogonal directions by the analyzer 30 into a photocurrent corresponding to the optical intensity. Convert to signal. Here, IO is a signal component generated by the Sld sensor, and IO is a light intensity signal when the signal component of SE/SKAMO is zero.

42は電流電圧変換器であシ、フォトダイオード41か
らの光電流信号を電圧信号に変換して出力する。
A current/voltage converter 42 converts the photocurrent signal from the photodiode 41 into a voltage signal and outputs the voltage signal.

−ドであり、検光子30によって偏光された他方の光強
度信号Io(1−3)を光強度に応じた光電流信号に変
換する。52は電流電圧変換器であり、フォトダイオー
ド51からの光電流信号を電圧信号に変換して出力する
。演算手段60において、61は加算器であり、第1の
光電変換器40の出力信号と第2の光電変換器50の出
力信号とを加える。62は減算器であシ、第1の光電変
換器40の出力信号から第2の光電変換器50の出力信
号を減じる。63は演算増幅器であり、加算器61の出
力と基準電圧源64の出力が与えられている。そして、
演算増幅器63の出力は発光ダイオード10に与えられ
ていて、加算器61の出力電圧が一定値Vrになるよう
に、発光ダイオード10に帰還信号が与えられている。
- converts the other optical intensity signal Io(1-3) polarized by the analyzer 30 into a photocurrent signal corresponding to the optical intensity. 52 is a current-voltage converter, which converts the photocurrent signal from the photodiode 51 into a voltage signal and outputs the voltage signal. In the calculation means 60, 61 is an adder, which adds the output signal of the first photoelectric converter 40 and the output signal of the second photoelectric converter 50. A subtracter 62 subtracts the output signal of the second photoelectric converter 50 from the output signal of the first photoelectric converter 40. 63 is an operational amplifier to which the output of the adder 61 and the output of the reference voltage source 64 are applied. and,
The output of the operational amplifier 63 is given to the light emitting diode 10, and a feedback signal is given to the light emitting diode 10 so that the output voltage of the adder 61 becomes a constant value Vr.

このような構成の前気量測定装置において、減算器62
が発生する信号が出力信号として取シ出され、この出力
信号は電気光学効果素子23に印加される電圧Vと磁気
光学効果素子24に供給される電流lの積に対応した電
力信号となり、これによりて電力が測定される。V=一
定(−1j=o)、  1==0のときは出力信号は印
加電圧Vの値に対応し、これによって電圧が測定される
。v=0.i=一定(キ0)のときは出力信号は電流1
のイ直に対ICL、これによりて電流が測定される。
In the forward air volume measuring device having such a configuration, the subtractor 62
The signal generated is extracted as an output signal, and this output signal becomes a power signal corresponding to the product of the voltage V applied to the electro-optic effect element 23 and the current l supplied to the magneto-optic effect element 24. The power is measured by When V=constant (-1j=o) and 1==0, the output signal corresponds to the value of the applied voltage V, and the voltage is thereby measured. v=0. When i = constant (key 0), the output signal is current 1
The current is measured directly against the ICL.

しかし、このような電気量測定装置では、検光おいては
光伝達経路が長いことが多い)、光イR達経路では光の
損失等による変動が2つの経路で異なっているため、装
置の出力信号に誤差を生じるという間哨点があった。
However, in such electrical quantity measuring devices, the light transmission path is often long in photoanalysis), and the fluctuations due to light loss etc. in the light I-R path are different between the two paths, so the device There was a point where an error occurred in the output signal.

本発明は上述したような問題点を除去するために々され
たものであり、検光子で2つに分けられた後の光ビーム
についてそれぞれの光伝a経路で生じる誤差を除去する
ように補正し、出力信号の誤差を除去した電気量測定装
置を提供することを目的としたものである。
The present invention was developed in order to eliminate the above-mentioned problems, and corrects the light beam after it is divided into two by an analyzer to remove the error that occurs in each light propagation path a. However, it is an object of the present invention to provide an electrical quantity measuring device that eliminates errors in output signals.

