JPS5950083B2 - pulse generator - Google Patents
pulse generatorInfo
- Publication number
- JPS5950083B2 JPS5950083B2 JP51011476A JP1147676A JPS5950083B2 JP S5950083 B2 JPS5950083 B2 JP S5950083B2 JP 51011476 A JP51011476 A JP 51011476A JP 1147676 A JP1147676 A JP 1147676A JP S5950083 B2 JPS5950083 B2 JP S5950083B2
- Authority
- JP
- Japan
- Prior art keywords
- pulse generator
- ferroelectric
- nonlinear capacitor
- composition
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003990 capacitor Substances 0.000 claims description 23
- 239000000919 ceramic Substances 0.000 claims description 16
- 230000001939 inductive effect Effects 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 238000007731 hot pressing Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 13
- 239000000843 powder Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 229910052745 lead Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000010587 phase diagram Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910002370 SrTiO3 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910001422 barium ion Inorganic materials 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229910002112 ferroelectric ceramic material Inorganic materials 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910001427 strontium ion Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical group O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/30—Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/49—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
- C04B35/491—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G7/00—Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
- H01G7/06—Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
- Ceramic Capacitors (AREA)
- Generation Of Surge Voltage And Current (AREA)
Description
【発明の詳細な説明】
本発明は誘導性素子と非線形コンデンサーを接続して成
るパルス発生器に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulse generator comprising an inductive element and a nonlinear capacitor connected together.
上記パルス発生器は、蛍光灯、高圧蒸気放電灯などの放
電灯回路における放電灯起動素子として用いる例が報吉
され、誘電性素子には放電灯用の誘導性安定器を、非線
形コンデンサー材料としては単結晶のBaTiO、が報
吉されており、有望視されていた。しかし、BaTiO
3は高融点(1613℃)酸化物のため実用に供する大
きさの結晶を育成するのは非常に困難であり、工業的に
実際的でない。本発明の目的は、上記の非線形コンデン
サーとしてBaTiO。The above-mentioned pulse generator has been reported to be used as a discharge lamp starting element in a discharge lamp circuit such as a fluorescent lamp or a high-pressure steam discharge lamp. Single-crystal BaTiO was reported to be a promising material. However, BaTiO
Since No. 3 is an oxide with a high melting point (1613° C.), it is extremely difficult to grow crystals of a size that can be used for practical purposes, and it is not industrially practical. The object of the present invention is to use BaTiO as the above-mentioned nonlinear capacitor.
単結晶に替わる実用性の高い高電圧発生用材料を用い、
これと誘導性素子とを接続することにより、実用性の高
い有用なパルス発生器を提供することにある。本発明の
パルス発生器は、上述のごとく、放電灯起動素子に適用
するのが、現在最も有望視されている。Using a highly practical high voltage generation material that replaces single crystal,
By connecting this with an inductive element, it is an object of the present invention to provide a highly practical and useful pulse generator. As mentioned above, the pulse generator of the present invention is currently most promising to be applied to a discharge lamp starting element.
そこで、以下放電灯回路への適用例を用いて本発明を更
に詳細に説明する。勿論、本発明のパルス発生器は放電
灯回路への適用に限られるものではなく、従がつて電気
理論の教える所に従がつて適切な誘導性素子を設定すれ
ばよいことは当然であ、る。J 周知め如く、従来の家
庭用蛍光灯起動回路は、第1図に示すようなグローラン
プとチョークコイル安定器の組み合わせからなるものが
用いられている。Therefore, the present invention will be explained in more detail below using an example of application to a discharge lamp circuit. Of course, the application of the pulse generator of the present invention is not limited to discharge lamp circuits; therefore, it is only necessary to set appropriate inductive elements according to the teachings of electrical theory. Ru. J As is well known, a conventional household fluorescent lamp starting circuit consists of a combination of a glow lamp and a choke coil ballast as shown in FIG. 1.
