JPS5949017B2 - Manufacturing method of anticoagulant medical polymer material - Google Patents

Manufacturing method of anticoagulant medical polymer material

Info

Publication number
JPS5949017B2
JPS5949017B2 JP48051492A JP5149273A JPS5949017B2 JP S5949017 B2 JPS5949017 B2 JP S5949017B2 JP 48051492 A JP48051492 A JP 48051492A JP 5149273 A JP5149273 A JP 5149273A JP S5949017 B2 JPS5949017 B2 JP S5949017B2
Authority
JP
Japan
Prior art keywords
heparin
polymer
acrylate
anticoagulant
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48051492A
Other languages
Japanese (ja)
Other versions
JPS502089A (en
Inventor
俊秀 中島
孝一 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP48051492A priority Critical patent/JPS5949017B2/en
Publication of JPS502089A publication Critical patent/JPS502089A/ja
Publication of JPS5949017B2 publication Critical patent/JPS5949017B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Medical Uses (AREA)

Description

【発明の詳細な説明】 本発明は新規な抗凝血性医用高分子材料の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a novel anticoagulant medical polymeric material.

現在実用化されている医用高分子材料の問題点の一つは
、これが生体に対して種々の好ましくない異物反応を起
すことであり、血液と接触する材料においては血液を凝
固させる性質をもつていることである。
One of the problems with medical polymer materials currently in practical use is that they cause various undesirable foreign body reactions in living organisms, and materials that come into contact with blood have the property of coagulating blood. It is that you are.

この点を解決する一つの方法は、天然の抗凝血剤である
へパリンを高分子材料と組合わせて用いることであり、
たとえばGo廿ら(Science142、1297(
1963))は、材料表面をグラファイト−塩化ベンザ
ルコニウムーヘパリンで処理して抗凝血性材料を得てい
る。2−ヒドロキシエチルメタクリレートなどのヒドロ
キシ基またはアルコキシ基を有するアルキルアクリレー
トまたはメタアクリレート類の重合体およびその共重合
体は、親水性でかつ水に溶けないハイドロゲルとなり、
生体親和性が良好でかつ高い化学的安定性を有するので
、医用材料として賞用されている。
One way to solve this problem is to use heparin, a natural anticoagulant, in combination with polymeric materials.
For example, Go 廿 et al. (Science 142, 1297)
(1963)) obtained an anticoagulant material by treating the surface of the material with graphite-benzalkonium chloride-heparin. Polymers of alkyl acrylates or methacrylates having a hydroxy group or alkoxy group, such as 2-hydroxyethyl methacrylate, and copolymers thereof become hydrogels that are hydrophilic and insoluble in water,
Since it has good biocompatibility and high chemical stability, it is used as a medical material.

これらの重合体の抗凝血性を向上させるためには、へパ
リン化処理を行なうことが有効であろうと考えられるが
、これらの重合体は水または体液で膨潤した状態で使用
されることが多く、単にへパリンを吸収あるいは表面に
吸着させただけでは、へパリンは短期間で血液中に溶出
し、その間は凝血を起さないが、溶出後は容易に凝血が
起るようになる。したがつて、かなり長期間にわたつて
凝血を起さない材料を作るためには、へパリンを何らか
の方法で該重合体に固定しなければならない。本発明は
、上記課題を解決したもので、本発明によれば、4級ア
ンモニウム塩を置換基として有するアクリレート系また
はメタアクリレート系単量体を共重合成分の一つとして
含有する親水性アクリレート系またはメタアクリレート
系重合体にへパリンを反応させることによつて長期間に
わたつて凝血を起さず、生体親和性が良好でかつ化学的
安定性の高い医用高分子材料が得られるのである。
Heparinization treatment may be effective in improving the anticoagulant properties of these polymers, but these polymers are often used in a state swollen with water or body fluids. If heparin is simply absorbed or adsorbed onto the surface, heparin will be eluted into the blood in a short period of time, and blood clots will not occur during that time, but blood clots will easily occur after the heparin is eluted. Therefore, heparin must be fixed in some way to the polymer in order to create a material that does not cause blood clots over a fairly long period of time. The present invention has solved the above problems, and according to the present invention, a hydrophilic acrylate system containing an acrylate or methacrylate monomer having a quaternary ammonium salt as a substituent as one of the copolymerization components. Alternatively, by reacting heparin with a methacrylate polymer, it is possible to obtain a medical polymer material that does not cause blood clots over a long period of time, has good biocompatibility, and has high chemical stability.