第2図は本発明にかかる電気量測定装置の一実施例のプ
ロ、り図である。第2図において、第1図と同一のもの
は同一符号を付ける。
FIG. 2 is a schematic diagram of an embodiment of the electrical quantity measuring device according to the present invention. In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals.

第2図において、70は光源、80は結合器、90は第
1の光電変換器、100は第2の光電変換器、110は
演算手段である。
In FIG. 2, 70 is a light source, 80 is a coupler, 90 is a first photoelectric converter, 100 is a second photoelectric converter, and 110 is a calculation means.

光源70は、波長久、の光を照射する発光ダイメ・−ド
71と波長λ2の光を照射する発光ダイオード72から
なる。結合器80は発光ダイオード71と発光ダイオー
ド72が照射する光を合成する。偏光子21は波長選択
型の偏光子であり、結合器80から照射される光につい
て、波長λ2の光を偏光させるが、波長入の光を偏光さ
せない。そのため、偏光子21を通遇しだ光のうち、波
長λ2の光は光強度に信号成分を有しているが、波長λ
□の光は光強度に信号成分を有していない。第1の光電
変換器90において、91は分波器であり、検光子30
によって分けられた一方の光ビームを前述した波長□(
の光と波長λ2の光に分離する。92. ’93はフォ
トダイオードで゛あり、分波器91で分離された波長λ
□の光と波長λ2の光をそれぞれの光強度に応じた光電
流信号に変換する。
The light source 70 includes a light emitting diode 71 that emits light with a wavelength of λ2 and a light emitting diode 72 that emits light with a wavelength of λ2. The coupler 80 combines the light emitted by the light emitting diodes 71 and 72. The polarizer 21 is a wavelength-selective polarizer, and polarizes the light of the wavelength λ2 of the light emitted from the coupler 80, but does not polarize the light of wavelength λ2. Therefore, among the light that passes through the polarizer 21, the light with wavelength λ2 has a signal component in the light intensity, but the light with wavelength λ
The light □ does not have a signal component in its light intensity. In the first photoelectric converter 90, 91 is a demultiplexer, and the analyzer 30
One of the light beams separated by the wavelength □(
is separated into light of wavelength λ2 and light of wavelength λ2. 92. '93 is a photodiode, which has a wavelength λ separated by a demultiplexer 91.
The light of □ and the light of wavelength λ2 are converted into photocurrent signals according to the respective light intensities.

94、95は電流電圧変換器でちυ、フォトダイオード
92.93からの光電流信号を電気信号に変換しで出力
する。第2の光電変換手段100において、101は分
波器であり、検光子30によって分けられた他方の光ビ
ームを前述した波長^の光と波長λ2の光に分離する。
Reference numerals 94 and 95 indicate current-voltage converters υ, which convert the photocurrent signals from the photodiodes 92 and 93 into electrical signals and output the electrical signals. In the second photoelectric conversion means 100, 101 is a demultiplexer, which separates the other light beam separated by the analyzer 30 into the aforementioned light of wavelength ^ and light of wavelength λ2.

