JPS5949065A - Diffusing feed type electron beam source - Google Patents

Diffusing feed type electron beam source

Info

Publication number
JPS5949065A
JPS5949065A JP57158122A JP15812282A JPS5949065A JP S5949065 A JPS5949065 A JP S5949065A JP 57158122 A JP57158122 A JP 57158122A JP 15812282 A JP15812282 A JP 15812282A JP S5949065 A JPS5949065 A JP S5949065A
Authority
JP
Japan
Prior art keywords
source
oxide
titanium
replenishment
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57158122A
Other languages
Japanese (ja)
Inventor
Yukio Honda
幸雄 本多
Shigeyuki Hosoki
茂行 細木
Masaaki Futamoto
二本 正昭
Mikio Ichihashi
幹雄 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57158122A priority Critical patent/JPS5949065A/en
Publication of JPS5949065A publication Critical patent/JPS5949065A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/15Cathodes heated directly by an electric current
    • H01J1/16Cathodes heated directly by an electric current characterised by the shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • H04N1/14Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning using a rotating endless belt carrying the scanning heads or at least a part of the main scanning components

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE:To perform easily the electron radiation with angle limit without introducing oxygen gas, etc. from outside, by using an oxide of titanium, hafnium, niobium, magnesium or cerium or a solid solution or a fused mixture of above- mentioned elements and their oxides to a feed source. CONSTITUTION:First, a tungsten wire of 0.1-0.15mm. diameter is spot-welded at the tip of a V-shaped tungsten (W) heat generator 1 having 0.1-0.15 diameter. The tip of the generator 1 is shapened by electrolytic polishing to obtain an electron radiator 2. Then a titanium oxide (TiO2, etc.) or the mixture powder of titanium (Ti) and TiO2 is attached to a connecting part of the generator 1 to the radiator 2 or around the generator 1 to obtain a quasi-feed source 4'. Then the generator 1 is energized and heated under vacuum or in an Ar gas atmosphere, etc. Thus the source 4' is fused instantly to obtain a feed source 4. The same effect can be obtained if a mere fused mixture of titanium and titanium oxide is used to the source 4.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、熱電界放射陰極(Thermal piel
dEmission Cathode以下TEFカンー
ドと言う)に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a thermal field emission cathode (thermal field emission cathode).
dEmission Cathode (hereinafter referred to as TEF Cathode).

〔従来技術〕[Prior art]

電界放射(1+1eld Emission )は、エ
ミッタ表面に100へ4 V / cm程度の強い′電
界を印加すると、トンネル効果により陰極表面から電子
が放出される現象で−ある。電界放射では強電界を得る
ために、先端の曲率半径が約手オングストロームの剣状
チップがカソードとして用いられる。電界放射は大別し
てチップ温度が室温近傍でるる電界放射(li’1el
d Emission、 以下’r Jyと言う)と’
I”FEがある。前者の1” Eは、エミッタ先端の温
度を室温状態に保ち、強電界を印加してエミッションを
引出す方法で主な用途は透過形電子顕微鐘、や走査形電
子卵微鋭である。FEを安定に動作づせるには、エミッ
タ先端へのガス吸着を減らし、かつイオン衝撃によるエ
ミッタのダメージをなくすために、エミッタのある空間
はl Q −1011No r r以下の真空に保つこ
とが要求され、安定に動作できるエミッション電流は1
0μ八以下である。一方1’ li” Eば、エミッタ
先端を熱電子が発生しない程度の温度範囲で加熱した状
態で、強い電界を印加しCエミッションを引出す方法で
ある。Ill F Eは10−Q1’orrの真空1で
100μA程度のエミッション電流を得ることが可能で
、走査形軍子屓自倣鐘の外、透消形市子顯微鏡、オージ
ェ電子分析器等の分枦根器、電子線描画装置等その応用
が広い。
Field emission (1+1 field emission) is a phenomenon in which when a strong electric field of about 100 to 4 V/cm is applied to the emitter surface, electrons are emitted from the cathode surface due to a tunnel effect. In electric field emission, a sword-shaped tip with a radius of curvature of approximately one angstrom at the tip is used as a cathode in order to obtain a strong electric field. Electric field radiation can be roughly divided into electric field radiation when the chip temperature is near room temperature.
d Emission, hereafter referred to as 'r Jy) and'
There is I"FE.The former, 1"E, is a method of keeping the temperature of the emitter tip at room temperature and applying a strong electric field to draw out the emission.It is mainly used in transmission electron microscopes and scanning electron microscopes. It's sharp. In order to operate the FE stably, the space where the emitter is located must be maintained at a vacuum below lQ -1011Nor r in order to reduce gas adsorption to the emitter tip and eliminate damage to the emitter due to ion bombardment. The emission current for stable operation is 1
It is 0μ8 or less. On the other hand, 1'li'' E is a method of drawing out C emissions by applying a strong electric field while heating the emitter tip to a temperature range that does not generate thermoelectrons. It is possible to obtain an emission current of about 100 μA with 1, and its applications include scanning-type gun-powder self-imitation bells, transparent-type Ichiko-ken microscopes, branching devices such as Auger electron analyzers, and electron beam lithography equipment. is wide.