第1図において、1は蛍光放電管、2は安定器、3はグ
ローランプ、4は雑音防止用コンデーンサーを示す。こ
の回路上のグローランプは、安価であるが、(1)点灯
に用する時間が平均3秒と長く、(2)寿命が通常の使
用で2〜3年と短かいなどの欠点を有している。これら
の欠点を補なう方法の1つが、グローランプの代わりに
非線形コンデンサーを用いる方式である。第2図は、非
線形コンデンサーを用いた蛍光放電灯回路の1例で、同
図において5は非線形コンデンサー、6および7は、予
熱回路用の3S半導体(SilicOnSymmetr
icalSwitch)およびダイオードを示す。ここ
に非線形コンデンサー5は、電圧Vに対し電荷Qが第3
図aに示すようなヒステリシス特性を示すもので、これ
は強誘電体によつて得られる。第3図bは、aのような
ヒステリシス特性をもつ強誘電体をコンデンサー容量C
の変化として示したものである。このような非線形コン
デンサーを回路に組み込むと強誘電体は印加電圧の増加
につれて第3図a(7)ABDの道筋をたどる。これを
コンデンサー容量の変化としてみると同図bのようにな
る。すなわちヒステリシス曲線上の半サクル毎にコンデ
ンサーの大容量状態Bと小容量状態Dが交互に実現し、
丁度スイツチを0n状態および0ff状態にしたと同様
な変化が行なわれ、チ.ヨークコイルを流れる電流を急
激に遮断し、高圧パルス電圧を発生させることができる
。したがつて、この動作により瞬時点灯が可能である。
上述のような強誘電体による効果は蛍光灯のみでなく高
圧水銀灯、高圧ナトリウム灯などの高圧蒸気放.電灯回
路に用いても意義がある。第4図は、非線形コンデンサ
ー5を高圧ナトリウム蒸気放電灯に用いる場合の一例で
あり、同図において8は高圧ナトリウム蒸気放電管を9
は安定器を示す。高圧蒸気放電灯は蛍光灯のような予熱
を必要としない.ので、回路は放電管に並列に非線形コ
ンデンサーを入れるだけの極めて簡単な構成になる。本
発明の目的は上記した非線形コンデンサーとして、Ba
TiO,単結晶に替わる実用性の高い高電圧発生用材料
を用い、これと誘導性素子を接続す.ることにより有用
なパルス発生器を提供するものである。In FIG. 1, 1 is a fluorescent discharge tube, 2 is a ballast, 3 is a glow lamp, and 4 is a noise prevention capacitor. Although the glow lamp on this circuit is inexpensive, it has the following drawbacks: (1) It takes a long time to light up, averaging 3 seconds, and (2) its lifespan is short, 2 to 3 years under normal use. ing. One method to compensate for these drawbacks is to use a nonlinear capacitor instead of a glow lamp. Figure 2 shows an example of a fluorescent discharge lamp circuit using a nonlinear capacitor.
icalSwitch) and a diode. Here, the nonlinear capacitor 5 has a charge Q with respect to the voltage V.
It exhibits a hysteresis characteristic as shown in Figure a, which is obtained by a ferroelectric material. Figure 3b shows a ferroelectric material with a hysteresis characteristic as shown in a, which is connected to a capacitor with a capacitance of C.
This is shown as a change in When such a nonlinear capacitor is incorporated into a circuit, the ferroelectric material follows the path shown in FIG. 3a (7) ABD as the applied voltage increases. If we look at this as a change in capacitor capacity, we get something like the figure b. In other words, the capacitor's large capacitance state B and small capacitance state D are alternately realized every half cycle on the hysteresis curve.
The same changes occur when the switch is set to the 0n state and the 0ff state, and the switch is set to the 0n state and the 0ff state. It is possible to suddenly cut off the current flowing through the yoke coil and generate a high voltage pulse voltage. Therefore, instantaneous lighting is possible by this operation.
The effects of ferroelectric materials as described above are not only effective in fluorescent lamps, but also in high-pressure vapor dischargers such as high-pressure mercury lamps and high-pressure sodium lamps. It is also meaningful to use it in electric lighting circuits. Figure 4 shows an example of using the nonlinear condenser 5 in a high-pressure sodium vapor discharge lamp.
indicates a ballast. High-pressure steam discharge lamps do not require preheating like fluorescent lamps. Therefore, the circuit has an extremely simple configuration, just by placing a nonlinear capacitor in parallel with the discharge tube. The object of the present invention is to use Ba as the above-mentioned nonlinear capacitor.