102.103はフォトダイオードで換する。1.04
.195は電流電圧変換器であり、フォトダイオード1
02.103からの光電流信号を電圧信号に変換して出
力する。演算手段110において、1111d第1の利
得調整器であり、電流電圧変換器94の出力信号が与え
られる。112は減算器であシ、第1の利得調整器11
1の出力信号から電流電圧変換器104の出力信号を減
じる。減算器112の出力は帰還回路113によって帰
還信号として第1の利得調整器111に帰還され、これ
によって第1の利得調整器111はその出力信号が電流
電圧変換器104の出力信舟と等しくなるように利得調
整される。114は第2の利得調整器であり、電流電圧
変換器95の出力と帰還回路113の帰還信号が与えら
ている。第2の利得調整器114は第1の利得調整器1
11と同一のものであり、帰還回路113の帰還信号が
与えられることによって第1の利得調整器111と同様
にして一利得調整を行なう。115は加算器であり、第
2の利得調整器114の出力と電流電圧変換器105の
出力を加算する。116 は演算増幅器であり、加算器
115の出力と基準電圧源117の出力が与えられてい
る。そして、演算増幅器116の出力はフォトダイオー
ド72に与えられていて、加算器115の出力電圧が一
定値Vrになるように発光ダイオード72に帰還信号が
与えられている。
102 and 103 are replaced by photodiodes. 1.04
.. 195 is a current-voltage converter, and photodiode 1
Converts the photocurrent signal from 02.103 into a voltage signal and outputs it. In the calculation means 110, 1111d is a first gain adjuster and is supplied with the output signal of the current-voltage converter 94. 112 is a subtracter, and the first gain adjuster 11
The output signal of the current-voltage converter 104 is subtracted from the output signal of the current-voltage converter 104. The output of the subtracter 112 is fed back to the first gain adjuster 111 as a feedback signal by the feedback circuit 113, so that the output signal of the first gain adjuster 111 becomes equal to the output signal of the current-voltage converter 104. The gain is adjusted as follows. 114 is a second gain adjuster to which the output of the current-voltage converter 95 and the feedback signal of the feedback circuit 113 are applied. The second gain adjuster 114 is the first gain adjuster 1
11, and by receiving the feedback signal from the feedback circuit 113, it performs gain adjustment in the same manner as the first gain adjuster 111. 115 is an adder that adds the output of the second gain adjuster 114 and the output of the current-voltage converter 105. 116 is an operational amplifier to which the output of the adder 115 and the output of the reference voltage source 117 are applied. The output of the operational amplifier 116 is given to the photodiode 72, and a feedback signal is given to the light emitting diode 72 so that the output voltage of the adder 115 becomes a constant value Vr.

118は減算器であり、第2の利得調整器114の出力
から電流電圧変換器105の出力を減じる。そして、こ
の減算器118の出力信号が装置の出力信号となる。
A subtracter 118 subtracts the output of the current-voltage converter 105 from the output of the second gain adjuster 114. The output signal of this subtracter 118 becomes the output signal of the device.

このような構成の電気量測定装置において、第1図の電
気量測定装置と同様にして1戎力、電圧、電力等の測定
を行なう。
In the electrical quantity measuring apparatus having such a configuration, one stroke force, voltage, electric power, etc. are measured in the same manner as the electrical quantity measuring apparatus shown in FIG.

また、検光子30で2つに分けられた後の光ビームにつ
いて、それぞれの光伝達経路で発生する光損失の変動に
よる装置の出力信号への誤差は次のようにして除去され
る。
Furthermore, for the light beam after it has been divided into two by the analyzer 30, errors in the output signal of the apparatus due to fluctuations in optical loss occurring in the respective optical transmission paths are removed in the following manner.

検光子30で2つに分けられた直後の光ビームについて
、第1の光?(l変換器90に送られる光ビームの光強
度信号を工、□十工。7、第2の光電変換器100に送
られる光ビームの光強信号を工□2+I22とする。
Regarding the light beam immediately after being divided into two by the analyzer 30, the first light? (l The light intensity signal of the light beam sent to the converter 90 is □10.7. The light intensity signal of the light beam sent to the second photoelectric converter 100 is □2+I22.

ここで、  工□□:第1の光電変換器90に送られる
光ご−ムのうちで、波 長λ□の光強度信号。
Here, □□: An optical intensity signal of wavelength λ□ among the optical signals sent to the first photoelectric converter 90.

■。□:第1の光□電変換器90に送られる光ビームの
うちで、波 長λ2の光1強度信号。
■. □: Optical 1 intensity signal of wavelength λ2 among the optical beams sent to the first photo-□-electrical converter 90.

工□2:第2の光電変換器100に送 られる光ビームのづちで、 波長 の光強度信号。Step □2: Send to second photoelectric converter 100 With the hammer of the light beam, Light intensity signal of wavelength.

工。□−42の光電変換器100に送 られる光ビームのうちで、 波長λ2の光強度信号。Engineering. □-42 photoelectric converter 100 Of the light beams that are Optical intensity signal of wavelength λ2.