さて、’l’ I” Eは手法により次の2つに分類で
きる。一つは特定のカス雰囲気中で、特定の結晶面をビ
ルドアンプ(build−up、エミッタを高温に加熱
しながら、エミッタ先端に強電界を印加すると、特定の
結晶面に表面原子が移動し再配列して突起4作り、局部
的な曲率半径が小Bくなる。この現&’にビルドアンプ
と呼ぶ)する方法、例えば07、C02,11□0ガス
成分の多い真空系ではタンカス・テン(W)の(100
)面がビルドアップしらにより提案された手法で、10
−”[orr程度の02ガス雰囲気下で1750〜18
50Kにエミッタを加熱し、かつエミッタ先端にジルコ
ニウム(Zr)を吸着せしめて、エミン/ヨン111;
流の角度分布制限を可能にしたものである。エミッタ先
端ではZr  OWの吸篇状態が形成され、W(100
)面の仕事関数は26〜2.8eVtで低下する。同様
な効果は、チタン(1゛l)、ノ・ウニラム(1−1f
)、ニオブ(Nb)、トリウム(’l”h)、マグj(
/ラム(IVl、、g) 、セリウム(Ce)でもある
ことがわかった。
Now, 'l'I"E can be classified into the following two types depending on the method. One is build-up, in which a specific crystal plane is heated to a high temperature and the emitter is heated in a specific gas atmosphere. When a strong electric field is applied to the tip, the surface atoms move to specific crystal planes and rearrange to form protrusions 4, and the local radius of curvature becomes small.This method is called a build amplifier. For example, in a vacuum system with many 07, C02, 11□0 gas components, Tankus-Ten (W) (100
) surface is built up using the method proposed by Shira, 10
-” [1750~18 in 02 gas atmosphere of about [orr]
By heating the emitter to 50K and adsorbing zirconium (Zr) to the tip of the emitter, Emin/Yon 111;
This makes it possible to limit the angular distribution of the flow. A suction state of Zr OW is formed at the emitter tip, and W(100
) surface's work function decreases between 26 and 2.8 eVt. A similar effect was obtained with titanium (1゛l), unilam (1-1f).
), niobium (Nb), thorium ('l”h), magj (
/lum (IVl,,g) and cerium (Ce).

上記T P Eのうち後熟の手法に関し、吸着体として
ジルコニウム(Zr)を用いた拡散補給形電子線源の例
を第1図により説明する。拡散補給形電子線源は、発熱
体1と電子放射体2への吸着体であるZrを貯えておく
補給源3から構成される。
Regarding the post-processing method of the above TPE, an example of a diffusion replenishment type electron beam source using zirconium (Zr) as an adsorbent will be explained with reference to FIG. The diffused replenishment type electron beam source is composed of a heating element 1 and a replenishment source 3 that stores Zr, which is an adsorbent to the electron emitter 2.

この場合、補給源3のZrは、Zn2の粉末の塗布した
ものを熱処理して得られる。動作状態では、発熱体1を
通電加熱し、吸着体であるzrを補給源3から、加熱に
よって表面拡散させ、電子放射体2を)300〜150
0Cに加熱した状態で剣状に尖った電子放射体2に強電
界を印加し、かつ真空容器内に10’−8〜10−”l
’orrの02ガスを導入すると、単結晶タングステン
(W)製の電子放射体2の(100)結晶方位のみに角
度制限された電子放射が起る。即ちW(100)面での
仕事関係はWの約4.5eV及びZrの約3.5eVよ
り低い2.6〜2.8eV程度の値となり電子放射が起
き易い状態となり、捷だ放射角の縮小された電子放射に
より陽極部からのガス放出が減少し、安定で犬′「L流
の電子放射かb」能となる。
In this case, the Zr supply source 3 is obtained by heat-treating a coated Zn2 powder. In the operating state, the heating element 1 is heated by electricity, and ZR, which is an adsorbent, is diffused on the surface by heating from the replenishment source 3, and the electron emitter 2 is heated to 300~150.
A strong electric field is applied to the sword-shaped electron emitter 2 while it is heated to 0C, and 10'-8 to 10-"l is placed in a vacuum container.
When the 02 gas of 'orr is introduced, electron emission is angularly restricted only to the (100) crystal orientation of the electron emitter 2 made of single crystal tungsten (W). That is, the work relationship on the W (100) plane is about 2.6 to 2.8 eV, which is lower than about 4.5 eV for W and about 3.5 eV for Zr, and electron emission is likely to occur, and the radiation angle Due to the reduced electron emission, gas emission from the anode section is reduced, resulting in a stable and stable electron emission capability.

ところで、上記従来の拡散補給形電子糾源は、吸着体が
Zrのみであるため、動作温度が比較的高く、不戦な熱
′電子放射が混入したり、乙r佇としてZrH2の粉末
を用いるためIV’を造十、熱処理にもろい点あるいは
不純物が混入し易いといった問題があった。これらの問
題の解決のためジルコニウム(Zr)、チタン(’ll
”l) 、 ハフニウム(Hf)等の金属紐等からなる
金属補給源を用いた拡散補給形の電界放射陰極も提供さ
れている。この陰極では、同じZr補給源でも動作温度
が低温度化(1250〜1450tl?)することがで
き、必要な酸素ガス分圧もおおよそ10””Torr以
下で済むようになった。才たTr補給分の場合には、動
作中特に酸素ガスを導入することなく安定に電流を引き
出すことが可能となったが、実際の装機へ装着した初期
には、酸素カスの導入を必要とすることもある。
By the way, in the above-mentioned conventional diffusion replenishment type electron source, since the adsorbent is only Zr, the operating temperature is relatively high, and there is a possibility that undesirable thermal and electron radiation may be mixed in. Therefore, there are problems in that IV' is brittle during heat treatment or easily contaminated with impurities. To solve these problems, zirconium (Zr), titanium ('ll
A diffusion-replenishment type field emission cathode using a metal replenishment source made of a metal string such as hafnium (Hf) is also available.This cathode has a lower operating temperature even with the same Zr replenishment source ( 1,250 to 1,450 tl?), and the required oxygen gas partial pressure is now approximately 10"" Torr or less.In the case of supplementary Tr, there is no need to introduce oxygen gas during operation. Although it has become possible to draw current stably, it may be necessary to introduce oxygen scum during the initial stage of installation in actual equipment.

