JPS594867A - Controller for flow rate of refrigerant - Google Patents

Controller for flow rate of refrigerant

Info

Publication number
JPS594867A
JPS594867A JP57111723A JP11172382A JPS594867A JP S594867 A JPS594867 A JP S594867A JP 57111723 A JP57111723 A JP 57111723A JP 11172382 A JP11172382 A JP 11172382A JP S594867 A JPS594867 A JP S594867A
Authority
JP
Japan
Prior art keywords
flow rate
refrigerant
pressure
refrigeration cycle
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57111723A
Other languages
Japanese (ja)
Other versions
JPH0154627B2 (en
Inventor
弘 安田
望月 武利
秀行 木村
千秋 隆雄
研作 小国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57111723A priority Critical patent/JPS594867A/en
Publication of JPS594867A publication Critical patent/JPS594867A/en
Publication of JPH0154627B2 publication Critical patent/JPH0154627B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍サイクルの冷媒流量制御装置に関するもの
である〇 冷凍サイクルの冷媒流量制御装置としてキャピラリチュ
ーブ又は温度式自動膨張弁が知られている。キャピラリ
チューブは毛細管の流路抵抗により、冷媒流量を調整す
るもので、冷凍サイクルの凝縮圧力と蒸発圧力が設計点
から大きく変化しない場合洗適しており、運転条件が犬
きく変化する場合には、流量制御を行なうことが不可能
となシ、過度の冷媒過熱又は液バツクが生じる問題点を
有する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerant flow rate control device for a refrigeration cycle. A capillary tube or a thermostatic automatic expansion valve is known as a refrigerant flow rate control device for a refrigeration cycle. Capillary tubes adjust the flow rate of refrigerant using the flow resistance of the capillary tubes, and are suitable for cleaning when the condensation pressure and evaporation pressure of the refrigeration cycle do not change significantly from the design point. It is impossible to control the flow rate, and there are problems in that excessive refrigerant overheating or liquid back up occurs.

これに対し、温度式自動膨張弁は、第1図に示すように
、冷凍サイクル中の冷媒と同種類の冷媒を封入した感温
筒1、ダイヤフラム2、ダイヤフラム上部圧力室3、ダ
イヤフラム下部圧力室4、ばね5、弁軸6、均圧孔7、
および毛細管8とからなり、キャピラリチューブに比べ
ると高度な冷媒流量制御を行うものである。感温筒1は
蒸発器コイル出口(図示せず)に取付けられ、コイル出
口の温度に相当する圧力を毛細管8を介してダイヤフラ
ムの上部圧力室3に伝える。また、均圧孔7は蒸発器コ
イル出口(外部均圧の場合)または蒸発器入口(内部均
圧の場合)の圧力をダイヤフラム下部圧力室4に伝え、
ばね5の力とのバランスによシ、弁軸6の位置を決め、
冷媒流量を制御するものである。しかし、このような温
度式自動膨張弁においても、ダイヤフラムの変形に限界
があること、また流量を制御する信号は、総べて、膨張
弁下流側(低圧側)の信号であり、冷凍サイクルの凝縮
圧力が著しく低下する場合には、弁前後の差圧が小さく
なるため制御#は不確実となり、適正な冷媒量を下流側
に供給できず、冷凍装置の性能が十分発揮できなくなる
という問題点を有する0 本発明は上記問題点に鑑みて発明されたもので、凝縮圧
力が著しく低下しても適正な冷媒流量を流すことができ
る。即し、広い運転範囲の冷媒流量制御が可能である冷
媒流量制御装置を提供することを目的とする。
On the other hand, a thermostatic automatic expansion valve, as shown in Figure 1, consists of a temperature-sensitive tube 1 filled with the same type of refrigerant as the refrigerant in the refrigeration cycle, a diaphragm 2, a diaphragm upper pressure chamber 3, and a diaphragm lower pressure chamber. 4, spring 5, valve stem 6, pressure equalizing hole 7,
and a capillary tube 8, and performs more advanced refrigerant flow rate control than a capillary tube. The temperature sensing cylinder 1 is attached to the evaporator coil outlet (not shown) and transmits a pressure corresponding to the temperature of the coil outlet to the upper pressure chamber 3 of the diaphragm via the capillary tube 8. In addition, the pressure equalization hole 7 transmits the pressure at the evaporator coil outlet (in the case of external pressure equalization) or the evaporator inlet (in the case of internal pressure equalization) to the diaphragm lower pressure chamber 4,
Determine the position of the valve stem 6 by balancing the force of the spring 5,
It controls the flow rate of refrigerant. However, even in such thermostatic automatic expansion valves, there is a limit to the deformation of the diaphragm, and the signals that control the flow rate are all downstream (low-pressure) side signals of the expansion valve, and are not connected to the refrigeration cycle. If the condensing pressure drops significantly, the differential pressure before and after the valve becomes small, making the control system uncertain, making it impossible to supply the appropriate amount of refrigerant to the downstream side, and causing the refrigeration system to fail to achieve its full performance. The present invention was invented in view of the above-mentioned problems, and it is possible to flow an appropriate flow rate of refrigerant even if the condensing pressure decreases significantly. That is, an object of the present invention is to provide a refrigerant flow rate control device that is capable of controlling refrigerant flow rate over a wide operating range.

