JPS5949470A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS5949470A
JPS5949470A JP16170282A JP16170282A JPS5949470A JP S5949470 A JPS5949470 A JP S5949470A JP 16170282 A JP16170282 A JP 16170282A JP 16170282 A JP16170282 A JP 16170282A JP S5949470 A JPS5949470 A JP S5949470A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
air conditioner
heat pipe
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16170282A
Other languages
Japanese (ja)
Inventor
生駒 光博
安立 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16170282A priority Critical patent/JPS5949470A/en
Publication of JPS5949470A publication Critical patent/JPS5949470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は蒸気圧縮式冷凍サイクルを用いた空気調第1」
機に関し、その成績係数の向上に係るものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is the first air conditioner using a vapor compression refrigeration cycle.
This is related to improving the coefficient of performance of the machine.

従来例の構成とその問題点 従来の空気調和機は第14図に示すように、圧縮機1.
多数のU字管2を連結して多数の放熱フィン3を取り付
け、送風機4により送風される室外空気に放熱する凝縮
器5.絞り装置6.多数のU字管7を連結して多数の吸
熱フィン8を取り付は送風機9により送風される室内空
気から吸熱して冷房する蒸発器10により構IJνされ
ていZ)、1そして、圧縮機1より吐出された冷媒は、
放熱部(凝縮器5)では多数のU字管2を通り、さらに
、吸熱部(蒸発器10)でも多数のU字管7をjT+る
ため、非常に大きな圧力損失を生じ、そのため圧縮機の
所要動力が大きくなり、空気調和機の成Jf(係数が低
下するという欠点を有していた1、また、空気調和機の
成績係数を向上するためにt」1、凝縮器や蒸発器など
の熱交換器を太きぐすることが考えられるが、第1図に
示したような従来の空気調和機の構成では、U字管の数
を増加するか、Jそさを増す必要があり、そうすること
により、冷婬C> 1.’E力打1失も増加するため、
熱交換器を大きくシ、でも、それぼど成績係数の向上が
望めないという欠点も有していた。2 発明の目的 本発明は、空気調和機の放熱部および吸熱部における冷
媒の圧力損失を低減することにより、圧縮機の所要動力
を低減し、空気調和機の成績係数の向」二を目的とする
。。
Configuration of conventional example and its problems As shown in FIG. 14, a conventional air conditioner has a compressor 1.
A condenser 5 which connects a large number of U-shaped tubes 2 and attaches a large number of radiation fins 3 to radiate heat to outdoor air blown by a blower 4. Squeezing device6. A large number of U-shaped tubes 7 are connected and a large number of heat-absorbing fins 8 are attached to the evaporator 10, which absorbs heat from indoor air blown by a blower 9 and cools the room. The refrigerant discharged from
The heat dissipation section (condenser 5) passes through a large number of U-shaped tubes 2, and the heat absorption section (evaporator 10) also passes through a large number of U-shaped tubes 7, resulting in a very large pressure loss. This had the disadvantage that the required power increased and the coefficient of performance of the air conditioner decreased.In addition, in order to improve the coefficient of performance of the air conditioner, it was necessary to It is possible to make the heat exchanger thicker, but in the conventional air conditioner configuration shown in Figure 1, it is necessary to increase the number of U-shaped tubes or increase the J width. By doing so, the number of hits and losses of Reiman C>1.'E will also increase,
Although the heat exchanger was made larger, it also had the disadvantage that the coefficient of performance could not be improved much. 2. Purpose of the Invention The present invention aims to reduce the required power of the compressor and improve the coefficient of performance of the air conditioner by reducing the pressure loss of the refrigerant in the heat radiating part and the heat absorbing part of the air conditioner. do. .