検光子30を通った2つの波長λの光は、互いに逆相の
信号成分Sを含んでいるため、光強度信号112・12
2は ■、□=122(1+5)(1) ■。2”f22 (1’S )           
(2)となる。一方、波長λ□の光は光強度に信号成分
Sを含んでいないため、光強度信号工□1.工□2は、
”11 ” fll“工12(3) となる。第1の光電変換器9oと第2の光電変換器10
0に送られるまでに途中の光伝達経路で光損失により変
化した光強度信号を工□ン+工。;と工□2+I22と
すると ■:L1 +”21 ”α(工11+工2□)(4)1
12 ” ”22 ”β(工12 ” ”22 )(5
)となる。ここで、αとβは光損失によって生じた係数
である。検光子30から第1の光電変換器9oまでの光
伝達経路と検光子3oから第2の光電変i器100まで
の光伝達経路で発生する光強度信号の誤差は、それぞれ
の光伝達経路での光損失の相違等から異なるため、係数
αとβは異なる。
Since the lights of two wavelengths λ that have passed through the analyzer 30 contain signal components S having opposite phases to each other, the light intensity signals 112 and 12
2 is ■, □=122(1+5)(1) ■. 2”f22 (1'S)
(2) becomes. On the other hand, since the light with the wavelength λ□ does not include the signal component S in its light intensity, the light intensity signal processing □1. Engineering □2 is
"11"fll"Eng.12(3).The first photoelectric converter 9o and the second photoelectric converter 10
The optical intensity signal that has changed due to optical loss in the optical transmission path before being sent to 0 is processed. ; and work □2 + I22 ■: L1 + "21" α (work 11 + work 2 □) (4) 1
12 ” ” 22 ” β (Eng. 12 ” ” 22 ) (5
). Here, α and β are coefficients caused by optical loss. Errors in the optical intensity signals that occur in the optical transmission path from the analyzer 30 to the first photoelectric converter 9o and from the analyzer 3o to the second photoelectric converter 100 are determined by the following: The coefficients α and β are different because of differences in optical loss, etc.

分波器91によりて分離された波長λとλの光が  2 フォトダイオード92.93と電流電圧変換器94.9
5によりて変換された電気信号をV とV とし、11
   −21 分波器101によって分けられた波長λ□とA2の光が
フォトダイオード102.103と電流電圧変換器10
4゜105によって変換された電気信号をV□2とv2
2とすると、 V□1=咀=α工□□        (6)■21 
” 工21 =α工。□        (7)v12
“112“β112(8) v22°工22=β”22.            
(9)第1の利得調整器111の出力信号をvllとす
ると、 vll =AGC”11              
 (11ことで、  八〇〇 ’第1の利得調整器11
1の制御利得。
The wavelengths λ and λ light separated by the demultiplexer 91 are 2 photodiodes 92.93 and current-voltage converters 94.9.
Let the electrical signals converted by 5 be V and V, and 11
-21 The light of wavelength λ□ and A2 separated by the demultiplexer 101 is sent to the photodiode 102, 103 and the current-voltage converter 10.
The electrical signal converted by 4゜105 is V□2 and v2
2, V□1=咀=α工□□ (6)■21
” Engineering 21 = α Engineering. □ (7) v12
“112”β112(8) v22° 工22=β”22.
(9) If the output signal of the first gain adjuster 111 is vll, then vll = AGC"11
(11) 800 'first gain adjuster 11
Control gain of 1.

となる。(6)式を(l()式に代入すると、vllo
AGC”11              °力となる
。第1の利得調整器111は帰還回路113から与え′
られる帰還信号によってv’−v=oになる1 12 ように利得調整を礼゛なう。v’=、v  と(8)式
をα◇式1 12 に代入すると、 AGC″′111“ββ12 ここで、(3)式から工□□弓、。であることから、A
GCα“β             (ロ)となる。
becomes. Substituting equation (6) into equation (l(), vllo
The first gain adjuster 111 receives the signal from the feedback circuit 113.
The gain is adjusted so that v'-v=o by the feedback signal. By substituting v'=, v and equation (8) into α◇formula 1 12, we get AGC'''111''ββ12 Here, from equation (3), we get □□bow. Since A
GCα“β (b).