以上述べたように、拡散補給形のi’ F Bは有力な
電子放射線源であるが、拡散補給形の’I’ F Eに
おいて放射角縮小をした電子放射を行うには、電子放射
体1の先端において、上記金属補給弁3から補給された
金賊吸着体(例えばZrやTi)と酸素が単原子層の吸
着状態を保つ必要がある。従来の拡散補給形電子線源に
おいては、補給源3として単一の金属(例えば7.r)
のみを用いていたため、角度制限をした電子放射を長時
間維持するためには、使用する金属とその動作温度によ
るが10−”I”orr以下のO,ガスを導入しなけれ
ばならない欠点があった。
As mentioned above, the diffuse replenishment type i' F B is a powerful electron radiation source, but in order to emit electrons with a reduced radiation angle in the diffuse replenishment type 'I' F E, it is necessary to At the tip of the metal replenishment valve 3, it is necessary to maintain a monoatomic layer adsorption state between the metal adsorbent (for example, Zr or Ti) and oxygen. In conventional diffusion replenishment type electron beam sources, a single metal (for example 7.r) is used as the replenishment source 3.
However, in order to maintain the angle-limited electron emission for a long time, O gas of less than 10-"I" orr had to be introduced, depending on the metal used and its operating temperature. Ta.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、動作中02ガスを導入することなく長
時間、安定に放射角縮小をした電子放射を可能とする拡
散補給形電子線源を提供することにある。
An object of the present invention is to provide a diffusion replenishment type electron beam source that can stably emit electrons with a reduced radiation angle for a long period of time without introducing O2 gas during operation.

〔発明の概微〕[Summary of the invention]

拡散補給形電子線源3」1、先端が剣状に尖った電子放
射体と、電子放射体を加熱する発熱体と、電子放射体に
吸着させる吸着体及びこれを貯える補給源とから構成さ
れ、放射角を縮小した電子放射を行うためには電子放射
体先端において吸着体と酸素の単原子層吸着状態を形成
する必要がある。
Diffusion replenishment type electron beam source 3''1 consists of an electron emitter with a sword-shaped tip, a heating element that heats the electron emitter, an adsorbent that adsorbs to the electron emitter, and a supply source that stores it. In order to emit electrons with a reduced radiation angle, it is necessary to form a monoatomic layer adsorption state of adsorbent and oxygen at the tip of the electron emitter.

電子放射体としては主として軸方位(100)の直径0
.1〜0.15TTmの単結晶タングステン(W、)を
用いる。発熱体は、電気抵抗が犬さく、高温強度が高く
、かつ補給源との反応性か低いことが望ましい。主とし
て、タングステン(W)、モリブチ7 (MO) 、 
V:=ラム(Re)、タンタル(Ta)及びこれらの合
金、または上記金属と補給源との合金を用いても良い。
The electron emitter mainly has a diameter of 0 in the axial direction (100).
.. Single crystal tungsten (W, ) of 1 to 0.15 TTm is used. It is desirable that the heating element has low electrical resistance, high high temperature strength, and low reactivity with the supply source. Mainly tungsten (W), molybuti 7 (MO),
V: = ram (Re), tantalum (Ta) and alloys thereof, or alloys of the above metals with supply sources may be used.

発熱体としては直径0.1〜0、5 tnmO線または
厚さ02〜0.02mmの板状のものを用いる。本発明
は、補給源としては、ジルコニウム(Zr)、チタ7 
(’ri)% ノs7.Jム(Hf)、ニオブ(Nb)
、トリウム(Th) 、マグネシウム(Mg) 、セリ
ウム(Ce)等の酸化物、またはZr、T1、Ilf、
Nb、’l’h、Mg、Ceとその酸化物の固溶体若し
くは溶融混合物を用い、前記した発熱体せたは発熱体と
電子放射体の接点部に取付けることを特徴とする。
As the heating element, an O wire with a diameter of 0.1 to 0.5 tnm or a plate-shaped one with a thickness of 02 to 0.02 mm is used. The present invention uses zirconium (Zr) and titanium 7 as supply sources.
('ri)%ノs7. Jmu (Hf), Niobium (Nb)
, oxides such as thorium (Th), magnesium (Mg), cerium (Ce), or Zr, T1, Ilf,
It is characterized by using a solid solution or a molten mixture of Nb, 'l'h, Mg, Ce, and their oxides, and attaching it to the above-mentioned heating element or the contact between the heating element and the electron emitter.