なお、本発明において「アクリレート系またはメタアク
リレート系」を「(メタ)アクリレート系」と略記する
ことがある。ヘパリンはカルボキシル基、スルホン酸基
などのアニオン性置換基を含むムコ多糖類であるからこ
れを固定するにはカチオン性置換基を重合体に導入し、
ヘパリンとイオン結合させるのが有利である。
In the present invention, "acrylate-based or methacrylate-based" may be abbreviated as "(meth)acrylate-based". Heparin is a mucopolysaccharide containing anionic substituents such as carboxyl groups and sulfonic acid groups, so to fix it, cationic substituents are introduced into the polymer.
Advantageously, it is ionically bonded to heparin.

従来へパリンとイオン結合させるために、重合体1にカ
チオン性置換基を導入する方法としてLeininge
rら(Trans.Am.SOc.A[Tif.Int
em.Organs.、12、151(1966))の
報告にみられるように、ポリスチレン、あるいはスチレ
ンをグラフトした重合体をクロロメチル化し、アミンお
よびハロゲン化アル,キルによつて4級化するというよ
うな繁雑な手段がとられていた。これに対し、親水性ハ
イドロゲルとなるような(メタ)アクリレート系重合体
を対象とする本発明においては、アンモニウム塩を置換
基として有する(メタ)アクリレート系単量1体を共重
合成分として用いることにより、カチオン性置換基の量
を任意に変えられるという利点があり、しかもこのよう
な単量体は親水性(メタ)アクリレート系重合体を構成
する単量体と類似した構造をもつているので、該重合体
の医用材料と,して望ましい機械的および化学的性質を
大きく変化させないという利点も得られる。アンモニウ
ム塩を置換基として有する(メタ)アクリレート系単量
体の単独重合体を用いることは可能であるが、この重合
体は水溶性であつて、医用高分子材料として不適当であ
り、仮に何らかの方法でこれを不溶化したとしても、カ
チオン性置換基の含量が多すぎて不都合である。
Conventionally, as a method for introducing a cationic substituent into polymer 1 in order to make an ionic bond with heparin, Leininge
r et al. (Trans. Am. SOc. A [Tif. Int.
em. Organs. 12, 151 (1966)), complicated methods such as chloromethylation of polystyrene or styrene-grafted polymers and quaternization with amines and alkyl halides. was taken. In contrast, in the present invention, which targets (meth)acrylate polymers that form hydrophilic hydrogels, one (meth)acrylate monomer having an ammonium salt as a substituent is used as a copolymerization component. This has the advantage that the amount of cationic substituents can be changed arbitrarily, and furthermore, such monomers have a structure similar to the monomers constituting the hydrophilic (meth)acrylate polymer. Therefore, there is an advantage that the mechanical and chemical properties of the polymer, which are desirable as medical materials, are not significantly changed. Although it is possible to use a homopolymer of (meth)acrylate monomers having an ammonium salt as a substituent, this polymer is water-soluble and is unsuitable as a medical polymer material. Even if it is made insolubilized by a method, the content of cationic substituents is too large, which is disadvantageous.