発明の構成 本発明i7J:、組紐i機と、放熱用ヒートパイプの蒸
発部を挿入した液化タンクと、絞り装置置と、吸熱用ヒ
ートパイプの凝縮部を挿入した気化タンク等をこの順序
に環状に連結して、冷凍ザイクルを構成することにより
、上記従来の欠点を解消するものである。
Structure of the Invention The present invention i7J: A braid i machine, a liquefaction tank into which the evaporation part of the heat radiation heat pipe is inserted, a throttle device, a vaporization tank into which the condensation part of the heat absorption heat pipe is inserted, etc. are arranged in this order in a ring shape. The above-mentioned conventional drawbacks are solved by connecting the cryocycle to the cryocycle to form a frozen cycle.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の第1の実Mj例にお・ける空気調和機
の構成を示すものである。第2図において、11は圧縮
機、12は作動流体(図示ぜす)ろ月大した複数本の放
熱用ヒートパイプ13の蒸企部13aが挿入された液化
タンク、14は絞り装置、15は作動流体(図示せず)
を封入した複数本の吸熱用ヒートパイプ16の凝縮部1
6aが挿入された気化タンクであり、これらをこの順序
に環状に連結して冷凍ザイクルを構成している4、なお
、放熱用ヒートパイプ13の凝縮部13bKは、多数の
放熱フィン17が取り伺けられており、送風(・幾18
により送風される室外空気に放熱するようになっており
、また吸熱用ヒートパイプ16の蒸発部16bには、多
数の吸熱フィン19がJlシり伺けられており、送風機
20により送風される室内空気から吸熱して、室内を冷
房できる構成とな−2ている。
FIG. 2 shows the configuration of an air conditioner in the first practical Mj example of the present invention. In FIG. 2, 11 is a compressor, 12 is a liquefaction tank into which the steaming portions 13a of a plurality of heat pipes 13 each having a filter size of a working fluid (not shown) are inserted, 14 is a throttle device, and 15 is a liquefaction tank. Working fluid (not shown)
A condensing section 1 of a plurality of endothermic heat pipes 16 enclosing
6a is the inserted vaporization tank, and these are connected in this order in a ring to form a freezing cycle. It was blown out and the wind was blowing (・18
The evaporator section 16b of the heat-absorbing heat pipe 16 is provided with a large number of heat-absorbing fins 19, and the indoor air blown by the blower 20 is designed to radiate heat to the outdoor air blown by the blower 20. It is designed to absorb heat from the air and cool the room.

寸/也、液化タンク12の上部にd、ガス冷媒(Jl、
給口21が、下部には液冷媒取り出し「122が設けら
れ、そして気化タンク15の下部にd液冷媒供給1」2
3が、上部にはガス冷媒取り出い」24が設けられてい
る。
d, gas refrigerant (Jl,
A supply port 21 is provided at the bottom, a liquid refrigerant takeout port 122 is provided at the bottom, and a d liquid refrigerant supply port 12 is provided at the bottom of the vaporization tank 15.
3, a gas refrigerant outlet 24 is provided at the top.

以上のように構成された空気調和機について、以下その
動作を説明する。
The operation of the air conditioner configured as above will be described below.

寸ず、圧縮機11に」:り吐出され/こ高温高圧のガス
冷媒d:、カス冷凍供給1]21から液化タンク12に
導かノ9.る3、ここで、複数本の放熱用ヒートバイブ
13の蒸発部13aにより冷却され、凝縮液化して、液
化タンク12の下部に溜丑る3、この冷媒の凝縮潜熱d
、複数本の放熱用ヒートパイプ13の凝縮部に取り伺け
られた放熱フィン17より、送風機18にて送風される
室外空気に放熱される。
The high-temperature, high-pressure gas refrigerant d: is immediately discharged to the compressor 11 and is led from the refrigeration supply 1] 21 to the liquefaction tank 12.9. 3.Here, the latent heat of condensation d of this refrigerant is cooled by the evaporation section 13a of the plurality of heat radiating heat vibrators 13, condensed and liquefied, and accumulated in the lower part of the liquefaction tank 12.
Heat is radiated to the outdoor air blown by the blower 18 through the radiating fins 17 which are arranged in the condensing portions of the plurality of heat radiating heat pipes 13.

次に、凝縮液化した冷媒は、液冷媒取り出し口22から
流出し、絞り装置14で、蒸発圧力捷で減圧膨張する。
Next, the condensed and liquefied refrigerant flows out from the liquid refrigerant outlet 22, and is decompressed and expanded by the evaporation pressure in the expansion device 14.