従来の拡散補給形電子線源では、例えばZrやHf金属
を補給源として用い、動作状態では熱拡散によりZrや
Hfを電子放射体先端に補給すると共に、外部から酸素
ガスを導入して放射角を縮小した電子放射を行なわせて
いた。一方、本発明では、第2図に示した例えばT1と
TlO2の状態図に示した様に、Tiと酸素の固溶体、
まだはIll iと1゛102の溶融混合物若しくは酸
化チタン等を補給源として用い、動作状態ではチタンと
酸素を同時に電子放射体先端に補給して、外部から酸素
ガス等の導入をすることなく放射角縮小した電子放射を
可能としたものである。
In conventional diffusion replenishment type electron beam sources, for example, Zr or Hf metal is used as a replenishment source, and during operation, Zr or Hf is supplied to the tip of the electron emitter by thermal diffusion, and oxygen gas is introduced from the outside to adjust the radiation angle. It emitted electrons that were reduced in size. On the other hand, in the present invention, as shown in the phase diagram of T1 and TlO2 shown in FIG. 2, a solid solution of Ti and oxygen,
Currently, a molten mixture of Illi and 1゛102 or titanium oxide, etc. is used as a replenishment source, and in the operating state, titanium and oxygen are simultaneously supplied to the tip of the electron emitter, allowing emission without introducing oxygen gas etc. from the outside. This makes it possible to emit electrons with a reduced angle.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 本発明による拡散補給形電子線源の第一の実施例を第3
図(a)(b)により説明する。まず、7字形に形成さ
れた直径0.1〜0.15wmのタングステン(W)装
発熱体1の先端に直径0.1〜0.15mのタングステ
ン線を点溶接し、その先端を水酸化カリウム(KOH)
水溶液等で電界研磨で鋭く尖らせて電子放射体2を作製
する。次に準補給源4′として酸化チタン(例えば′r
 i o2)若しくはチタン(Tl)と酸化チタン< 
T lot >の混合粉を第3図(a)のごとく発熱体
1と電子放射体2の#絖部若しくは第3図(b)のこと
く発熱体1の周囲に付着させる。次に真空中またはアル
ゴン(A r)カス雰囲気中等で発熱体1を通電加熱し
て、前記増補給源4′を瞬時に溶融させて補給源4を作
成する。補給源4の成分としては0/Tiの比率が0.
2〜2の領域のチタンと酸素の固溶体であれはいずれで
も良い。第2図の′■゛1−TlO2の状態図によれば
、上記0/’I’iの比率の領域ではTio2、Tl2
O3,1゛10等の酸化チタンの状態が存在するが、本
発明の補給源4としてはいずれにしても良い。捷だ補給
源4としては単にチタンと酸化チタンの溶融混合物であ
っても同様の効果を得ることができる。
Example 1 The first example of the diffusion replenishment type electron beam source according to the present invention was
This will be explained with reference to Figures (a) and (b). First, a tungsten wire with a diameter of 0.1 to 0.15 m is spot-welded to the tip of a tungsten (W)-equipped heating element 1 with a diameter of 0.1 to 0.15 wm formed in a figure 7 shape, and the tip is connected to potassium hydroxide. (KOH)
The electron emitter 2 is produced by sharpening it by electropolishing with an aqueous solution or the like. Next, titanium oxide (e.g. 'r
i o2) or titanium (Tl) and titanium oxide <
A mixed powder of T lot > is adhered to the grooves of the heating element 1 and the electron emitter 2 as shown in FIG. 3(a), or around the heating element 1 as shown in FIG. 3(b). Next, the heating element 1 is energized and heated in a vacuum or an argon (Ar) gas atmosphere to instantaneously melt the additional supply source 4' to create the supply source 4. As for the components of the supply source 4, the ratio of 0/Ti is 0.
Any solid solution of titanium and oxygen in the range of 2 to 2 may be used. According to the phase diagram of '■゛1-TlO2 in Figure 2, in the region of the ratio 0/'I'i, Tio2, Tl2
Although there are titanium oxide states such as O3.1 and 10, either state may be used as the replenishment source 4 of the present invention. Similar effects can be obtained even if the raw material supply source 4 is simply a molten mixture of titanium and titanium oxide.

本実施例における拡散補給形電子線淳は、超高真空中で
発熱体1を通電加熱することにより、電子放射体2及び
補給源4を900C〜1500trに加熱すると、熱拡
散により針状に尖った電子放射体2の先端まで補給源4
からチタン(Tり及び酸素が補給され、この状態で電子
放射体2と対向する陽極の間に高電圧を印加すると、外
部から酸素ガス等を導入することなく、タングステン(
W)製電子放射体1の(100)結晶面の仕事関数が低
下して、(100)面方位に角度制限された電子放射ケ
得ることができる。
In the diffusion replenishment type electron beam in this embodiment, when the electron emitter 2 and the replenishment source 4 are heated to 900C to 1500tr by heating the heating element 1 with electricity in an ultra-high vacuum, the electron beam becomes sharp in the form of a needle due to thermal diffusion. supply source 4 up to the tip of the electron emitter 2
When titanium (T) and oxygen are replenished and a high voltage is applied between the electron emitter 2 and the opposing anode in this state, tungsten (T) is replenished without introducing oxygen gas etc. from the outside.
The work function of the (100) crystal plane of the electron emitter 1 made of W) is lowered, and electron emission whose angle is restricted to the (100) plane orientation can be obtained.

また、補給源4としては、o/zrの比率が0.2〜2
のジルコニウム(Zr)と酸化ジルコニウムの固溶体若
しくは、溶融混合物でも良く、また0/Tb、0/Nb
、0/Hf、0/Mg、0/Ceの比率が0.2〜20
割合で配合されたトリウム(’l’h)と酸化トリウム
、ハフニウム(Hf)と酸化ハフニウム、ニオブ(Nb
)と酸化ニオブ、マグ不ソウム(Mg)と酸化マク不シ
ウム、セリウム(Ce)と酸化セリウムの固溶体若しく
は溶融混合物を用いても、同様に900〜1500Cの
温度で放射角縮小された電子放射を行なうことができた
In addition, as the supply source 4, the o/zr ratio is 0.2 to 2.
A solid solution or a molten mixture of zirconium (Zr) and zirconium oxide may be used, and 0/Tb, 0/Nb
, 0/Hf, 0/Mg, 0/Ce ratio is 0.2 to 20
Thorium ('l'h) and thorium oxide, hafnium (Hf) and hafnium oxide, and niobium (Nb) are mixed in proportions.
) and niobium oxide, cerium (Ce) and cerium oxide, electron radiation with a reduced radiation angle at a temperature of 900 to 1500 C can be similarly obtained. I was able to do it.