したがつて、本発明により親水性(メタ)アクリレート
系重合体を合成する際、前記単量体を共重合成分の一つ
として用いることが最も有効である。この場合得られる
重合体の耐水性および強度を保つために、エチレングリ
コールジメタクリレートのような二官能性単量体、ある
いはグリシジルメタクリレートのような後架橋可能な官
能基をもつ単量体を併用して共重合することが望ましい
。またこれらの単量体類と容易に共重合しうる疎水性ビ
ニル単量体、例えばメチルメタアクリレート、スチレン
等を共重合させて耐水性の向上をはかることもできる。
したがつてより具体的には、本発明は一般式(但しR1
は水素またはメチル基、R2は炭素数2〜3の二価アル
キレン基)で表わされるヒドロキシアルキル(メタ)ア
クリレートを主たる重合成分とし、一般式 (但しR1は水素またはメチル基、R2は水酸基を有す
る/または有しない炭素水2〜3の二価アルキレン基、
R3,R4およびR5は炭素数1〜2のアルキル基、x
はハロゲン)で表わされる4級アンモニウム塩を置換基
として有する(メタ)アクリレート系単量体とくに塩化
メタクリロキシプロピルトリメチルアンモニウム、もし
くは水酸基を有するその誘導体、あるいはジエチルアミ
ノエチルメタアクリレートなどの4級化物を、少割合で
、好ましくは全単量体に対し1〜5モル%の割合で共重
合させて得られる重合体をヘパリンと反応させることに
より、へパリンが固定された抗凝血性医用高分子材料を
得るものである。
Therefore, when synthesizing a hydrophilic (meth)acrylate polymer according to the present invention, it is most effective to use the above monomer as one of the copolymerization components. In order to maintain the water resistance and strength of the resulting polymer, a difunctional monomer such as ethylene glycol dimethacrylate or a monomer with a post-crosslinkable functional group such as glycidyl methacrylate is used in combination. It is desirable to carry out copolymerization. Furthermore, water resistance can be improved by copolymerizing hydrophobic vinyl monomers that can be easily copolymerized with these monomers, such as methyl methacrylate and styrene.
Therefore, more specifically, the present invention relates to the general formula (wherein R1
is hydrogen or a methyl group, R2 is a divalent alkylene group having 2 to 3 carbon atoms) The main polymerization component is a hydroxyalkyl (meth)acrylate represented by / or a divalent alkylene group with 2 to 3 carbon atoms,
R3, R4 and R5 are alkyl groups having 1 to 2 carbon atoms, x
A (meth)acrylate monomer having a quaternary ammonium salt represented by (halogen) as a substituent, especially methacryloxypropyltrimethylammonium chloride, a derivative thereof having a hydroxyl group, or a quaternized product such as diethylaminoethyl methacrylate, By reacting a polymer obtained by copolymerization with heparin in a small proportion, preferably 1 to 5 mol% of the total monomers, an anticoagulant medical polymer material with heparin immobilized can be obtained. It's something you get.

(11)の使用量が全単量体に対し1モル%未満では、
重合体に結合しうるヘパリンの量が少なく、持続的抗凝
血性をを得難い。また(11)の使用量が5モル%を越
えると、得られる重合体の耐水性が低下する傾向がある
。本発明による高分子材料の耐水性と強度を実用的に充
分な程度に保つために、共重合成分としてさらに一般式
(但しRl,R2は水素またはメチル基、R3は炭素数
2〜3の二価アルキレン基または二価シクロアルキレン
基または二価フエニレン基)で表わされる二官能性単量
体を全単量体に対し0.2〜0.5モル%程度加え、適
当な鋳型の中で重合させるのが有利である。
If the amount of (11) used is less than 1 mol% based on the total monomers,
The amount of heparin that can be bound to the polymer is small, making it difficult to obtain sustained anticoagulant properties. Moreover, when the amount of (11) used exceeds 5 mol %, the water resistance of the resulting polymer tends to decrease. In order to maintain the water resistance and strength of the polymer material according to the present invention to a practically sufficient level, the copolymerization component is further added to the general formula (where Rl and R2 are hydrogen or methyl groups, and R3 is a carbon number of 2 to 3 carbon atoms). About 0.2 to 0.5 mol% of a difunctional monomer represented by a divalent alkylene group, a divalent cycloalkylene group, or a divalent phenylene group is added to the total monomers, and polymerization is carried out in an appropriate mold. It is advantageous to let them do so.