その後、液冷媒供給口23から気化タンク16に導かれ
、ここで、複数本の吸〃す[]ヒートパイプ16の凝縮
部16aにより加熱され、蒸発気化しそ、気化タンク1
5の上部に溜捷る。この冷媒の蒸発潜熱は複数本の吸熱
用ヒートパイプ16の蒸発部16bに取り伺けられた吸
熱フィン19より、送風機20にて送風される室内空気
から吸熱して、室内を冷房することにより得られる。
Thereafter, the liquid refrigerant is led from the supply port 23 to the vaporization tank 16, where it is heated by the condensing section 16a of the plurality of suction heat pipes 16, and is evaporated and vaporized.
Dispense at the top of 5. This latent heat of evaporation of the refrigerant is obtained by absorbing heat from the indoor air blown by the blower 20 through the heat-absorbing fins 19 installed in the evaporation section 16b of the plurality of heat-absorbing heat pipes 16, thereby cooling the room. It will be done.

その後、蒸発気化した冷媒は、ノノス冷IIL取り出し
口24から流出し、町、ひ、圧縮機11に戻る。。
Thereafter, the evaporated refrigerant flows out from the NONOS refrigerating IIL outlet 24 and returns to the compressor 11. .

したかって、圧縮機11により吐出された冷117.’
は、液化タンク12て放熱用ヒートパイプ13により冷
却され、凝縮液化する/こめ、従来の凝縮器のように長
いU字管の通路を通る必要がないため放熱部での冷媒の
圧力4に失は4ケめで小さいものである。さらに、絞り
装M14で減圧膨張し/こ〆′1T媒は、気化タンク1
6で吸熱用ヒートパイプ16により加熱され、蒸発気化
するため、従来の蒸発器のように長いU字管の通路を通
る必要かないため吸熱部での冷媒の圧力損失も極めて小
さいものであり、そのための圧縮機の所要動力の増大も
)1多めで少なくなり、従来に比べて成績イIz数か大
11Jに向」ニするものである。
Therefore, the cold 117. discharged by the compressor 11. '
The refrigerant is cooled by the heat pipe 13 for heat dissipation in the liquefaction tank 12, and is condensed and liquefied.Since there is no need to pass through a long U-shaped tube passage like in a conventional condenser, there is no loss in pressure 4 of the refrigerant at the heat dissipation part. is a small 4th digit. Furthermore, the 1T medium is depressurized and expanded with the restrictor M14, and the 1T medium is
6, the refrigerant is heated by the heat-absorbing heat pipe 16 and evaporates into vapor, so there is no need to pass through a long U-shaped tube passage like in conventional evaporators, and the pressure loss of the refrigerant at the heat-absorbing part is extremely small. The increase in the required power of the compressor is also reduced by increasing the number of compressors by 1), and compared to the conventional method, the result is 11J or more.

以下本発明の他の実施V・1i(Cついて、図面を参照
しながら説明する。
Another embodiment V.1i (C) of the present invention will be described below with reference to the drawings.

第3図は本発明の第2の実施例の空気調和(歳における
、液化タンクと放熱用ヒートパイプのi:’ll上図あ
る。第3図において、25は作動流体(図小ぜず)を封
入した複数本の放熱用ヒートパイプ26の7Aイ1−;
部26aが挿ノ(された液化タンクであり、その−1部
に65、圧縮機(図示ぜず)より吐出され/こ高1’!
II’高11のガス冷媒を導くガス冷媒供給1]27か
設けら、112、さらに、下部に1ハ、凝縮液化しプこ
冷媒を絞り装置(図示せず)に送り出す液冷媒取り出し
[’128か設けられている。寸だ、放熱用ヒートパイ
プ26の蒸発部26aの外側には、冷媒の凝縮を促進す
る鋭角的な先細り先端を持つ複数の隆起部のような凝析
i促3イC1用フィン29が多数段けらtl、ており、
凝縮部26bの外側には多数の放熱用フィン30が設け
られている。なお31は放熱用ヒートパイプ26の作動
を安定化させるだめのウィックである。
Figure 3 is an upper diagram of the liquefaction tank and the heat pipe for heat dissipation in the second embodiment of the present invention. In Figure 3, 25 is the working fluid (Fig. 7A-1- of a plurality of heat dissipation heat pipes 26 sealed with;
Part 26a is a liquefaction tank inserted, and 65 is discharged from a compressor (not shown) into the -1 part with a height of 1'!
II' A gas refrigerant supply 1] 27 for guiding the gas refrigerant of high 11 is provided, and a liquid refrigerant take-out ['128 Or is provided. On the outside of the evaporation part 26a of the heat pipe 26 for heat dissipation, there are many stages of condensation promoting fins 29, which are like a plurality of ridges with sharply tapered tips that promote condensation of the refrigerant. Keratl, Tori,
A large number of heat radiation fins 30 are provided on the outside of the condensing section 26b. Note that 31 is a wick for stabilizing the operation of the heat pipe 26 for heat radiation.