実施例2 本発明による拡散補給形電子線源の他の実施例を第3図
(C)により説明する。本実施例では、増補給源4′と
して、酸化チタンまたはチタンと酸化チタンの溶融混合
物からなるリボンあるいは線をあらかじめ作成しておき
、これを発熱体1の周囲に巻きつけて用いる。増補給源
4′のリボンまたは紳tま、0/T!の比率が0.2〜
2の配合比に秤量したチタンと酸化チタンの原料を例え
ばアルコ゛ンガス雰囲気中で溶融混合しておき、超急冷
法により急激に冷却して作成できる。次に真空中等で準
補給曽4′を巻きつけた発熱体1を1600〜1900
Cに瞬時に加熱して増補給源4′を溶融して補給源4を
形成する。本方式により形成した補給源4を設けた拡散
補給形電子線源は、′電子放射体2を900〜150(
I’に加熱することにより、外部から酸素ガス等の導入
することなく放射角縮小された電子放射を得ることがで
きた。
Embodiment 2 Another embodiment of the diffusion replenishment type electron beam source according to the present invention will be described with reference to FIG. 3(C). In this embodiment, a ribbon or wire made of titanium oxide or a molten mixture of titanium and titanium oxide is prepared in advance and used as the additional supply source 4' by wrapping it around the heating element 1. Reinforcement source 4' Ribbon or Gentleman, 0/T! The ratio is 0.2~
It can be produced by melting and mixing raw materials of titanium and titanium oxide weighed at a blending ratio of 2 in, for example, an alcohol gas atmosphere, and then rapidly cooling the mixture using an ultra-quenching method. Next, in a vacuum or the like, heat generating element 1 wrapped with semi-replenishing coil 4'
The supplementary supply source 4' is melted by instantaneously heating to C to form the supplementary supply source 4. A diffused replenishment type electron beam source provided with a replenishment source 4 formed by this method has an electron emitter 2 of 900 to 150 (
By heating to I', electron radiation with a reduced radiation angle could be obtained without introducing oxygen gas or the like from the outside.

1だ補給源4として、ジルコニウムと酸化ジルコニウム
、ニオブと酸化二側ブ、)・フニウムと酸化ハフニウム
、トリウムと酸化トリウム、マグイ・シウムと酸化マグ
不ノウム、セリウムと酸化セリウムの固溶体若しくは溶
融混合物を用いても同様の効果を得ることができた。
As a supply source 4, solid solutions or molten mixtures of zirconium and zirconium oxide, niobium and dibutylene oxide, )-fnium and hafnium oxide, thorium and thorium oxide, magi-sium and magnonium oxide, and cerium and cerium oxide are used. A similar effect could be obtained by using

実施例3 第3図(d)は本発明の他の実施例を示す。すなわち、
あらかじめチタン線捷たけチタン製リボンの長面に酸化
チタンの粉末を塗布し、800〜1500Cで焼結した
増補給源4′を発熱体1の周囲に巻きつけておく。次に
発熱体1を1600〜1900Uに通電加熱して準備給
源4′を溶かして補給源4を形成する。同様に、ジルコ
ニウム、ニオブ、ノ・フニウム、トリウム、マグネシウ
ム、セリウムitたはフォイルの表面に各々酸化ジルコ
ニウム、酸化ニオブ、酸化ノ・フニウム、酸化トリウム
、酸化マグネシウム、酸化セリウムを塗布して増補給源
4′及び補給源4を形成した拡散補給形電子紳源でも、
外部から酸素ガスを導入することなく、容易に角度制限
された電子放射を得ることができた。
Embodiment 3 FIG. 3(d) shows another embodiment of the present invention. That is,
Titanium oxide powder is applied in advance to the long side of a titanium ribbon made of sintered titanium wire, and an additional supply source 4' sintered at 800 to 1500 C is wrapped around the heating element 1. Next, the heating element 1 is heated to 1,600 to 1,900 U to melt the preparation source 4' and form the supply source 4. Similarly, zirconium oxide, niobium oxide, niobium oxide, thorium oxide, magnesium oxide, and cerium oxide are applied to the surface of zirconium, niobium, ferrite, thorium, magnesium, cerium, or foil to increase replenishment sources. 4' and the diffused replenishment type electron source that formed the replenishment source 4,
We were able to easily obtain angle-limited electron emission without introducing oxygen gas from the outside.

実施例4 本発明の他の実施例を第3図(e)により説明する。Example 4 Another embodiment of the present invention will be described with reference to FIG. 3(e).