この際水を溶媒とすれば、水で膨潤した不溶性の重合体
が得られる。さらに、一般式(但しR1は水素またはメ
チル基、R2は炭素数1〜3の二価アルキレン基)で表
わされる単量体を、全単量体に対し1〜5モル%加え、
メタノールのごとき溶媒中で溶液重合すると、可溶性重
合体が得られ、これを成型したのち熱処理または、紫外
線照射などにより不溶化させることができる。またこの
可溶性重合体溶液を材料表面に塗布し、乾燥し、熱処理
すれば、ヘパリン処理可能な被覆層が得られる。これら
の単量体類と容易に共重合しうる種々の単量体例えばメ
チルメタアクリレート、メチルアクリレート、塩化ビニ
ル、スチレン、アクリルアミド類、ビニルエステル類、
ビニルエーテル類などを、必要に応じて少量共重合させ
ることにより、得られる重合体の吸水性、機械的性質等
の諸性質を変化させることができる。これらの方法でつ
くつた不溶性重合体材料をヘパリン水溶液中に浸漬する
と、ヘパリンは該重合体内部に吸収され、イオン結合に
より固定される。ヘパリン水溶液濃度は1000単位/
ml程度でよい。また可溶性の重合体の場合には、適当
な溶媒(例えばホルムアミド)に重合体とへパリンの両
,者を溶解させ、適当な鋳型からキヤスト成型すること
が可能である。また該ヘパリン含有重合体溶液を、種々
の材料表面に塗布、乾燥して、ヘパリン含有被覆層を調
製し、材料表面に抗凝血性を付与することができる。こ
のようにして得られる本発明のヘパリン含有親水性(メ
タ)アクリレート系高分子材料は、すぐれた生体親和性
を保持し、かつ持続的な抗凝血性を有するものである。
If water is used as a solvent in this case, an insoluble polymer swollen with water can be obtained. Furthermore, a monomer represented by the general formula (wherein R1 is hydrogen or a methyl group, R2 is a divalent alkylene group having 1 to 3 carbon atoms) is added in an amount of 1 to 5 mol% based on the total monomers,
Solution polymerization in a solvent such as methanol yields a soluble polymer, which can be molded and then made insolubilized by heat treatment, ultraviolet irradiation, or the like. If this soluble polymer solution is applied to the surface of the material, dried, and heat treated, a coating layer that can be treated with heparin can be obtained. Various monomers that can be easily copolymerized with these monomers, such as methyl methacrylate, methyl acrylate, vinyl chloride, styrene, acrylamides, vinyl esters,
By copolymerizing a small amount of vinyl ethers, etc., if necessary, various properties such as water absorption and mechanical properties of the resulting polymer can be changed. When the insoluble polymer material prepared by these methods is immersed in an aqueous heparin solution, heparin is absorbed into the polymer and fixed by ionic bonds. Heparin aqueous solution concentration is 1000 units/
About ml is enough. In the case of a soluble polymer, it is possible to dissolve both the polymer and heparin in a suitable solvent (for example, formamide) and cast from a suitable mold. Further, the heparin-containing polymer solution can be applied to the surface of various materials and dried to prepare a heparin-containing coating layer, thereby imparting anticoagulant properties to the surface of the material. The heparin-containing hydrophilic (meth)acrylate polymer material of the present invention thus obtained maintains excellent biocompatibility and has sustained anticoagulant properties.

以下実施例により本発明を具体的に説明するがここれら
は本発明を何ら限定するものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but these are not intended to limit the present invention in any way.

実施例 12−ヒドロキシエチルメタクリレート (HEMAと略称する)14m1.塩化2−ヒドロキシ
−3−メタクリロキシプロピルトリメチルアンモニウム
(HMACと略称する)0.7gおよびエチレングリコ
ールジメタクリレート (EGDMAと略称する)0.
028m1を水6m1に溶解し、ジイソプロピルバーオ
キシジカーボネート (IPPと略称する)の50%ヘ
キサン溶液0.05m1を加えて、減圧で脱泡して、二
枚のガラス板の間にはさんで、60℃で24時間保ち、
厚さ1mmのフイルム状に鋳込重合した。
Example 1 2-Hydroxyethyl methacrylate (abbreviated as HEMA) 14 ml. 0.7 g of 2-hydroxy-3-methacryloxypropyltrimethylammonium chloride (abbreviated as HMAC) and 0.7 g of ethylene glycol dimethacrylate (abbreviated as EGDMA).
028ml was dissolved in 6ml of water, 0.05ml of a 50% hexane solution of diisopropyl peroxydicarbonate (abbreviated as IPP) was added, defoamed under reduced pressure, placed between two glass plates, and heated at 60°C. Keep it for 24 hours with
Cast polymerization was performed to form a film with a thickness of 1 mm.