この実施例構成によれば、ガス冷媒供給口27か1し、
液化タンク25に流入したガス冷媒は、複数本の放熱用
ヒートパイプ26の蒸発郡全体を覆う」:うに溜寸り、
凝縮促進用フィン290作用により、速−やかに凝縮液
化して、落下し、下部に設けられだ液冷媒取り出し口2
8より流出する。
According to the configuration of this embodiment, the gas refrigerant supply port 27 or 1,
The gas refrigerant that has flowed into the liquefaction tank 25 covers the entire evaporation area of the plurality of heat radiation heat pipes 26.
Due to the action of the condensation promotion fins 290, the refrigerant quickly condenses and liquefies and falls to the refrigerant outlet 2 provided at the bottom.
It flows out from 8.

そのため、液化タンク25に不必要な液冷傑が溜寸ろこ
となく、放熱用ヒートパイプ26の蒸発郡全体にわたっ
て、ガス冷媒を有効に接触さぜることかでき、冷媒の液
化を促進することかできる。
Therefore, the gas refrigerant can be effectively brought into contact with the entire evaporation area of the heat dissipation heat pipe 26 without any unnecessary liquid refrigerant being accumulated in the liquefaction tank 25, and the liquefaction of the refrigerant is promoted. I can do it.

汀1.4図に1:本発明の第3の実施例の空気調和機に
おける、気化タンクと吸熱用ヒートパイプの構成図であ
る。第4図において、32は作動流7体(図示せず)を
封入した複数本の吸熱用ヒートパイプ33の凝縮部33
aが挿入された気化タンクであり、その下部には、絞り
装置(図示せず)により蒸発圧力まで減圧膨張された冷
媒を導く液冷媒供給口34が設けられ、さらに、上記に
は、蒸発気化した冷媒を再び圧縮機(図示ぜず)に戻す
ガス冷媒取り出し口36が設けられている1、外だ、吸
熱用ヒートパイプ33の凝縮部33bの外側にし11、
冷媒の蒸発を促進する」こう、焼結金属などの多孔質層
36が設けられており、蒸発部33bの外側には多数の
吸熱フィン37が設けられている。なお、38は吸熱用
ヒートパイプ33の作動を安定化させるだめのウィック
である。
1.4 Figure 1: A configuration diagram of a vaporization tank and an endothermic heat pipe in an air conditioner according to a third embodiment of the present invention. In FIG. 4, reference numeral 32 denotes a condensing section 33 of a plurality of endothermic heat pipes 33 that enclose seven working streams (not shown).
The vaporization tank a is inserted, and a liquid refrigerant supply port 34 is provided at the bottom of the tank to introduce the refrigerant that has been decompressed and expanded to the evaporation pressure by a throttle device (not shown). A gas refrigerant outlet 36 is provided for returning the refrigerant to the compressor (not shown).
A porous layer 36 made of sintered metal or the like is provided to promote evaporation of the refrigerant, and a large number of heat absorption fins 37 are provided outside the evaporation section 33b. Note that 38 is a wick for stabilizing the operation of the endothermic heat pipe 33.

