JPS5948651A - Immobilized enzyme membrane - Google Patents

Immobilized enzyme membrane

Info

Publication number
JPS5948651A
JPS5948651A JP57160444A JP16044482A JPS5948651A JP S5948651 A JPS5948651 A JP S5948651A JP 57160444 A JP57160444 A JP 57160444A JP 16044482 A JP16044482 A JP 16044482A JP S5948651 A JPS5948651 A JP S5948651A
Authority
JP
Japan
Prior art keywords
membrane
enzyme
glass plate
immobilized enzyme
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57160444A
Other languages
Japanese (ja)
Other versions
JPH0348462B2 (en
Inventor
Yoshitaka Shirakawa
白川 義貴
Koichi Takizawa
滝沢 耕一
Satoshi Nakajima
聡 中嶋
Masato Arai
真人 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP57160444A priority Critical patent/JPS5948651A/en
Publication of JPS5948651A publication Critical patent/JPS5948651A/en
Publication of JPH0348462B2 publication Critical patent/JPH0348462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To obtain a single layer immobilized enzyme membrane high in strength, by containing enzyme in a polymer matrix having one porous surface permeable to an enzyme substrate and an opposite surface permeable to only low molecular substance being substance to be detected in a granular form. CONSTITUTION:For example, a water contained org. solution containing cellulose triacetate and cellulose diacetate is applied to a glass plate and, after allowed to stand for a while, the coating layer is immersed in n-hexane along with the glass plate to be gelled and the gelled membrane is peeled off while the whole is immersed in an aqueous solution to be dried. The dried gel is immersed in an enzyme E-containing aqueous solution to absorb the same. On the other hand, a cellulose diacetate aqueous solution is applied to a glass plate and the aforementioned enzyme contained membrane P is put on the coated glass plate before the solvent therein is volatilized and the whole is allowed to stand in dry air to partially transfer the solvent of the membrane P to the dense layer A on the glass plate to integrate both of them. The enzyme E is subjected to phase separation during this process and dispersed in a granular form to be held in a cellulose acetate matrix. By this method, one layer membrane having high strength and good properties is obtained.

Description

【発明の詳細な説明】 発明の分野 この発明は固定化酵素膜に関し、特に電極面に装着され
、その電極を被検液から隔てる膜であって、膜中に酵素
が固定化され、膜が被検液と接触したとき被検液に含ま
れる分析種が膜中に拡散し、膜中の固定化酵素の反応に
よってその分析種の濃度に対応した電極活性物質の増減
として電気化学的に検知する酵素電極に用いる固定化酵
素膜に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an immobilized enzyme membrane, and more particularly to a membrane attached to an electrode surface and separating the electrode from a test liquid, in which an enzyme is immobilized and the membrane is When it comes into contact with the test liquid, the analyte contained in the test liquid diffuses into the membrane, and is electrochemically detected as an increase or decrease in the electrode active substance corresponding to the concentration of the analyte due to the reaction of the immobilized enzyme in the membrane. This invention relates to an immobilized enzyme membrane used in an enzyme electrode.

先行技術の説明 近年酵素電極は特に臨床化学分析の分野で分析手段の1
つとして広く応用されるに至っている。
Description of the prior art In recent years, enzyme electrodes have become one of the analytical tools, especially in the field of clinical chemistry analysis.
It has come to be widely applied as one.

従来の比色法では測定すべき体液試料に着色が存在した
りすると測定が困難な場合があるが、酵素電極法は全面
のような検体にも応用でき、特殊な試薬もほとんど必要
とせず、簡便で比較的精度良い分析が迅速に行なえるな
ど多大な利点を有している。このような利点を有する酵
素電極法は、高価な酵素試薬を節約すべ(、酵素を固定
化して使用することが常識的であるが、いくつか存在す
る固定化酵素の利用形態のうち、膜状に形成した固定化
酵素膜を下地電極の作用表面に配置する形態が実用的に
優れたものとして、活発に研究開発が行なわれている。
With conventional colorimetric methods, measurements may be difficult if the body fluid sample to be measured is colored, but the enzyme electrode method can be applied to specimens such as whole surfaces, and requires almost no special reagents. It has many advantages, such as being able to perform simple, relatively accurate analysis quickly. The enzyme electrode method, which has these advantages, saves expensive enzyme reagents (and it is common sense to use the enzyme immobilized). Active research and development is being carried out on a method in which an immobilized enzyme film formed in the above-mentioned manner is placed on the working surface of a base electrode as a practical method.