本実施例では増補給源4′としてチタン粉、チタン線、
チタン製リボンを用いる。まず、発熱体1の周囲にチタ
ン粉を塗布するかまたはチタン線あるいはチタン製リボ
ンを発熱体1に巻き付けておき、次に10−2〜1O−
7Torrに酸素ガスを導入した容器中で発熱体1に通
電加熱するか発熱体1の周囲にコイルヒータ等を設けて
間接的に加熱する方法によって増補給源4′を溶融する
と共に、周囲の酸素を吸収固溶した補給源4を形成する
。本実施例により作成した拡散補給形量子線源を超高真
空容器中で900〜1500trで動作させるとタング
ステン製電子放射体2の(100)面方位に放射角縮小
された電子放射を得ることができる。
In this embodiment, titanium powder, titanium wire,
Uses titanium ribbon. First, apply titanium powder around the heating element 1 or wrap titanium wire or titanium ribbon around the heating element 1, and then
The supplementary supply source 4' is melted by electrically heating the heating element 1 in a container into which oxygen gas is introduced at 7 Torr, or by indirectly heating the heating element 1 by installing a coil heater or the like around the heating element 1. A replenishment source 4 is formed by absorbing and solidly dissolving. When the diffusion replenishment type quantum beam source created according to this example is operated at 900 to 1500 tr in an ultra-high vacuum container, it is possible to obtain electron radiation whose radiation angle is reduced in the (100) plane orientation of the tungsten electron emitter 2. can.

また、増補給源4′としてジルコニウム、ニオブ、ハフ
ニウム、トリウム、マダイ・シウム、セリウム等の粉末
または線あるいはフォイルを用いても同様の効果を得る
ことができた。
Furthermore, the same effect could be obtained by using powder, wire, or foil of zirconium, niobium, hafnium, thorium, red sea bream, cerium, etc. as the supplementary supply source 4'.

実施例5 本発明の他の実施例を第3図(f)により説明する。Example 5 Another embodiment of the present invention will be described with reference to FIG. 3(f).

本実施例は電子放射体2を加熱する発熱体と補給源を一
体化した複合形補給源5とするととを特徴とする。複合
形補給源5は、チタン、ジルコニウム、ニオブ、ハフニ
ウム、トリウム、マグネシウム、セリウム及びこれらの
酸化物との固溶体若しくは溶融混合物から形成した線ま
たはリボンまたは板で構成する。複合形補給源5の線ま
たはリボンあるいは板は、例えばチタンと酸化チタンの
混合物をアルゴン雰囲気中等で溶融混合し、超急冷法に
より作成できる。7字形の複合形補給源5の先端にタン
グステン(W)製電子放射体2を点溶接し、電子放射体
2の先端を電解研磨等により鋭く尖らせることにより拡
散補給形量子線源ができる。動作状態では複合形補給諒
5を通電加熱することにより、電子放射体2の先端へチ
タン及び酸素が補給され、タングステンの(100)面
方位に角度制限された電子放射を得ることができた。
This embodiment is characterized by a composite replenishment source 5 that integrates a heating element for heating the electron emitter 2 and a replenishment source. The composite source 5 consists of wires or ribbons or plates formed from solid solutions or molten mixtures of titanium, zirconium, niobium, hafnium, thorium, magnesium, cerium and their oxides. The wire, ribbon, or plate of the composite supply source 5 can be made by, for example, melting and mixing a mixture of titanium and titanium oxide in an argon atmosphere or the like, and then using an ultra-quenching method. A tungsten (W) electron emitter 2 is spot-welded to the tip of the figure 7-shaped composite replenishment source 5, and the tip of the electron emitter 2 is made sharp by electrolytic polishing or the like, thereby producing a diffused replenishment type quantum beam source. In the operating state, titanium and oxygen were supplied to the tip of the electron emitter 2 by heating the composite replenisher 5 with electricity, making it possible to obtain electron emission whose angle was restricted to the (100) plane orientation of tungsten.

実施例6 本発明の他の実施例を第2図(g)により説明する。Example 6 Another embodiment of the present invention will be described with reference to FIG. 2(g).

−ます、7字形の発熱体1の先端に電子放射体としてタ
ングステン線2′を点溶接しておき、次に発熱体1の周
囲にチタン、ジルコニウム、ニオブ、ハフニウム、トリ
ウム、マグオ・シウム、セリウム等の1Mまたはフォイ
ルからなる蒸発源6を設け、酸素ガスを10−2〜10
−8’l”orr導入した真空容器中で、蒸発源6を通
電加熱して蒸発させ、発熱体1及びタングステン線2′
の周囲に上記蒸発源6の物質を付着させ増補給源4′を
形成する。増補給源4′中の例えはチタンと、酸素の含
有量は蒸発源6の蒸発速度と蒸着中の酸素ガスの圧力に
より任意に制御できる。次に電解研磨等によりタングス
テン線の先端を欽〈尖らせ電子放射体2を形成する。
- First, a tungsten wire 2' is spot-welded to the tip of the figure 7-shaped heating element 1 as an electron emitter, and then titanium, zirconium, niobium, hafnium, thorium, maggotium, cerium, etc. An evaporation source 6 made of 1M or foil such as
- In a vacuum container introduced with 8'l"orr, the evaporation source 6 is energized and heated to evaporate the heating element 1 and the tungsten wire 2'.
The material of the evaporation source 6 is deposited around the evaporation source 6 to form an additional supply source 4'. The contents of, for example, titanium and oxygen in the supplementary supply source 4' can be arbitrarily controlled by the evaporation rate of the evaporation source 6 and the pressure of oxygen gas during deposition. Next, the tip of the tungsten wire is sharpened by electrolytic polishing or the like to form an electron emitter 2.

電子放射体2の先端は、上記増補給源4′の形成前に尖
らせておいても良い。実際の動作に際しては、発熱体1
を通電加熱して、上記増補給源4′を一度溶融して補給
源4を形成して、電子放射体2及び発熱体1とのぬれ性
を良くしておく。上記手順にて作成した拡散補給形量子
線源においても、前記実施例1〜5の場合と同様に、9
00〜15oocで動作することにより、タングステン
(100)面方位に角度制限した電子放射を容易に得る
ことができた。
The tip of the electron emitter 2 may be sharpened before forming the supplementary supply source 4'. During actual operation, heating element 1
The additional supply source 4' is once melted by heating with electricity to form the supply source 4, and the wettability with the electron emitter 2 and the heating element 1 is improved. Also in the diffusion replenishment type quantum beam source created by the above procedure, as in the case of Examples 1 to 5, 9
By operating at 00 to 15 ooc, it was possible to easily obtain electron emission angle-limited to the tungsten (100) plane orientation.