第2の利得調整器114の出力信号をv21とすると、
第2の利得調整器114は第1の利得調整器111と同
一のものであって第1の利得調整器111と同様に利得
調整を行なうことから、制御利得も第1の利得調整器1
11と等しくなり、’21 ”八〇〇 、”21 となり、(9)式から v21°AGC”21             ’ 
 61となる。θネ式をα1式に代入して、 v2ン=β工。□            α→となる
。演算増幅器116に送られる加算器115の出〃信号
v2′1.+v22は、64式と(9)式から、■2′
1.+V22=β(121” ”22)となる。これに
(1)式と(2)式を代入して、■21 +v22 ”
β1r22(z +s) +T22(z −s) ’?
If the output signal of the second gain adjuster 114 is v21,
Since the second gain adjuster 114 is the same as the first gain adjuster 111 and performs gain adjustment in the same way as the first gain adjuster 111, the control gain is also the same as that of the first gain adjuster 111.
11, '21 '800, '21', and from equation (9) v21°AGC '21 '
It becomes 61. Substituting the θne formula into the α1 formula, v2 = β. □ α→. The output signal v2'1. of the adder 115 is sent to the operational amplifier 116. +v22 is obtained from equation 64 and equation (9) as ■2'
1. +V22=β(121" 22). Substituting equations (1) and (2) into this, we get ■21 +v22 ”
β1r22(z +s) +T22(z −s)'?
.

°2β!2□ この信号v訂+v22は基準電圧源117の中力電圧V
rに等しくなるように制御されていることから、Vr=
2β工220り となる。装置の出力信号は減算器118の出力信号v2
ン−■22にナッテイテ、04式と(9)式カラ、■2
1− v22°”2:L −”22)=β1f22(1
+5)−β22(1−8)j=2β丁2゜S となり、CIつ式から v21−v22°Vr−8’            
 Hとなって、光強度信号の誤差に関連した係数αとβ
は消去され、装置の出力信号v217v2゜は一定電圧
値Vrと信号、成分Sのみに依存する。これKよって検
光子30で2つに分けられた後の光ビームについて、そ
れぞれの光伝達経路で生じる光損失による誤差が、除去
されるように補正されて、装置の出力信号の誤差が除去
される。
°2β! 2□ This signal v + v22 is the neutral voltage V of the reference voltage source 117
Since it is controlled to be equal to r, Vr=
2β engineering becomes 220 ri. The output signal of the device is the output signal v2 of the subtracter 118
N-■22, Natteite, 04 type and (9) type Kara, ■2
1-v22°"2:L-"22)=β1f22(1
+5)-β22(1-8)j=2β2゜S, and from the CI equation, v21-v22°Vr-8'
H, the coefficients α and β related to the error of the optical intensity signal
is canceled, and the output signal v217v2° of the device depends only on the constant voltage value Vr and the signal component S. As a result, the light beam after being divided into two by the analyzer 30 is corrected to remove errors due to optical loss occurring in each optical transmission path, and errors in the output signal of the device are removed. Ru.

このような構成の電気量測定装置によれば、第1の利得
調整器111と第2の利得調整器114が第1の光電変
換器90と第2の光電変換器100の出力信号の利得調
整を行なって、検光子30で2つに分けられた後の光ビ
ームについて、それぞれの光伝達経路で生じる損失変動
による誤差を除去するように補正することから、装置の
出力信号に発生する誤差を除去することができる。
According to the electrical quantity measuring device having such a configuration, the first gain adjuster 111 and the second gain adjuster 114 adjust the gains of the output signals of the first photoelectric converter 90 and the second photoelectric converter 100. The optical beam after being divided into two by the analyzer 30 is corrected to remove errors due to loss fluctuations occurring in each optical transmission path. Therefore, errors occurring in the output signal of the device can be Can be removed.

第3図は、本発明にかかる電気量測定装置の他の実施例
の要部のブロック図である。
FIG. 3 is a block diagram of main parts of another embodiment of the electrical quantity measuring device according to the present invention.