これを沸騰水中に24時間浸漬して未反応物を除いたの
ち、1000単位/mlのヘパリン水溶液(デンマーク
、ツボ製)に浸漬した。このヘパリン含有フイルムの表
面を水洗し、今井ら (J.BiOmed.Mater
.Res.,6,l65(1972))が提案した方法
で抗凝血性を評価した。
This was immersed in boiling water for 24 hours to remove unreacted substances, and then immersed in a 1000 units/ml heparin aqueous solution (manufactured by Tsubo, Denmark). The surface of this heparin-containing film was washed with water, and Imai et al.
.. Res. The anticoagulant property was evaluated by the method proposed by (1972)).

すなわち4枚のヘパリン含有フイルムを37℃に保ち、
新鮮な犬のACD血液を各フイルムに0.25m1ずつ
のせ、さらに0.1MCaC12水溶液1滴(0.02
5m1)をそれぞれに加えて、凝血を開始させた。適当
な時間間隔で凝血塊をとり出して水洗し、ホルマリンで
個定して再び水洗し水分を除いて秤量して、凝血塊の重
量を、ガラス板上の飽和凝血量の百分率として、時間に
対してプロツトして凝血曲線を得た。同様にしてガラス
およびシリコンゴムの凝血曲線を得て比較すると上述の
方法で調製したヘパリン含有フイルムは、すぐれた抗凝
血性を有することがわかつた。へパリンを含有しないも
の、あるいはHMACを含まないフイルムをヘパリン水
溶液に浸漬したものは、抗凝血性がこれよりも劣る。
That is, four heparin-containing films were kept at 37°C,
Place 0.25 ml of fresh dog ACD blood on each film, and add 1 drop of 0.1 M CaC12 aqueous solution (0.02
5 ml) was added to each to initiate clotting. The clot was taken out at appropriate time intervals, washed with water, identified with formalin, washed again with water, water removed and weighed, and the weight of the clot was expressed as a percentage of the saturated clot amount on the glass plate over time. A coagulation curve was obtained by plotting against the blood pressure. Coagulation curves for glass and silicone rubber were similarly obtained and compared, and it was found that the heparin-containing film prepared by the above method had excellent anticoagulant properties. Films containing no heparin or films containing no HMAC immersed in an aqueous heparin solution have inferior anticoagulant properties.

またHMACを含むヘパリン含有フイルムは、水中に1
週間保存しても抗凝血性が低下しなかつた。
In addition, a heparin-containing film containing HMAC is
Anticoagulant properties did not decrease even after storage for weeks.

これに対してHMACを含まないへパリン含有フイルム
は、水中に1週間保存すると抗凝血性が大幅に低下した
。表1にガラス上の飽和凝血量を100とした血液接触
10分後の各種試料の凝血生成率を示す。
In contrast, the anticoagulant properties of a heparin-containing film without HMAC significantly decreased when stored in water for one week. Table 1 shows the clot formation rate of various samples after 10 minutes of blood contact, with the saturated clot amount on glass being 100.

実施例 2HEMA99モル%およびHMAClモル%
の割合で、全単量体濃度を20%とし、メタノール溶媒
中IPP開始剤(モノマーの0.3%)を用いて60℃
、17時間でアンプル中溶液重合して得たHEMA/:
HMAC共重合体をジメチルホルムアミド溶液とし、ヘ
パリン水溶液と混合して、ガラス板製の長方形の型に流
しこみ、溶媒を蒸発させて、ヘパリン含有フイルムを調
製した。
Example 2 99 mol% HEMA and mol% HMAC1
at 60 °C using an IPP initiator (0.3% of monomer) in methanol solvent with a total monomer concentration of 20%.
, HEMA obtained by solution polymerization in an ampoule for 17 hours:
The HMAC copolymer was made into a dimethylformamide solution, mixed with an aqueous heparin solution, poured into a rectangular mold made of a glass plate, and the solvent was evaporated to prepare a heparin-containing film.