上記目的を達成するため本発明は、側脚冷媒の流路をわ
ん曲状に形成し、冷凍サイクルの高低圧の圧力差に応じ
、わん曲状流路の曲率を変えて流路抵抗を変化させ、上
記圧力差が小さくなれば、上記曲率を太きくして流路抵
抗を小さくするように形成した特徴を有する。
In order to achieve the above object, the present invention forms the flow path of the side leg refrigerant in a curved shape, and changes the flow path resistance by changing the curvature of the curved flow path in accordance with the pressure difference between high and low pressures of the refrigeration cycle. When the pressure difference becomes smaller, the curvature becomes thicker to reduce the flow path resistance.

以下側図に基すき本発明の詳細な説明する。The present invention will be described in detail below based on side views.

先ず第2図は本発明の冷媒制御装置の基本的一実施例を
示す。二枚の可動板9.1oと、ばね11が、出入口開
口部12.13を有する容器14の中に収納されている
。可動板9.1oはそれぞれ小孔15.16を有してお
り、これらの孔15.16は互いに距離Xだけ離れた偏
心した位置にあけられている。このような構造からなる
冷媒流量制御装置を冷凍サイクルの冷媒流量制御機構と
して用いる場合、即ち、開口部12を凝縮子カ側に、開
口部13を蒸発圧力側に接続する。(蒸発圧力は一定と
しておく) 凝縮圧力が高く、高低圧カ差が大きい場合には、多量の
冷媒が孔15を通って下流側に流れようとし、可動板9
の前後では大きな圧力差が生じるその結果、第3図に示
すように可動板9は下流側に移動し、ばね11 (図示
せず)と釣合って変位△y1を生じ、可動板9と10の
距離はyl=3’0−△y+(yoは容器14に圧力が
加わらない状態での板9と10の距離)に短縮される。
First, FIG. 2 shows a basic embodiment of the refrigerant control device of the present invention. Two movable plates 9.1o and a spring 11 are housed in a container 14 having an inlet/outlet opening 12.13. The movable plates 9.1o each have a small hole 15.16, which holes 15.16 are bored eccentrically at a distance X from each other. When the refrigerant flow control device having such a structure is used as a refrigerant flow control mechanism of a refrigeration cycle, the opening 12 is connected to the condenser force side and the opening 13 is connected to the evaporation pressure side. (The evaporation pressure is kept constant.) When the condensation pressure is high and the difference between high and low pressures is large, a large amount of refrigerant tries to flow downstream through the holes 15, causing the movable plate 9
As a result, as shown in FIG. 3, the movable plate 9 moves downstream, creating a displacement Δy1 in balance with the spring 11 (not shown), causing a large pressure difference between the movable plates 9 and 10. The distance is reduced to yl=3'0-Δy+ (yo is the distance between the plates 9 and 10 when no pressure is applied to the container 14).

この際、小孔15と16id−直線上にはなく距離Xだ
け離れた位置にあるので、容器14の上流側開口12か
ら下流側聞口13に流れる流体は実線矢印の如く小孔1
5から小孔16へと小さな曲率で流れなければならない
為、流路抵抗は大となる。
At this time, since the small holes 15 and 16id are not on a straight line but are separated by a distance
5 to the small hole 16 with a small curvature, the flow resistance becomes large.

次に凝縮圧力が著しく低下した場合を考える。Next, consider the case where the condensing pressure drops significantly.