We use TiO, a highly practical material for generating high voltage instead of single crystal, and connect it to an inductive element. This provides a useful pulse generator.
本発明に係わる非線形コンデンサーの材料は一般式AB
O,(ただし、AはBaおよびSrの少なくとも一種と
Pbとならなり、BはZrおよびTiの両者)を満足す
る強誘電性セラミツクス材料である。この強誘電性セラ
ミツクス材料によリ形成された非線形コンデンサーの端
子は上記誘導性素子を介して交流電源の一端に接続され
、非線形コンデンサーの他端子は電源の他端に接続さら
る。たとえば蛍光灯のような予熱を必要とする場合、予
熱用の回路が適宜挿入される。この強誘電体セラミツク
スはABO,(A,Bは陽イオン)のペロブスカイト構
造をもち、易焼結性の材料である。従がつてBaTiO
,単結晶とは異なり、材料は容易に提供出米、工業上の
利益は非常に大きい。また発明者は、BaTiO,焼結
体(ホツトプレス法)、Pb(Zr,Ti)0。セラミ
ツクス等の材料を用いてパルス発生器を製作した。Ba
TiO,焼結体は第3図に示すヒステリシス曲線がcの
如くになり、角型性が悪く、パルス発生器として使用出
来ない。またPb(Zr,Ti)03セラミツクスもパ
ルス発生器として使用出来ないことが明らかになつた。
次に本発明に係わる強誘電体の最も好ましい製造方法は
次の通りである。The material of the nonlinear capacitor according to the present invention has the general formula AB
It is a ferroelectric ceramic material that satisfies the following conditions: O, (where A is Pb and at least one of Ba and Sr, and B is both Zr and Ti). A terminal of the nonlinear capacitor formed of the ferroelectric ceramic material is connected to one end of the AC power source via the inductive element, and the other terminal of the nonlinear capacitor is connected to the other end of the power source. For example, when a fluorescent lamp requires preheating, a preheating circuit is inserted as appropriate. This ferroelectric ceramic has an ABO (A, B are cations) perovskite structure and is an easily sinterable material. Consequently, BaTiO
,Unlike single crystal, the material is easily produced and the industrial benefits are huge. The inventor also produced BaTiO, sintered body (hot press method), and Pb(Zr, Ti)0. A pulse generator was manufactured using materials such as ceramics. Ba
The sintered body of TiO has a hysteresis curve like c shown in FIG. 3, has poor squareness, and cannot be used as a pulse generator. It has also become clear that Pb(Zr,Ti)03 ceramics cannot be used as a pulse generator.
Next, the most preferred method for manufacturing the ferroelectric material according to the present invention is as follows.
一般式ABO,(ただし、AはBaおよびSrの少なく
とも1種とPbとからなり、BはZrおよびTiの両者
)を満足するよう、各金属元素の酸化物あるいは加熱に
より酸化物に容易に変化し得る金属元素の化合物を原料
とし、温度1200〜1500℃はり好ましくは130
0〜1450℃)、圧力70kg/Cm2以上(実用上
好ましくは70〜210kg/Cm2)のホツトプレス
条件下(なお時間は5 〜20時間が実用的に好ましく
実際的である。In order to satisfy the general formula ABO, (where A is composed of at least one of Ba and Sr and Pb, and B is both Zr and Ti), it is possible to form oxides of each metal element or easily change to oxides by heating. The temperature is 1200 to 1500°C, preferably 130°C.
0 to 1,450°C) and a pressure of 70 kg/Cm2 or more (practically preferably 70 to 210 kg/Cm2) under hot press conditions (5 to 20 hours is practically preferred and practical).