このフイルムおよび対照としてHMACを含まないHE
MA単独重合体とへパリンのジメチルホルムアミド溶液
から作成したフイルムを一夜水中に保存したのち、実施
例1と同じ方法で評価した。その結果、表2に示すよう
に、前者のフイルムは非常にすぐれた抗凝血性を示した
。実施例 3 HEMA(80モル%)、メチルメタアクリレート(1
5モル%)およびHMAC(5モル%)の共重合をメタ
ノール中、IPP触媒、温度60℃、時間17時間で行
ない、得られた重合体をメタノール溶液から流延法でフ
イルムとし、これをヘパリン水溶液に浸漬して、へパリ
ン含有フイルムを得た。
This film and HE without HMAC as a control.
A film prepared from a dimethylformamide solution of MA homopolymer and heparin was stored in water overnight and then evaluated in the same manner as in Example 1. As a result, as shown in Table 2, the former film showed excellent anticoagulant properties. Example 3 HEMA (80 mol%), methyl methacrylate (1
Copolymerization of HMAC (5 mol%) and HMAC (5 mol%) was carried out in methanol using an IPP catalyst at a temperature of 60°C for 17 hours, and the resulting polymer was made into a film from a methanol solution by a casting method. A heparin-containing film was obtained by immersing it in an aqueous solution.

このフイルムはシリコーンよりすぐれた抗凝血性を示し
た。実施例 4 2−ヒドロキシプロピルアクリレートと1−メチノト2
−ヒドロキシエチルアクリレートとの混合物14g、塩
化アクリロキシエチルトリエチルアンモニウム0.75
g及びエチレングリコールジメタアクリレート0.07
gを水6m1と混合し、IPP(7)50%ヘキサン溶
液0.05m1を加えて実施例1と同様にして鋳込重合
してフイルム状の共重合物を得た。
This film showed better anticoagulant properties than silicone. Example 4 2-Hydroxypropyl acrylate and 1-methinoto2
- 14 g of mixture with hydroxyethyl acrylate, 0.75 acryloxyethyltriethylammonium chloride
g and ethylene glycol dimethacrylate 0.07
g was mixed with 6 ml of water, 0.05 ml of 50% hexane solution of IPP (7) was added, and cast polymerization was carried out in the same manner as in Example 1 to obtain a film-like copolymer.

これを煮沸洗浄した後、1000単位/MIのへパリン
水溶液に4℃で一夜浸漬した。これを実施例1と同様の
方法で抗凝血性の評価をしたところ、ガラス上の飽和凝
血量を100として本実施例のへバリン含有フイルムの
凝血率は40%であつた。なお、この場合、対照のシリ
コーンフイルムの凝血率は65%であつた。実施例 5 ジエチルアミノエチルメタクリレートを塩化エチルと反
応させて4級アンモニウム型モノマーとし、実施例1に
おけるHMACの代りに用いて、実施例1と全く同様に
HEMA及びEGDMAと共重合し、へパリン水溶液に
浸漬処理してヘパリン含有フイルムを作成した。
After washing it by boiling, it was immersed in a heparin aqueous solution of 1000 units/MI overnight at 4°C. The anticoagulant properties of this film were evaluated in the same manner as in Example 1, and the coagulation rate of the hevarin-containing film of this example was 40%, assuming the saturated coagulation amount on glass as 100. In this case, the coagulation rate of the control silicone film was 65%. Example 5 Diethylaminoethyl methacrylate was reacted with ethyl chloride to form a quaternary ammonium type monomer, which was used in place of HMAC in Example 1, copolymerized with HEMA and EGDMA in exactly the same manner as in Example 1, and converted into a heparin aqueous solution. A heparin-containing film was prepared by immersion treatment.