この実施例構成によれは、液冷媒(j 、給口34から
気化タンク32に流入した液冷媒は、複数本の吸熱用ヒ
ートパイプ33の凝縮部全体を浸すように溜斗り、多孔
〃層36の作用により、速やかに蒸発気化して、上部に
設けられたガス冷媒取り出し「+35より流出する。そ
のため、吸熱用ヒートパイプ33の凝縮部は常に液冷媒
に漏らされているため、全面から冷媒の蒸発が行われる
と共に、多孔質層36のような核沸騰の促進方法を利用
して、冷媒の気化を促進することもできる。     
4発明の効果 以上のΔ)1.明から明らかなように、本発明の空気調
和機は、圧縮機と、放熱用ヒートパイプの蒸発部を挿入
した液化タンクと、絞り装置と、吸熱用ヒートパイプブ
の凝縮部を挿入した気化タンク等をこの順序に環状Vこ
連結して冷凍サイクルを構成したものであるから、放熱
部および吸熱部において、熱交換のために管路を長ぐす
る必要がなく、冷媒のI「力損失を極めて小さくするこ
とができる。そのため、1■−力損失による圧縮機の所
要動力の増大もほとんど無く、従来に比へて空気調和機
の成粘係数が大巾に向上するものである。。
According to the configuration of this embodiment, the liquid refrigerant (j) flowing into the vaporization tank 32 from the supply port 34 flows into a reservoir and a porous layer so as to soak the entire condensing part of the plurality of heat-absorbing heat pipes 33. Due to the action of 36, the gas refrigerant quickly evaporates and flows out from the gas refrigerant takeout "+35" provided at the top. Therefore, the condensing part of the heat-absorbing heat pipe 33 is always leaking into liquid refrigerant, so the refrigerant is absorbed from the entire surface. In addition to the evaporation of the refrigerant, a method of promoting nucleate boiling such as the porous layer 36 can be used to promote the vaporization of the refrigerant.
Δ) more than the effect of the 4 inventions 1. As is clear from the description, the air conditioner of the present invention includes a compressor, a liquefaction tank into which the evaporation part of the heat pipe for heat radiation is inserted, a throttle device, a vaporization tank into which the condensation part of the heat pipe for heat absorption is inserted, etc. Since the refrigeration cycle is constructed by connecting the annular V in this order, there is no need to make long pipes for heat exchange in the heat radiation section and the heat absorption section, and the I power loss of the refrigerant is extremely minimized. Therefore, there is almost no increase in the required power of the compressor due to 1-1-power loss, and the thickening coefficient of the air conditioner is greatly improved compared to the conventional one.

寸だ、液化タンクと放熱用ヒートパイプ、および、気化
タンクと吸熱用ヒートパイプを大きくすることは、従来
の空気調和機の凝縮器および蒸発部を大きくすることに
和尚するが、本発明の1114成によれば、冷媒の圧力
損失が増加することがなく、有効に空気調和機の成績係
数を向」ニさせることができ、その実用的効果は大なる
ものがある。
In fact, increasing the size of the liquefaction tank and the heat pipe for heat dissipation, and the size of the vaporization tank and the heat pipe for heat absorption is similar to increasing the size of the condenser and evaporation section of a conventional air conditioner, but the present invention's 1114 According to the present invention, the pressure loss of the refrigerant does not increase, and the coefficient of performance of the air conditioner can be effectively improved, which has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の空気調和機の冷媒循環路図、第2図は本
発明の第1の実施例における空気調和機の冷媒循環路図
、第3図は本発明の第2の実施例の空気調和機における
液化タンクと放熱用ヒートパイプの構成図、第4図は本
発明の第3の実施例の空気調和機における気化タンクと
吸熱用ヒートパイプの構成図である。 11・・・・・・圧縮機、12・・・・・・液化タンク
、13゜26・・・・・放熱用ヒートパイプ、14・・
・・・絞り装置、15・・・・・気化タンク、16.3
3・・・・吸熱用ヒーl・パイプ、25.32・・・・
液化タンク。
Fig. 1 is a refrigerant circulation path diagram of a conventional air conditioner, Fig. 2 is a refrigerant circulation path diagram of an air conditioner according to a first embodiment of the present invention, and Fig. 3 is a refrigerant circulation path diagram of an air conditioner according to a first embodiment of the present invention. FIG. 4 is a block diagram of a liquefaction tank and a heat dissipation heat pipe in an air conditioner. FIG. 4 is a block diagram of a vaporization tank and a heat absorption heat pipe in an air conditioner according to a third embodiment of the present invention. 11... Compressor, 12... Liquefaction tank, 13゜26... Heat pipe for heat dissipation, 14...
... Squeezing device, 15 ... Vaporization tank, 16.3
3...Heal pipe for heat absorption, 25.32...
liquefaction tank.