)で加熱焼結する。Ba,Srの添加量は大略5 〜3
0at%が好ましい。詳細は実施例において述べる。な
お、これらの材料の合成はあたつて、焼結促進の目的で
PbOを化学量論的組成よりも1〜20ωt%過剰に加
えることは合成を早める上で効果がある。この合成方法
によりパルス発生に実用上充分な角型特性をもつ強誘電
体を合成することができる。また高温静水圧プレス法、
高圧合成法あるいは共沈法に依る焼結法等の合成法に依
つても良いが、特に量産性に劣るので余り実際的でない
。粉末法による焼結は本発明の 、パルス発生器用強誘
電体の製造方法としては好ましくない。一般に組成、結
晶粒の均一性、高密度化の点で他の合成法に劣るため、
実用的な非線形コンデンサーの形成が困難となるものと
考えられる。本発明に係わる強誘電体は、放電灯起動素
子を目的とする材料に必要な特性てある飽和分極値10
μQ/Cm2以上、抗電場が10kV/Cm以下を充分
満足し得るとの結論を得た。) to heat and sinter. The amount of Ba and Sr added is approximately 5 to 3
0 at% is preferable. Details will be described in Examples. In addition, when synthesizing these materials, adding PbO in an amount of 1 to 20 ωt% in excess of the stoichiometric composition for the purpose of promoting sintering is effective in speeding up the synthesis. This synthesis method makes it possible to synthesize a ferroelectric material with square characteristics that are practically sufficient for pulse generation. Also, high temperature isostatic pressing method,
Synthesis methods such as a high-pressure synthesis method or a sintering method based on a coprecipitation method may be used, but they are not very practical because they are particularly poor in mass production. Sintering by a powder method is not preferred as a method of manufacturing a ferroelectric material for a pulse generator according to the present invention. Generally, it is inferior to other synthesis methods in terms of composition, grain uniformity, and high density;
It is thought that forming a practical nonlinear capacitor will be difficult. The ferroelectric material according to the present invention has a saturation polarization value of 10, which is a characteristic required for a material intended for a discharge lamp starting element.
It was concluded that μQ/Cm2 or more and coercive electric field of 10 kV/Cm or less can be sufficiently satisfied.
以下、本発明を実施例によつて詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.
実施例 1
Pb(Zr,Ti)03セラミツクスのPbイオンの一
部をBaイオンで置換した(Pbl−X,Bax)(Z
rl−Y,Tiy)03の5元素固溶体を用いたパルス
発生器の例を説明する。Example 1 Part of the Pb ions in Pb(Zr,Ti)03 ceramics were replaced with Ba ions (Pbl-X, Bax)(Z
An example of a pulse generator using a five-element solid solution of rl-Y, Tiy)03 will be described.
この組成のセラミツクスは、成分元素の構成比より、第
5図に示すような正方晶、菱面体晶および斜方晶の3つ
の強誘電相(第5図、第6図において正方晶、菱面体晶
、および斜方晶の3つの強誘電相をF,,FR,FOで
示した。なおA。は反強誘電体(斜方晶系),POは常
誘電体(立方晶系)A1反強誘電体(正方晶系)を示す
。)を有するが、BbTiO3近傍の強誘電相は前述し
たごとく、難焼結性であり、角型特性が悪いため、パル
ス発生器の材料として使用出来ない。代表例として(P
bO.8,BaO.2)(ZrO.8,TiO.2)0
3の組成の合成を以下に述べる。PbO(平均粒子径5
.2ミクロン、純度99.9%),,ZrO2(2.1
ミクロン、純度99.7%),BaTiO3固溶体粉(
2.2ミクロン、純度99.9%)を上記組成に秤量し
たのち、蒸留水を溶媒としてボールミルにて充分混合し
、蒸発乾固後上記混合物を900℃,1時間酸素気流中
で仮焼する。Ceramics with this composition have three ferroelectric phases, tetragonal, rhombohedral, and orthorhombic, as shown in Figure 5 (tetragonal, rhombohedral, and orthorhombic in Figures 5 and 6), based on the composition ratio of the component elements. The three ferroelectric phases of crystal, and orthorhombic are shown as F, FR, and FO.A. is an antiferroelectric (orthorhombic), and PO is a paraelectric (cubic) A1 antiferroelectric. ), but as mentioned above, the ferroelectric phase near BbTiO3 is difficult to sinter and has poor square characteristics, so it cannot be used as a material for pulse generators. . As a representative example (P
bO. 8, BaO. 2) (ZrO.8, TiO.2)0
The synthesis of composition No. 3 will be described below. PbO (average particle size 5
.. 2 microns, purity 99.9%), ZrO2 (2.1
micron, purity 99.7%), BaTiO3 solid solution powder (
2.2 microns, purity 99.9%) was weighed to the above composition, thoroughly mixed in a ball mill using distilled water as a solvent, and after evaporation to dryness, the above mixture was calcined at 900°C for 1 hour in an oxygen stream. .