第3図において、119 は除算器であり、第1の光電
変換器90の出力信号V□1と、シ42の光電変換器1
00の出力信号v12との除算を行なって電気信号v1
□/vi2を出力する。120は利得調整器であり、除
算器119から送られる電気信号v1□/v12によっ
て第・2の光電変換器100が出力する電気信号v21
の利得調整を行ない、電気信号V′を出力する。加算器
115は利得調整器120の出力信号V°と第1の1 光電変換器90の出力信号V の加算を行なう。そ2 して、加算器115の出力信号V21 + V2゜は演
算増幅器116に送られる。減算器118は利得調整器
120の出力信号v2□から第1の光電変換器90の出
力信号V を減じる。そして、減算器118の出力信号
2 v21−■22は装置の出力信号として最り出される。
In FIG. 3, 119 is a divider, which divides the output signal V□1 of the first photoelectric converter 90 and the photoelectric converter 1 of
00 is divided by the output signal v12 to obtain the electric signal v1.
Output □/vi2. 120 is a gain adjuster, and the electric signal v21 output by the second photoelectric converter 100 is determined by the electric signal v1□/v12 sent from the divider 119.
The gain is adjusted and an electrical signal V' is output. The adder 115 adds the output signal V° of the gain adjuster 120 and the output signal V 2 of the first photoelectric converter 90 . Then, the output signal V21 + V2° of the adder 115 is sent to the operational amplifier 116. The subtracter 118 subtracts the output signal V 2 of the first photoelectric converter 90 from the output signal v2□ of the gain adjuster 120. Then, the output signal 2v21-22 of the subtracter 118 is outputted as the output signal of the device.

このような構成の電気量測定装置において、除算器11
9によって利得調整器120に与えられる電気信号■1
□/V1□は、(6)式と(8)式からとなり、(3)
式より工□1=11゜であることから、となる。θη式
に示されるように、除算器119の出力信号V□□/v
12は、検光子30から箒1の光電変換器90までの光
の伝達経路で発生する光強度信号の損失による誤差と、
検光子30から第2の光電変換器100までの光の伝達
経路で発生する光強度信号の誤差に関連している。この
ような電気信号v1□/V□2によって利得調整器12
0は第1の光電変換器9oの出力信号v2□の利得調整
を行ない、検光子30で2つに分けられた後の光ビーム
について、それぞれの光伝達経路で生じる光損失による
誤差を除去するように補正を行なう。そして、これによ
って装置の出力信号の誤差が除去される。
In the electrical quantity measuring device having such a configuration, the divider 11
Electrical signal ■1 given to gain adjuster 120 by 9
□/V1□ consists of equations (6) and (8), and (3)
From the formula, since □1=11°, it becomes. As shown in the equation θη, the output signal of the divider 119 V□□/v
12 is an error due to a loss of the light intensity signal that occurs in the light transmission path from the analyzer 30 to the photoelectric converter 90 of the broom 1;
This is related to an error in the light intensity signal that occurs in the light transmission path from the analyzer 30 to the second photoelectric converter 100. The gain adjuster 12 is controlled by such electric signals v1□/V□2.
0 adjusts the gain of the output signal v2□ of the first photoelectric converter 9o, and removes errors caused by optical loss occurring in each optical transmission path for the light beam after it is divided into two by the analyzer 30. Make corrections as follows. This then eliminates errors in the output signal of the device.

このような構成の電気量測定装置によれば、第2図の電
気:辻測定装置によって得られる効果のほかに、利得調
整器を1個しか設けなくてもよいことから装置の構成を
簡単にすることができる。
According to the electrical quantity measuring device having such a configuration, in addition to the effects obtained by the electrical power measuring device shown in FIG. can do.

なお、実施例では光源7oが発光ダイオードである場合
について説明したが、光源7oはこれ以外のものであっ
てもよい。
In addition, although the case where the light source 7o was a light emitting diode was demonstrated in the Example, the light source 7o may be other than this.

また、実施例では光源70が波長λ□の光を照射する光
源と波長λ2の光を照射する光源からなるものである場
合について説明したが、これに限らず光源70は波長λ
1の光と波長〜の光を照射する1つの光源であってもよ
い。これによって、装置の構成を簡単にすることができ
る。
Further, in the embodiment, a case has been described in which the light source 70 is composed of a light source that emits light with a wavelength λ□ and a light source that emits light with a wavelength λ2, but the light source 70 is not limited to this.
It may be one light source that irradiates one light and one wavelength of light. This allows the configuration of the device to be simplified.