Claims (1)

【特許請求の範囲】[Claims] (1)  圧縮機と、放熱用ヒートパイ、ブの蒸発部を
挿入した液化タンクと、絞り装置と、吸熱用ヒートパイ
プの凝縮部を挿入した気化タンク等を環状に連結した空
気調和機。 (噂 放熱用ヒートパイプの蒸発部を挿入した液化タン
クの上部にガス冷媒供給口を設け、下部に液冷媒取り出
し口を設けた特許請求の範囲第1項記・1&の空気調和
機3゜ (→ 吸熱用ヒートパイプの凝縮部を挿入した気化タン
クの下部に液冷媒供給口を設け、上部にガス冷媒取り出
し口を設けた特許請求の範囲第1項記載の空気R114
和機。
(1) An air conditioner in which a compressor, a heat pipe for heat dissipation, a liquefaction tank into which the evaporation part of the heat pipe is inserted, a throttle device, a vaporization tank into which the condensation part of the heat pipe for heat absorption is inserted, etc. are connected in a ring. (Rumor) The air conditioner 3° of Claim 1, 1&, which has a gas refrigerant supply port in the upper part of the liquefaction tank into which the evaporation part of the heat pipe for heat dissipation is inserted, and a liquid refrigerant outlet in the lower part. → Air R114 according to claim 1, in which a liquid refrigerant supply port is provided in the lower part of the vaporization tank into which the condensing part of the heat-absorbing heat pipe is inserted, and a gas refrigerant outlet is provided in the upper part.
Japanese machine.
JP16170282A 1982-09-16 1982-09-16 Air conditioner Pending JPS5949470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16170282A JPS5949470A (en) 1982-09-16 1982-09-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16170282A JPS5949470A (en) 1982-09-16 1982-09-16 Air conditioner

Publications (1)

Publication Number Publication Date
JPS5949470A true JPS5949470A (en) 1984-03-22

Family

ID=15740242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16170282A Pending JPS5949470A (en) 1982-09-16 1982-09-16 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5949470A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142932A (en) * 1974-10-09 1976-04-12 Mitsubishi Electric Corp DENKIKIKINO REIKYAKUHOSHIKI
JPS5223411A (en) * 1975-08-14 1977-02-22 Alps Electric Co Ltd Printing mechanism
JPS5280564A (en) * 1975-12-27 1977-07-06 Masayuki Inoue Warmth keeping container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142932A (en) * 1974-10-09 1976-04-12 Mitsubishi Electric Corp DENKIKIKINO REIKYAKUHOSHIKI
JPS5223411A (en) * 1975-08-14 1977-02-22 Alps Electric Co Ltd Printing mechanism
JPS5280564A (en) * 1975-12-27 1977-07-06 Masayuki Inoue Warmth keeping container

Similar Documents

Publication Publication Date Title
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
CN1995877A (en) Refrigerator
JP2007078275A (en) Heat exchanger for stirling refrigerating machine
JPS6273053A (en) Air-cooled absorption refrigerator
CN205119917U (en) Improve condensate coefficient of convective heat transfer's component and refrigerating system , warm air conditioner ware that cools
JPS5949470A (en) Air conditioner
KR100426834B1 (en) Heat Absorbing System for Absorber, Condenser and Evaporator by Using Latent Heat of Phase-change Fluids in Absorption Heat Pump
JP2503315B2 (en) Absorption refrigerator
JP2008089252A (en) Cooling apparatus
KR100436935B1 (en) One Body Type Evaporator Havng The Sub-Cooling Condensor
KR20030089818A (en) Device for prevention dewing of refrigerator
KR200351613Y1 (en) Heat pump for liquid preheater
CN215002354U (en) Overlapping compression type small refrigerating device
JP3762217B2 (en) refrigerator
JP2002022307A (en) Air conditioner
US2073092A (en) Refrigeration apparatus
KR20030023100A (en) Air cooled condenser for refrigeration cycle
CN105135930A (en) Part for increasing convective heat transfer coefficient of condensate, refrigerating system and cooling and heating air conditioner
KR0176887B1 (en) Evaporating apparatus of refrigeration cycle
JPS6149970A (en) Air-cooling absorption type water chiller
KR0184185B1 (en) Evaporator of ammonia absorption type cooling and heating apparatus
JPH0517571Y2 (en)
KR20240073629A (en) Outdoor unit heat exchange system using condensate
KR0184214B1 (en) Ammonia absorptive type refrigerator
KR100229318B1 (en) Precooler system of absorption type