Claims (1)

【特許請求の範囲】 1 一般式 ▲数式、化学式、表等があります▼ (但しR_1は水素またはメチル基、R_2は炭素数2
〜3の二価アルキレン基)で表わされるヒドロキシアル
キル(メタ)アクリレートを主たる重合成分とし、一般
式 ▲数式、化学式、表等があります▼ (但しR_1は水素またはメチル基、R_2は水酸基を
有するまたは有しない炭素数2〜3の二価アルキレン基
、R_3、R_4およびR_5は炭素数1〜2のアルキ
ル基、Xはハロゲン)で表わされる単量体を共重合成分
として得られる親水性(メタ)アクリレート系重合体に
ヘパリンを反応させることを特徴とする抗凝血性の付与
された親水性医用高分子材料の製造法。
[Claims] 1 General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (However, R_1 is hydrogen or a methyl group, R_2 has 2 carbon atoms
The main polymerization component is hydroxyalkyl (meth)acrylate represented by a divalent alkylene group of A hydrophilic (meth) monomer obtained as a copolymerization component of a monomer represented by a divalent alkylene group having 2 to 3 carbon atoms, R_3, R_4 and R_5 are alkyl groups having 1 to 2 carbon atoms, and X is a halogen. A method for producing a hydrophilic medical polymer material imparted with anticoagulant properties, which comprises reacting an acrylate polymer with heparin.
JP48051492A 1973-05-08 1973-05-08 Manufacturing method of anticoagulant medical polymer material Expired JPS5949017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48051492A JPS5949017B2 (en) 1973-05-08 1973-05-08 Manufacturing method of anticoagulant medical polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48051492A JPS5949017B2 (en) 1973-05-08 1973-05-08 Manufacturing method of anticoagulant medical polymer material

Publications (2)

Publication Number Publication Date
JPS502089A JPS502089A (en) 1975-01-10
JPS5949017B2 true JPS5949017B2 (en) 1984-11-30

Family

ID=12888453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48051492A Expired JPS5949017B2 (en) 1973-05-08 1973-05-08 Manufacturing method of anticoagulant medical polymer material

Country Status (1)

Country Link
JP (1) JPS5949017B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146017A (en) * 1978-05-06 1979-11-14 Akira Komatsu Rotary coupling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498583A (en) * 1972-05-16 1974-01-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498583A (en) * 1972-05-16 1974-01-25

Also Published As

Publication number Publication date
JPS502089A (en) 1975-01-10

Similar Documents

Publication Publication Date Title
US4279795A (en) Hydrophilic-hydrophobic graft copolymers for self-reinforcing hydrogels
US4300820A (en) Water absorptive composition
US3931123A (en) Hydrophilic nitrite copolymers
JPH0762054B2 (en) Crosslinked polymer particles
JP7033083B2 (en) Use of blood-compatible porous polymer bead sorbent to remove endotoxin-inducing molecules
US4097420A (en) Method for preparation of macroporous amphoteric ion exchangers with highly crosslinked hydrophilic polymeric matrix
CN108939939B (en) Anticoagulation modified PVDF (polyvinylidene fluoride) flat separation membrane
GB2064556A (en) Water absorptive polymer composition
JPH02109570A (en) Silkfibroin-containing molding
JPH03503182A (en) polymerizable composition
JPS6039688B2 (en) Blood neophilic medical materials
JPS5949017B2 (en) Manufacturing method of anticoagulant medical polymer material
JPS591744B2 (en) self-reinforcing hydrogel
JPS6340419B2 (en)
JPS599565B2 (en) Novel medical hydrogel
JPS5844685B2 (en) Jikohokiyousei Hydrogel Youkizaino Seizouhouhou
JPS63220878A (en) Production of antithrombogenic medical molded body
JPS586726B2 (en) self-reinforcing hydrogel
JPS586725B2 (en) self-reinforcing hydrogel
JP3094693B2 (en) Zwitterionic polymer gel, zwitterionic polymer gel membrane and method for producing the same
JPS592299B2 (en) hydrogel
JPS5952170B2 (en) Anticoagulant hydrogel substrate
JPS60119955A (en) Synthetic polymer body for living body material
JPH02253845A (en) Water absorbing agent having superior salt resistance
JPH0414035B2 (en)