この場合には高低圧差は小さいので、小孔15を通って
流れる冷媒流量は少なく、可動板9の前後で生じる圧力
損失は小さくなるので、差圧によシ町膚右板9を下流側
に変位させようとする力は小さくなる。第4図に示すよ
うに、ばね11 (図示せず)の力との釣り合いにより
生じる変位△y2は、凝縮圧力が高い場合の変位△y1
より小さくなるため、可動板9と10の間隔はy2=7
0−△y2(>y+)となり、小孔15から小孔16へ
と流れる流体は、実線矢印の如く大きな曲率で流れるこ
とができるため、流路抵抗は小となる。
In this case, since the difference between high and low pressures is small, the flow rate of refrigerant flowing through the small holes 15 is small, and the pressure loss occurring before and after the movable plate 9 is small, so the pressure difference causes the right side plate 9 to be moved downstream. The force trying to displace it becomes smaller. As shown in FIG. 4, the displacement △y2 caused by the balance with the force of the spring 11 (not shown) is equal to the displacement △y1 when the condensation pressure is high.
Since it becomes smaller, the distance between movable plates 9 and 10 is y2=7
0-Δy2 (>y+), and the fluid flowing from the small hole 15 to the small hole 16 can flow with a large curvature as shown by the solid arrow, so the flow path resistance becomes small.

即ち、従来の絞シ機構が、絞り前後の差圧が小さくなる
と絞りを通過する流量が減少する特性を備えているのに
対して、本発明の制御装置によれば、絞り(小孔15.
16)前後の差圧が小さくなっても絞りを通過する流量
は変化しない、逆に、増加するという逆の特性を備える
ことが出来る上記冷媒流量制御装置を冷凍サイクル中に
組込んだ場合の特性を第5図に基すき説明する。
That is, while the conventional throttling mechanism has a characteristic that the flow rate passing through the throttling decreases when the differential pressure before and after the throttling decreases, the control device of the present invention has the characteristic that the flow rate passing through the throttling decreases when the differential pressure before and after the throttling decreases.
16) Characteristics when the above-mentioned refrigerant flow rate control device is incorporated into a refrigeration cycle, which can have the opposite characteristic that the flow rate passing through the throttle does not change even if the differential pressure before and after becomes small, but on the contrary, it increases. will be explained based on FIG.

第5図は、横軸に絞り前後の差圧△P1縦軸に絞υを通
過する流量Grを示している。曲線Aは負荷に応じて冷
媒流量が適正に制御された場合の冷凍サイクル特性を示
しておシ、一般に差圧が小さくなると多くの冷媒流量を
必要とする左上りの傾向となる。曲線Bは一般の絞り機
構の抵抗特性で、差圧の平方根に比例した右上りの特性
(Gr区、rKl)を示している。これらの曲線の交点
aが設計点での差圧△PO1冷媒流量GrOを表わすこ
とになる。
In FIG. 5, the horizontal axis shows the differential pressure ΔP before and after the throttle, and the vertical axis shows the flow rate Gr passing through the throttle υ. Curve A shows the refrigeration cycle characteristics when the refrigerant flow rate is appropriately controlled according to the load, and generally has an upward trend to the left where a large refrigerant flow rate is required as the differential pressure becomes smaller. Curve B is the resistance characteristic of a general throttle mechanism, and shows an upward-sloping characteristic (Gr section, rKl) proportional to the square root of the differential pressure. The intersection a of these curves represents the differential pressure ΔPO1 refrigerant flow rate GrO at the design point.

今、負荷状況が変化し、凝縮圧力が低下し、差圧が設計
点における差圧よシ小さくΔp+になった場合を考える
と、冷凍サイクル側から要求される冷媒流量はGAであ
るのに対し、従来の曲線Bの特性を持つ絞りが流すこと
の流量はGB(GB(GA)であり、ΔG I=GA−
GBの冷媒流量が不足するため、冷凍サイクルの性能は
著しく低下する。これに対し、本発明の冷媒流量制御装
置低圧の圧力差が小さくなれば流路抵抗は減少し差圧Δ
PlでGcの冷媒流量を流すことが出来るので、不足流
量ΔG2=GA−Gc ((ΔGl)となり、従来の絞
シ機構を用いる場合に比べ、不足流量を少なくすること
が出来るため、冷凍サイクルの性能の低下を防ぐことが
出来る。尚、小孔15.16の径および偏心量Xを変え
ることにより種々の特性を備えた実施例を作り出すこと
が可能である。
Now, considering the case where the load situation changes, the condensing pressure decreases, and the differential pressure becomes Δp+, which is smaller than the differential pressure at the design point, the refrigerant flow rate required from the refrigeration cycle side is GA. , the flow rate of the aperture with the characteristic of the conventional curve B is GB (GB (GA), ΔG I=GA−
Due to the insufficient flow rate of GB refrigerant, the performance of the refrigeration cycle is significantly reduced. On the other hand, if the pressure difference in the low pressure of the refrigerant flow control device of the present invention becomes smaller, the flow path resistance decreases and the differential pressure Δ
Since the refrigerant flow rate of Gc can be made to flow with Pl, the insufficient flow rate ΔG2 = GA - Gc ((ΔGl), and compared to the case of using the conventional throttling mechanism, the insufficient flow rate can be reduced, so the refrigeration cycle Deterioration in performance can be prevented. By changing the diameter and eccentricity X of the small holes 15 and 16, it is possible to create embodiments with various characteristics.