この仮焼粉末をメ!ノウ乳鉢などで粗粉砕し、アセトン
を溶媒として再度ボールミル混合を行なう。この粉末を
700℃,1時間酸素気流中で加熱することにより粉末
に吸着しているアセトンを蒸発除去する。仮焼粉末を鋼
鉄製のダイスを用い、350Kg/Cm2の圧力で.直
径15mmφ、高さ8mmの大きさに成形する。この圧
粉体をアルミナ製ダイスに挿入し、電気炉にセツト後加
圧焼結(ホツトプレス)を行なつた。ここで用いた焼結
法は、まず試料を装填したアルミナダイスをホツトプレ
ス用電気炉内にセツトした状態で、200〜400℃,
10−2T0rrの直空度の約1時間排気したのち、酸
素ガスにて炉内を置換し、後は酸素気流中で加熱し、1
400℃,5時間、150Kg/Cnl2の圧力でホツ
トプレスする方法である。なお本方法による焼結体の密
度は理論値の99.8%以上であつた。ホツトプレスさ
れた試料は、ダイアモンド製のコア−ドリルを用いてア
ルミナ製ダイスから取り出し、所望の寸法にダイアモン
ドカツタ一で(厚さ400μM,lCnl・程度)切断
する。Use this calcined powder! Coarsely grind in a mortar or the like, and mix again in a ball mill using acetone as a solvent. This powder is heated at 700° C. for 1 hour in an oxygen stream to evaporate and remove the acetone adsorbed on the powder. The calcined powder was heated at a pressure of 350 kg/cm2 using a steel die. Form into a size of 15 mm in diameter and 8 mm in height. This green compact was inserted into an alumina die, set in an electric furnace, and then sintered under pressure (hot press). In the sintering method used here, first, an alumina die loaded with a sample was set in an electric furnace for hot pressing, and heated at 200 to 400°C.
After evacuating for about 1 hour to a straight air degree of 10-2T0rr, the inside of the furnace was replaced with oxygen gas, and then heated in an oxygen stream.
This is a method of hot pressing at 400° C. for 5 hours at a pressure of 150 kg/Cnl2. The density of the sintered body obtained by this method was 99.8% or more of the theoretical value. The hot-pressed sample is taken out from the alumina die using a diamond core drill and cut into desired dimensions with a diamond cutter (thickness: 400 μM, approximately 1Cnl·).
試料の厚さdは一般に抗電場EOと使用する電源電圧E
。に依存し(EO/EO以下の値を目安として設定すれ
ばよい。実用的には電源電圧が100Vの場合100〜
140μM,2OOVの場合150〜250μm程度で
ある。切断された試料を研磨した後、面積1CII1・
の銀電極を取りつける。放電灯用のパルス発生器として
用いる場合、1〜2cn12程度が実用的である。この
ようにして得られた試料を、0.4H(へツリー)の蛍
光灯用の発定器と組み合わせ、第2図の回路でパルス電
圧を求めたところ730(V)のパルス電圧を得、蛍光
灯を始動させることができた。第5図の斜線で示した領
域1で囲まれる組成は、放電灯用として実用に供し得る
パルス発生を得るに通した組成である。また領域11で
囲まれる組成でより波高値の高いパルスを得ることがで
きる。なお第1表に本発明の実施例に述べる材料の特性
をまとめて示す。The thickness d of the sample is generally determined by the coercive electric field EO and the power supply voltage E used.
. Depending on
In the case of 140 μM and 2OOV, it is about 150 to 250 μm. After polishing the cut sample, the area 1CII1・
Attach the silver electrode. When used as a pulse generator for a discharge lamp, approximately 1 to 2 cn12 is practical. The sample obtained in this way was combined with a 0.4H (Hetree) fluorescent lamp oscillator, and the pulse voltage was determined using the circuit shown in Figure 2, and a pulse voltage of 730 (V) was obtained. I was able to start the fluorescent lights. The composition surrounded by the diagonally shaded region 1 in FIG. 5 is a composition that can generate pulses that can be practically used in discharge lamps. Furthermore, a pulse having a higher peak value can be obtained with the composition surrounded by the region 11. Table 1 summarizes the characteristics of the materials described in the Examples of the present invention.