また、実施例では光応用センサ20が電気光学効果素子
23と磁気光学効果素子24どを有していて、電力、電
圧および電流を検出することができるものである場合に
ついて説明しだが、これに限ら′ず光応用センサ20は
磁気光学素子24を有しないで電圧のみを検出できるも
の、電気光学素子23とλ/4板2板金2しないで電流
のみを検出できるものある以上説明したように本発明に
よれば、検光子で2つに分見られた後の光ビームについ
て、それぞれの光伝達経路で生じる光損失による誤差が
除去されるように補正されていて、出力信号の誤差が除
去された電気量測定装置を提供することができる。
Further, in the embodiment, a case has been described in which the optical sensor 20 has an electro-optic effect element 23, a magneto-optic effect element 24, etc., and is capable of detecting electric power, voltage, and current. The optical application sensor 20 is not limited to one that can detect only voltage without the magneto-optical element 24, and one that can detect only the current without the electro-optical element 23 and the λ/4 plate 2 sheet metal 2. According to the invention, the light beam after being seen into two parts by the analyzer is corrected to remove errors due to optical loss occurring in each optical transmission path, and errors in the output signal are removed. It is possible to provide an electrical quantity measuring device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電気量測定装置における従来例のブロック図、
第2図は本発明にかかる電気量測定装置の一実施例のブ
ロック図、第3図は本発明にかかる電気量測定装置の他
の実施例のブロック図である。 20・・・光応用センサ、30・・・検光子、80・・
・結合器、9o・・・第1の光電変換器、100・・・
第2の光電変換器、110 ・・・演算手段。 第1[2]
Figure 1 is a block diagram of a conventional example of an electrical quantity measuring device.
FIG. 2 is a block diagram of one embodiment of the electrical quantity measuring device according to the present invention, and FIG. 3 is a block diagram of another embodiment of the electrical quantity measuring device according to the present invention. 20... Optical application sensor, 30... Analyzer, 80...
・Coupler, 9o...first photoelectric converter, 100...
Second photoelectric converter, 110... calculation means. 1st [2]

Claims (1)

【特許請求の範囲】[Claims] 波長が異なる2つの光を合成する結合器と、該結合器か
らの光ビームを受は測定する電気量に応じて前記光ビー
ムの偏光状態を変える光応用センサと、該光応用センサ
から出射される光ビームを直交する2方向の光ビームに
分ける検光子と、該検光子から出射される一方の光ビー
ムの光強度信号を前記した波長が異なる2つの光につい
ての光強度信号に分けこれらの光強度信号を電気信号に
変換する第1の光電変換手段と、前記検光子から出射さ
れる他方の光ビームの光強度信号を前記゛した波長が異
なる2つの光についての光強度信号に分けこれらの光強
度信号を電気信号に変換する第2の光電変換手段と、前
記検光子で2つに分けられた光ビームについて、それぞ
れの光伝達経路で生じる光強度信号の誤差に応じて第1
の光電変換手段と第2の光電変換手段が出力する電気信
号の利得調整を行ない、第1の光電変換手段と第2の光
電変換手段から出力される同一波長の光強度信号に対応
した電気信号について、これらの信号の和信号と差信号
を求め、差信号/和信号に関連した信号を出力信号とし
て発生する演算手段とを具備したことを特徴とする電気
量測定装置。
A coupler that combines two lights of different wavelengths, an optical sensor that receives a light beam from the coupler and changes the polarization state of the light beam in accordance with the amount of electricity to be measured, and a light beam that is emitted from the optical sensor. an analyzer that divides a light beam into two orthogonal light beams, and a light intensity signal of one of the light beams emitted from the analyzer that divides the light intensity signal of one of the light beams emitted from the analyzer into light intensity signals of the two lights having different wavelengths. a first photoelectric conversion means for converting a light intensity signal into an electrical signal; and a light intensity signal of the other light beam emitted from the analyzer, which is divided into light intensity signals of two lights having different wavelengths. a second photoelectric conversion means for converting the light intensity signal into an electric signal; and a second photoelectric conversion means for converting the light intensity signal into an electric signal;
The gain of the electrical signals output by the photoelectric conversion means and the second photoelectric conversion means is adjusted, and the electric signals corresponding to the optical intensity signals of the same wavelength output from the first photoelectric conversion means and the second photoelectric conversion means are generated. 1. An electrical quantity measuring device characterized by comprising: calculating means for determining a sum signal and a difference signal of these signals and generating a signal related to the difference signal/sum signal as an output signal.
JP57160388A 1982-09-14 1982-09-14 Electric quantity measuring device Pending JPS5950369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57160388A JPS5950369A (en) 1982-09-14 1982-09-14 Electric quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57160388A JPS5950369A (en) 1982-09-14 1982-09-14 Electric quantity measuring device