〔発明の効果〕〔Effect of the invention〕

以上、本発明の拡散補給形量子線源によれは、先端が鋭
く尖った電子放射体の先端に吸着体と酸素を単原子層の
吸着状態を形成して角度制限された電子放射を得るため
に、補給源としてチタン、ジルコニウム、ハフニウム、
ニオブ、トリウム、マグネシウム、セリウムの酸化物若
しくは、チタン、ジルコニウム、ハフニウム、ニオブ、
トリウム、マグネシウム、セリウムとこれらの酸化物と
の固溶体または溶融混合物を用いることにより、外部か
ら酸素ガス等を導入することなく容易に角度制限された
電子放射を行うことが可能な拡散補給形電子線諒を提供
できた。
As described above, the diffusion replenishment type quantum beam source of the present invention is capable of obtaining angle-limited electron emission by forming an adsorption state of a monoatomic layer of an adsorbent and oxygen at the tip of an electron emitter having a sharp tip. In addition, titanium, zirconium, hafnium,
Niobium, thorium, magnesium, cerium oxides or titanium, zirconium, hafnium, niobium,
A diffusion-supplemented electron beam that uses a solid solution or molten mixture of thorium, magnesium, cerium, and their oxides to easily emit electrons with a limited angle without introducing oxygen gas from the outside. I was able to offer some advice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の拡散補給形量子線源の説明図、第2図
は、TiとTiO2の平衡状態図、第3図は、本発明の
詳細な説明図である。 1・・・発熱体、2・・・電子放射体、3・・・金属補
給源、4・・・補給源、4′・・・増補給源、5・・・
複合形補給源、て1図 %z  図 to7丁1) 扁 3  図 (久)          (b)         
 (cジ          ((t)°′°(イ2 
     (3)
FIG. 1 is an explanatory diagram of a conventional diffusion replenishment type quantum beam source, FIG. 2 is an equilibrium state diagram of Ti and TiO2, and FIG. 3 is a detailed explanatory diagram of the present invention. DESCRIPTION OF SYMBOLS 1... Heating element, 2... Electron emitter, 3... Metal supply source, 4... Supply source, 4'... Increased supply source, 5...
Composite supply source, te1 fig.%z fig.to7 cho1)
(cji ((t)°′°(a2
(3)

Claims (1)

【特許請求の範囲】 1、先端が針状に尖った電子放射体と、該電子放射体を
加熱する発熱体と、電子放射体への吸着体及び吸着体を
貯蔵する補給源とからなる拡散補給形電子線源において
、補給像としてチタン、ジルコニウム、ハフニウム、ニ
オブ、トリウム、マグネシウム若しくはセリウムの酸化
物又は、チタン、ジルコニウム、ハフニウム、ニオブ、
トリウム、マダイ、シウム若しくはセリウムとその酸化
物との固溶体又は溶融混合物を用いることを特徴とする
拡散補給形電子線源。 2、上記補給源が、0/T1の比率が0,2〜2の範囲
である酸化チタン又は酸化チタンとチタンの固溶体若し
くは溶融混合物でるる特許請求の範囲第1項記載の拡散
補給形寛子線源。 3、上記補給源が、0/Zrの比率が0.2〜2の範囲
である酸化ジルコニウム又は酸化ジルコニウムとジルコ
ニウムの固溶体若しくは溶融混合物である特許請求の範
囲第1項記載の拡散補給形電子線源。 4、」二記補給源が、0 / Hfの比率が0.2〜2
の範囲である酸化ハフニウム又は酸化/・フニウムとハ
フニウムの固溶体若しくは溶融混合物である特許請求の
範囲第1項記載の拡散補給形電子線源。 5、上記補給源が、0/Nbの比率が0.2〜2の範囲
である酸化ニオブ又は酸化ニオブとニオブの固溶体若し
くは溶融混合物である特許請求の範囲第1項記載の拡散
補給形電子線源。 6、上記補給源が、o/’rhの比率が0.2〜2の範
囲である酸化トリウム又は酸化トリウムとトリウムの固
融混合物である特許請求の範囲第1項記載の拡散補給形
電子線諒。 7、上記補給源が、07Mgの比率が0.2〜2の範囲
である酸化マグネシウム又は酸化マグイ・シウムとマク
不7ウムの固溶体若しくは溶融混合物である特許請求の
範囲第1項の拡散補給形電子線源。 8 上記補給源が、O/Ceの比率が0.2〜2の範囲
である酸化セリウム又は酸化セリウムとセリウムの固浴
体若しくは溶融混合物でるる特許請求の範囲第1項記載
の拡散補給形電子紳源。
[Claims] 1. Diffusion consisting of an electron emitter with a needle-like tip, a heating element that heats the electron emitter, an adsorbent to the electron emitter, and a supply source that stores the adsorbent. In a supplementary electron beam source, oxides of titanium, zirconium, hafnium, niobium, thorium, magnesium, or cerium, or titanium, zirconium, hafnium, niobium,
A diffusion replenishment type electron beam source characterized by using a solid solution or molten mixture of thorium, red sea bream, ium, or cerium and its oxide. 2. The diffusion replenishment type Hiroko wire according to claim 1, wherein the replenishment source is titanium oxide or a solid solution or molten mixture of titanium oxide and titanium, with a ratio of 0/T1 in the range of 0.2 to 2. source. 3. The diffusion replenishment type electron beam according to claim 1, wherein the replenishment source is zirconium oxide, or a solid solution or molten mixture of zirconium oxide and zirconium, with a 0/Zr ratio in the range of 0.2 to 2. source. 4. The supply source mentioned above has a ratio of 0/Hf of 0.2 to 2.
2. The diffusion assisted electron beam source according to claim 1, which is hafnium oxide or a solid solution or molten mixture of hafnium oxide and hafnium. 5. The diffusion replenishment type electron beam according to claim 1, wherein the replenishment source is niobium oxide or a solid solution or molten mixture of niobium oxide and niobium with a 0/Nb ratio in the range of 0.2 to 2. source. 6. The diffusion replenishment type electron beam according to claim 1, wherein the replenishment source is thorium oxide or a solid mixture of thorium oxide and thorium with an o/'rh ratio in the range of 0.2 to 2. Ryo. 7. The diffusion replenishment type according to claim 1, wherein the replenishment source is a solid solution or molten mixture of magnesium oxide or magi-sium oxide and Makufu7ium in which the ratio of 07Mg is in the range of 0.2 to 2. Electron beam source. 8. The diffusion replenishment type electron according to claim 1, wherein the replenishment source is cerium oxide having an O/Ce ratio in the range of 0.2 to 2, or a solid bath or molten mixture of cerium oxide and cerium. Shingen.
JP57158122A 1982-09-13 1982-09-13 Diffusing feed type electron beam source Pending JPS5949065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57158122A JPS5949065A (en) 1982-09-13 1982-09-13 Diffusing feed type electron beam source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57158122A JPS5949065A (en) 1982-09-13 1982-09-13 Diffusing feed type electron beam source