各試料は第5図、第6図にプロツトした材料に対応する
。なお、試料の形状は上述したものと同様である。実施
例 2
Pb(Zr,Ti)03セラミックスのPbイオンの一
部をSrイオンで置換した場合の”相図を第6図に示す
。Each sample corresponds to the material plotted in FIGS. 5 and 6. Note that the shape of the sample is similar to that described above. Example 2 FIG. 6 shows a phase diagram in the case where some of the Pb ions in Pb(Zr,Ti)03 ceramics are replaced with Sr ions.
試料作成は、BaFiO3の代りにSrTiO3(純度
99.9%)を用い、実施例1と同様の方法によりホツ
トプレス合成を行なつた。 (なお本方法によ↓焼結体
の密度は理論値の99.8%以上であつた。)一例とし
て、 (PbO.8SrO.2) (ZrO.7,Ti
O.3)03の組成を選び、実施例1と同様な方法で求
めたパルス電圧は670(V)であつた。第6図の斜線
で示した領域1で囲まれる組成は、放電灯用として実用
に供し得るパルス発生を得るに適した組成である。また
領域11で囲まれる組成でより波高値の高いパルスを得
ることができる。実施例 3Pb(Zr,Ti)03の
Pbイオンの一部をBaイオンとSrイオンで同時に置
換したセラミツタスを用いた例を示す。The sample was prepared by hot press synthesis in the same manner as in Example 1, using SrTiO3 (purity 99.9%) instead of BaFiO3. (By this method, the density of the sintered body was 99.8% or more of the theoretical value.) As an example, (PbO.8SrO.2) (ZrO.7,Ti
O. 3) Composition No. 03 was selected and the pulse voltage obtained in the same manner as in Example 1 was 670 (V). The composition surrounded by the shaded area 1 in FIG. 6 is a composition suitable for generating pulses that can be practically used in discharge lamps. Furthermore, a pulse having a higher peak value can be obtained with the composition surrounded by the region 11. Example 3 An example is shown in which a part of the Pb ions of Pb(Zr,Ti)03 is replaced with Ba ions and Sr ions using a ceramic ceramic.
BaTiO3,SrTiO3両固溶体粉を用いて、(P
bO.8,BaO.lSrO.l) (ZrO.8Ti
O.2)03の組成に配合し、実施例1と同様な方法に
よりホツトプレス合成を行なつた(なお、焼結体の密度
は実施例1,2と同様である)。Using both BaTiO3 and SrTiO3 solid solution powders, (P
bO. 8, BaO. lSrO. l) (ZrO.8Ti
O. 2) It was blended into the composition of 03 and hot press synthesized by the same method as in Example 1 (the density of the sintered body was the same as in Examples 1 and 2).
この試料に対し、実施例1と同様な方法でもとめたパル
ス電圧は、780(V)である。また、 (PbO.8
,BaO.l,SrO.l)(ZrO.7,TlO.3
)03を用いたパルス電圧は700(V)で゛あつた。
このように、Sr,Baなどの同時固溶させた組成にお
いても、起動素子用の強誘電体を合成することができた
。第7図は、実施例3の(PbO.8,BaO.l,S
rO.l) (ZrO.8,TiO.2)03の試料を
用いたパルス電圧の寿命をもとめたものである。The pulse voltage obtained for this sample in the same manner as in Example 1 was 780 (V). Also, (PbO.8
, BaO. l, SrO. l) (ZrO.7, TlO.3
)03, the pulse voltage was 700 (V).
In this way, it was possible to synthesize a ferroelectric material for a starting element even in a composition in which Sr, Ba, etc. were simultaneously dissolved in solid solution. FIG. 7 shows the (PbO.8, BaO.l, S
rO. l) The life of pulse voltage was determined using a sample of (ZrO.8, TiO.2)03.