次に他の実施例を第6図に示す。この実施例は複数@(
4@)の可動板17a%  171)1 t7c、17
dと複数flim(3岡)のばねt8aq  t8b、
18Cを組合せた例であり、4飼の可動板17a、+7
b%  17Cs  17’iに設ける小孔19の個数
、位置を各可動板毎に変えることにより、また、各ばね
18 aN  I 8 bs  I 8 Cのばねの強
さ変えることにより種々の特性を出すことが可能であり
、第5図にAで示す特性に近づける。即ち、理想に近い
絞り機構とすることが出来る。
Next, another embodiment is shown in FIG. This example has multiple @(
4@) movable plate 17a% 171) 1 t7c, 17
d and multiple flim (3 oka) springs t8aq t8b,
This is an example in which 18C is combined, and 4 movable plates 17a, +7
b% 17Cs By changing the number and position of small holes 19 provided in 17'i for each movable plate, and by changing the strength of each spring 18 aN I 8 bs I 8 C, various characteristics can be obtained. This makes it possible to approach the characteristic shown by A in FIG. In other words, it is possible to create a diaphragm mechanism that is close to the ideal.

更に他の実施例を第7図に示す。この実施例は可動板9
.10の端面をフランジ状9.10とし、可動板の位置
の安定化を図っている。(ばねの図示は省略する) 更に他の実施例を第8図に示す。この実施例は、可動板
9.10の外周にシールリング20(例えばテフロンリ
ング)を嵌装し、可動板9.10と容器14の内壁から
の洩れを少なくじいる。(ばねの図示は省略する) 以上説明したように本発明によれば、冷凍サイクルの高
低圧の圧力差が小さくなっても、冷媒流量は減少せず、
冷媒流量はむしろ増加するという特性を備えた絞り特性
が得られ、冷凍サイクルの運転条件が変化した場合、特
に、凝縮圧力が著しく低下した場合の冷凍サイクルの特
性、効率を大巾に向上することが出来る。
Still another embodiment is shown in FIG. In this embodiment, the movable plate 9
.. The end face of 10 is shaped like a flange 9.10 to stabilize the position of the movable plate. (Illustration of the spring is omitted) Still another embodiment is shown in FIG. In this embodiment, a seal ring 20 (for example, a Teflon ring) is fitted around the outer circumference of the movable plate 9.10 to reduce leakage from the movable plate 9.10 and the inner wall of the container 14. (The spring is not shown.) As explained above, according to the present invention, even if the pressure difference between high and low pressures in the refrigeration cycle becomes small, the refrigerant flow rate does not decrease.
A throttling characteristic is obtained in which the refrigerant flow rate increases, and the characteristics and efficiency of the refrigeration cycle are greatly improved when the operating conditions of the refrigeration cycle change, especially when the condensing pressure decreases significantly. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度式自動膨張弁の説明図、第2図は本
発明の一実施例を示す冷媒流量!制御装置の断面図、第
3図、第4図は夫々第2図の実施ψ1jの作動説明図、
第5図は冷媒流置市1j御装置の特性を示す線図、第6
図乃至第8図は夫々他の実施f1jを示す冷媒流量制御
装置の断面図である09.10・・・可11fll板9
’、10’・・・フランジ板 11・・・ばね 12.
13・・・開口 14・・・容器 15.16 ・・・
小孔 17a、171)、170,17d・・・可動板
 18a、18bs  18a・・・ばね 19・・・
73%孔 20・・・シールリング 代理人 弁理士 薄 1)利′やさ 耶う閏 狙m 今 帽准 壌す関 2
Fig. 1 is an explanatory diagram of a conventional thermostatic automatic expansion valve, and Fig. 2 shows an example of the refrigerant flow rate of the present invention. A cross-sectional view of the control device, FIGS. 3 and 4 are explanatory diagrams of the operation of the implementation ψ1j of FIG. 2, respectively.
Figure 5 is a diagram showing the characteristics of the refrigerant storage unit 1j control device, Figure 6
9 to 8 are cross-sectional views of the refrigerant flow rate control device showing other implementations f1j.
', 10'...Flange plate 11...Spring 12.
13...Opening 14...Container 15.16...
Small holes 17a, 171), 170, 17d...Movable plate 18a, 18bs 18a...Spring 19...
73% hole 20... Seal ring agent Patent attorney Sui 1) Li' Yasaya Yai Yaibai m Now hat Junyangsu Seki 2