Publications (1)

Publication Number Publication Date
JPS5949065A true JPS5949065A (en) 1984-03-21

Family

ID=15664774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57158122A Pending JPS5949065A (en) 1982-09-13 1982-09-13 Diffusing feed type electron beam source

Country Status (1)

Country Link
JP (1) JPS5949065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763880A (en) * 1995-03-14 1998-06-09 Hitachi, Ltd. Cathode, electron beam emission apparatus using the same, and method of manufacturing the cathode
WO2013047397A1 (en) * 2011-09-26 2013-04-04 株式会社日立ハイテクノロジーズ Electric field discharge-type electron source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659422A (en) * 1979-10-19 1981-05-22 Hitachi Ltd Field emissive cathode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659422A (en) * 1979-10-19 1981-05-22 Hitachi Ltd Field emissive cathode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763880A (en) * 1995-03-14 1998-06-09 Hitachi, Ltd. Cathode, electron beam emission apparatus using the same, and method of manufacturing the cathode
WO2013047397A1 (en) * 2011-09-26 2013-04-04 株式会社日立ハイテクノロジーズ Electric field discharge-type electron source
JP2013084550A (en) * 2011-09-26 2013-05-09 Hitachi High-Technologies Corp Electric field discharge type electron source
KR20140049006A (en) 2011-09-26 2014-04-24 가부시키가이샤 히다치 하이테크놀로지즈 Electric field discharge-type electron source
US8866371B2 (en) 2011-09-26 2014-10-21 Hitachi High-Technologies Corporation Electric field discharge-type electron source
DE112012003268B4 (en) 2011-09-26 2023-03-23 Hitachi High-Tech Corporation Electric field discharge type electron source

Similar Documents

Publication Publication Date Title
Gao et al. A review on recent progress of thermionic cathode
Anderson et al. Chemisorption-induced surface umklapp processes in angle-resolved synchrotron photoemission from W (001)
US20150054398A1 (en) Electrode material with low work function and high chemical stability
US8501136B2 (en) Synthesis and processing of rare-earth boride nanowires as electron emitters
US4046666A (en) Device for providing high-intensity ion or electron beam
JPH08250054A (en) Diffusion supplementary electron beam source and electron beam device using this diffusion supplement electron beam source
TW385466B (en) Cathode for an electron tube
JP3848677B2 (en) Dispenser cathode and method of manufacturing dispenser cathode
JP5131735B2 (en) Manufacturing method of surface emitter, manufacturing method of point emitter, and structure
CN102789946A (en) Particle source and preparation method thereof
US3290543A (en) Grain oriented dispenser thermionic emitter for electron discharge device
JPS5949065A (en) Diffusing feed type electron beam source
JP2002523860A (en) Cathode structure having getter material and diamond film and method of manufacturing the same
Tolstoguzov et al. Ion-beam sources based on solid electrolytes for aerospace applications and ion-beam technologies
Massey et al. Development of a direct evaporation bismuth Hall thruster
JP2584534B2 (en) Dispenser cathode
JP3957344B2 (en) Discharge tube or discharge lamp and scandate-dispenser cathode
US3284657A (en) Grain-oriented thermionic emitter for electron discharge devices
JP4949603B2 (en) Cathode ray tube with composite cathode.
US2919362A (en) Stabilized x-ray generator
CN110444463B (en) Micro-current cesium ion source
KR20010029866A (en) Schottky emitter cathode with a stabilized ZrO2 reservoir
US2798010A (en) Method of manufacturing indirectly heated cathodes
JPS5912533A (en) Electron beam source of diffusion supply type
Wang et al. Recent Progress on RE2O3–Mo/W Emission Materials