蛍光灯放電回路(第2図)において、3秒間放電灯を点
灯したのち、27秒間休止させる、すなわち30秒を周
期とする寿命テストで得られた結果である。105回ま
でパルス電圧はほとんど変化を示さず、本組成物が極め
て安定であることを示す。These are the results obtained in a life test of a fluorescent lamp discharge circuit (FIG. 2) in which the discharge lamp was turned on for 3 seconds and then paused for 27 seconds, that is, the cycle was 30 seconds. The pulse voltage shows almost no change up to 105 times, indicating that the present composition is extremely stable.
この例によつて明らかにした如く本願発明に係わる強誘
電性セラミツクス、即ち一般式ABO3(ただし、Aは
BaおよびSrの少なくとも1種とPbとからなり、B
はZrおよびTiの両者)なる強誘電性セラミツクスは
分極反転のくり返しに対しても破壊が起こりにくい。従
がつて、本願発明に係わる強誘電性セラミツクスを用い
たパルス発生器は長寿命となすことができる。なお、製
造方法の際、説明したとおり本実施例の組成のセラミツ
クスを普通焼成法で作製した場合強誘電体ヒステリシス
ループが第3図Cの如くなり、非線形コンデンサーとし
て充分でなく実用的なパルス発生器に適用し得ない。As clarified by this example, the ferroelectric ceramic according to the present invention, that is, the general formula ABO3 (where A is composed of at least one of Ba and Sr and Pb, and B
Ferroelectric ceramics (both Zr and Ti) are less likely to be destroyed even by repeated polarization reversals. Therefore, the pulse generator using ferroelectric ceramics according to the present invention can have a long life. In addition, as explained in the manufacturing method, when ceramics having the composition of this example are manufactured by the normal firing method, the ferroelectric hysteresis loop becomes as shown in Figure 3C, which is insufficient for use as a nonlinear capacitor and is not suitable for practical pulse generation. It cannot be applied to vessels.
第1図はグローランプを用いた蛍光灯回路、第2図は非
線形コンデンサーを用いた蛍光灯回路、第3図は強誘電
体ヒステリシスループおよびそれに対応する容量の変化
、第4図は非線形コンデンサーを用いた高圧蒸気放電灯
回路、第5図は(Pb,Ba) (Zr,Ti)03セ
ラミツクスの相図、第6図は(Pb,Sr) (Zr,
Ti)03セラミツクスの相図、第7図は、本発明によ
る非線形コンデンサー材料の寿命特性を示す。Figure 1 shows a fluorescent lamp circuit using a glow lamp, Figure 2 shows a fluorescent lamp circuit using a nonlinear capacitor, Figure 3 shows a ferroelectric hysteresis loop and its corresponding change in capacitance, and Figure 4 shows a nonlinear capacitor. The high-pressure steam discharge lamp circuit used, Figure 5 shows the phase diagram of (Pb, Ba) (Zr, Ti)03 ceramics, and Figure 6 shows the (Pb, Sr) (Zr,
The phase diagram of Ti)03 ceramics, FIG. 7, shows the lifetime characteristics of the nonlinear capacitor material according to the invention.