Publications (1)

Publication Number Publication Date
JPS5950369A true JPS5950369A (en) 1984-03-23

Family

ID=15713878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57160388A Pending JPS5950369A (en) 1982-09-14 1982-09-14 Electric quantity measuring device

Country Status (1)

Country Link
JP (1) JPS5950369A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247842A2 (en) * 1986-05-28 1987-12-02 Westinghouse Electric Corporation Optical measurement using polarized and unpolarized light
JPS6434420A (en) * 1987-07-29 1989-02-03 Takasago Thermal Engineering Method for forming highly clean region in free space of clean room and filter unit used for said method
US4933629A (en) * 1988-07-09 1990-06-12 Ngk Insulators, Ltd. Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483461A (en) * 1977-11-23 1979-07-03 Asea Ab Optical measuring device
JPS5629174A (en) * 1979-08-17 1981-03-23 Matsushita Electric Ind Co Ltd Electric current measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483461A (en) * 1977-11-23 1979-07-03 Asea Ab Optical measuring device
JPS5629174A (en) * 1979-08-17 1981-03-23 Matsushita Electric Ind Co Ltd Electric current measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247842A2 (en) * 1986-05-28 1987-12-02 Westinghouse Electric Corporation Optical measurement using polarized and unpolarized light
JPS6434420A (en) * 1987-07-29 1989-02-03 Takasago Thermal Engineering Method for forming highly clean region in free space of clean room and filter unit used for said method
US4933629A (en) * 1988-07-09 1990-06-12 Ngk Insulators, Ltd. Method and apparatus for optically measuring electric and magnetic quantities having an optical sensing head exhibiting the Pockel's and Faraday effects

Similar Documents

Publication Publication Date Title
US20120188550A1 (en) Gas Concentration Measurement Device
JP4853474B2 (en) Photosensor and photocurrent / voltage sensor
JPS5950369A (en) Electric quantity measuring device
JP2009041941A (en) Gas concentration measuring device and method
Korolkova et al. Direct experimental test of non-separability and other quantum techniques using continuous variables of light
WO2003034020A1 (en) Polarization mode dispersion measuring device, method, recording medium
US7006542B2 (en) System and method for stabilizing a laser output frequency
CN110829167A (en) Method and system for inhibiting single-frequency phase noise of laser
JP2605385B2 (en) Optical wavelength resolution measurement device
JPS5950370A (en) Electric quantity measuring device
US20040051870A1 (en) Method of noise cancellation in an unpolarized-laser instrument
CN109525196B (en) Solar cell wide-spectrum response test system and method
JPH11337483A (en) Apparatus and method for measuring exhaust gas of running vehicle
JPH0530217B2 (en)
JPS59155764A (en) Photovoltometer
JP3342055B2 (en) Heterodyne interferometer
JPS59145972A (en) Electricity quantity measuring device
JP3011244B2 (en) Optical applied DC current transformer
JP3223789B2 (en) Laser measuring instrument
EP4343988A1 (en) Noise mitigation in vapor cell spectroscopy
EP4239280A1 (en) Phase noise mitigation in photodetection chains with an optical pilot tone
JPH09318310A (en) Interferometer phase measurement device, interferometer phase fluctuation correction device and medium fluctuation correcting device
SU1174865A1 (en) Magnetic-optic instrument transducer of electric power
JPS5988665A (en) Light applied magnetic field sensor
JPH04344469A (en) Light-applied direct current transformer