Claims (1)

【特許請求の範囲】[Claims] 冷凍サイクルの高圧側と低圧側に接続される開口を備え
た容器内に、小孔を有する複数個の可動板を、可動板間
にばねを挾み込んで容器内を摺動可能に配設し、隣設可
動板の上記小孔は、ずれた位置に設けられ、冷凍サイク
ルの高低圧の圧力差に応じ、小孔にて形成されるわん曲
流路の曲率が変化し、上記圧力差が小さくなれば上記流
路の曲率が大きくなることを特徴とする冷媒流量制御装
置。
A plurality of movable plates with small holes are placed in a container with openings connected to the high-pressure side and low-pressure side of the refrigeration cycle, with springs inserted between the movable plates so that they can slide inside the container. However, the small holes in the adjacent movable plate are provided at different positions, and the curvature of the curved flow path formed by the small holes changes according to the pressure difference between high and low pressures of the refrigeration cycle, and the above pressure difference A refrigerant flow rate control device characterized in that the curvature of the flow path increases as the curvature of the flow path decreases.
JP57111723A 1982-06-30 1982-06-30 Controller for flow rate of refrigerant Granted JPS594867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111723A JPS594867A (en) 1982-06-30 1982-06-30 Controller for flow rate of refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111723A JPS594867A (en) 1982-06-30 1982-06-30 Controller for flow rate of refrigerant

Publications (2)

Publication Number Publication Date
JPS594867A true JPS594867A (en) 1984-01-11
JPH0154627B2 JPH0154627B2 (en) 1989-11-20

Family

ID=14568526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111723A Granted JPS594867A (en) 1982-06-30 1982-06-30 Controller for flow rate of refrigerant

Country Status (1)

Country Link
JP (1) JPS594867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373059A (en) * 1986-09-13 1988-04-02 ダイキン工業株式会社 Refrigerator
US6354417B1 (en) * 1999-09-03 2002-03-12 Honda Giken Kogyo Kabushiki Kaisha Transmission
JP2006214588A (en) * 2005-02-04 2006-08-17 Fluid Management Operations Llc Valve assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373059A (en) * 1986-09-13 1988-04-02 ダイキン工業株式会社 Refrigerator
JPH052902B2 (en) * 1986-09-13 1993-01-13 Daikin Ind Ltd
US6354417B1 (en) * 1999-09-03 2002-03-12 Honda Giken Kogyo Kabushiki Kaisha Transmission
JP2006214588A (en) * 2005-02-04 2006-08-17 Fluid Management Operations Llc Valve assembly

Also Published As

Publication number Publication date
JPH0154627B2 (en) 1989-11-20

Similar Documents

Publication Publication Date Title
US3967782A (en) Refrigeration expansion valve
US5004008A (en) Variable area refrigerant expansion device
CN100582534C (en) Thermal expansion valve
JPH02166367A (en) Temperature expansion valve
CN105531550B (en) Expansion valve
US4500035A (en) Expansion valve
CN102759234B (en) Thermostatic expansion valve
JP2008138812A (en) Differential pressure valve
US2327542A (en) Refrigerant control valve
CN107238238B (en) Throttling device and air conditioning system
US8596552B2 (en) Valve for use in a refrigeration system
CN105579793B (en) Expansion valve
JPH086986B2 (en) Refrigerant expansion device
JPS594867A (en) Controller for flow rate of refrigerant
CN101294761A (en) Thermal expansion valve
US2291898A (en) Expansion valve
JPH08296929A (en) Two-way constant pressure expansion valve
CN105822770B (en) Two-way thermal expansion valve
CN204460866U (en) Two-way thermal expansion valve
CN204420130U (en) Two-way thermal expansion valve
CN209041731U (en) Loop heat pipe and thermal switch structure thereof
CN208671435U (en) A kind of unidirectional refrigeration expansion valve of passive self-adaptive formula
US2277998A (en) Control valve
US3696628A (en) Thermostatic expansion valve for refrigeration system
CN104748457A (en) Heat expansion valve and valve core component thereof