Claims (1)
形コンデンサーとを少なくとも有するパルス発生器であ
つて、前記非線形コンデンサーは一般式ABO_3(た
だし、AはBaおよびSrの少なくとも1種とPbとか
らなり、BはZrおよびTiの両者からなる)を満足す
る強誘電性セラミックスからなることを特徴とするパル
ス発生器。 2 特許請求の範囲第1項記載のパルス発生器において
、上記非線形コンデンサーはホットプレス法により焼結
された強誘電性セラミックスから成ることを特徴とする
パルス発生器。 3 特許請求の範囲第1項記載のパルス発生器において
、該インダクタンス素子は放電灯用誘導性安定器である
ことを特徴とするパルス発生器。[Scope of Claims] 1. A pulse generator having at least an inductance element and a nonlinear capacitor connected in series with the inductance element, the nonlinear capacitor having the general formula ABO_3 (where A is at least one of Ba and Sr). 1. A pulse generator comprising a ferroelectric ceramic that satisfies the following conditions: (Pb), and B (B consists of both Zr and Ti). 2. The pulse generator according to claim 1, wherein the nonlinear capacitor is made of ferroelectric ceramics sintered by hot pressing. 3. The pulse generator according to claim 1, wherein the inductance element is an inductive ballast for a discharge lamp.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51011476A JPS5950083B2 (en) | 1976-02-06 | 1976-02-06 | pulse generator |
NL7701271A NL7701271A (en) | 1976-02-06 | 1977-02-07 | PULSE GENERATOR. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51011476A JPS5950083B2 (en) | 1976-02-06 | 1976-02-06 | pulse generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5296399A JPS5296399A (en) | 1977-08-12 |
JPS5950083B2 true JPS5950083B2 (en) | 1984-12-06 |
Family
ID=11779109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51011476A Expired JPS5950083B2 (en) | 1976-02-06 | 1976-02-06 | pulse generator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5950083B2 (en) |
NL (1) | NL7701271A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61118170U (en) * | 1984-12-29 | 1986-07-25 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57109317A (en) * | 1980-12-26 | 1982-07-07 | Nichicon Capacitor Ltd | Non-linear ceramic condenser |
EP0103020A4 (en) * | 1982-02-20 | 1985-10-14 | Tdk Corp | Voltage sensitive current limiting element. |
JPS5935354A (en) * | 1982-08-23 | 1984-02-27 | Iwasaki Electric Co Ltd | High pressure metal vapor discharge lamp |
US4647819A (en) * | 1985-01-16 | 1987-03-03 | Gte Products Corporation | Metal vapor lamp starting and operating apparatus |
-
1976
- 1976-02-06 JP JP51011476A patent/JPS5950083B2/en not_active Expired
-
1977
- 1977-02-07 NL NL7701271A patent/NL7701271A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61118170U (en) * | 1984-12-29 | 1986-07-25 |
Also Published As
Publication number | Publication date |
---|---|
JPS5296399A (en) | 1977-08-12 |
NL7701271A (en) | 1977-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111763082B (en) | Barium strontium titanate-based dielectric ceramic material and preparation method and application thereof | |
US6730624B2 (en) | Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic | |
JP2017534547A (en) | Dielectric composition, dielectric element, electronic component and laminated electronic component | |
US4119886A (en) | Pulse generator | |
KR20100133905A (en) | Sintered material for dielectric substance and process for preparing the same | |
JP3275799B2 (en) | Dielectric porcelain composition | |
US6380118B1 (en) | Nonlinear dielectric ceramic, pulse generating capacitor, high-pressure vapor discharge lamp circuit, and high-pressure vapor discharge lamp | |
CN110526707A (en) | A kind of zirconium titanium stannic acid lanthanum lead thick film ceramic of high tin content and its preparation method and application | |
JP3344314B2 (en) | Pulse generation capacitor | |
CN107244912B (en) | Novel BCZT-based energy storage ceramic material and preparation method and application thereof | |
JPS5950083B2 (en) | pulse generator | |
KR100414332B1 (en) | Piezoelectric ceramic compact and piezoelectric ceramic device using the same | |
JP3613044B2 (en) | Dielectric porcelain composition | |
CN114716243A (en) | High-temperature stable sodium bismuth titanate-strontium titanate-based dielectric energy storage ceramic material and preparation and application thereof | |
JP6970702B2 (en) | Method for manufacturing ferroelectric ceramics | |
CN116589277A (en) | Piezoelectric ceramic, ceramic electronic component, and method for manufacturing piezoelectric ceramic | |
US3654160A (en) | Piezoelectric ceramics | |
JP2696118B2 (en) | Manufacturing method of nonlinear dielectric element | |
JPS6054198A (en) | Device for firing discharge lamp | |
US3359133A (en) | Ceramic dielectrics | |
JPS5910004B2 (en) | Yudentaijikino Seizouhouhou | |
JPH0264060A (en) | Dielectric ceramics and production thereof | |
CN117637344A (en) | Dielectric ceramic material, dielectric ceramic layer, preparation methods of dielectric ceramic material and dielectric ceramic layer and capacitor | |
JPH06102573B2 (en) | Composition for reduction / reoxidation type semiconductor ceramic capacitor | |
JPH0228304A (en) | Power supply |