第1図は従来の固定化酵素膜の一例を示す断面図解図で
ある。この固定化酵素膜は電極活性物質(たとえばH2
O2)を選択的に透過させる薄膜Aと、高分子排除性の
多孔性支持膜Pとを含み、酵素Eを含みそれが固定化さ
れた接着剤層ELを介して、これら薄膜Aおよび支持N
IPを積層接着した固定化酵素膜である。
FIG. 1 is an illustrative cross-sectional view showing an example of a conventional immobilized enzyme membrane. This immobilized enzyme membrane contains an electrode active substance (e.g. H2).
A thin film A that selectively permeates O2) and a porous support film P that excludes polymers, and these thin films A and support N
This is an immobilized enzyme membrane with IP laminated and bonded.

第2図はこの発明の背景となる従来の固定化酵素膜の他
の例を示す断面図解図である。この酵素膜は電極活性物
質(H2O2)を選択的に透過させる層を含む非対称膜
Aのスポンジ層に固定化酵素Eを含有せしめ、高分子排
除性の多孔性支持膜Pを積層してなる。
FIG. 2 is an illustrative cross-sectional view showing another example of a conventional immobilized enzyme membrane, which is the background of the present invention. This enzyme membrane is made by laminating an asymmetric membrane A that contains an immobilized enzyme E in a sponge layer of an asymmetric membrane A that includes a layer that selectively permeates an electrode active substance (H2O2), and a porous support membrane P that excludes polymers.

このように、現在までに知られた固定化酵素膜は、固定
化された酵素と、下地電極たとえばH2O2電極の被検
物質のみを選択的に透過させる緻密な薄層を有する高分
子膜が、接着剤あるいはこの高分子膜の片面に形成した
多孔層を利用して多孔性支持膜と密に合体化されたもの
である。
In this way, the immobilized enzyme membranes known to date are polymer membranes that have a dense thin layer that selectively permeates only the immobilized enzyme and the analyte at the underlying electrode, such as the H2O2 electrode. It is tightly integrated with a porous support membrane using an adhesive or a porous layer formed on one side of the polymer membrane.

一方、酵素電極用の固定化酵素膜としては、少なくとも
以下のような機能的要素を具備していなければならない
On the other hand, an immobilized enzyme membrane for an enzyme electrode must have at least the following functional elements.

(1) 被検溶液に対向する膜面ば、酵素等の高分子を
通過させず、内部に含有する酵素分子の漏出を防ぐとと
もに、被検液に含まれる蛋白分解酵素等の浸入を防止し
かつ酵素の基質分子は自由に透過させること。
(1) The membrane surface facing the test solution does not allow macromolecules such as enzymes to pass through, preventing leakage of enzyme molecules contained inside and preventing infiltration of proteolytic enzymes, etc. contained in the test solution. And enzyme substrate molecules should be freely permeable.

(2) 下地電極の表面に対向する膜面は、この下地電
極の検知物質が選択的に透過されかつこの電極の妨害と
なる物質は効果的に排除すること。
(2) The membrane surface facing the surface of the base electrode must selectively allow the detection substance of the base electrode to pass therethrough, while effectively eliminating substances that would interfere with the electrode.

(3) 上記(1)および(2)の機能的要素を満足す
る膜の内部に、電極不活性物質を効率良(その電極の検
知物質へと化学変化させる触媒、すなわら固定化酵素が
充分内i&illされていること。
(3) Inside the membrane that satisfies the functional elements of (1) and (2) above, there is a catalyst, i.e., an immobilized enzyme, that chemically converts the electrode inert substance into the electrode's detectable substance in an efficient manner. I & ill be fully satisfied.

(4) 実用的なものであるためには、機械的安定性に
優れていること。
(4) In order to be practical, it must have excellent mechanical stability.

(5) 酵素電極として迅速な応答を得るためには、そ
の膜厚は可及的薄いこと。
(5) In order to obtain a rapid response as an enzyme electrode, the film thickness should be as thin as possible.

上記(1)ないしく5)を全て完全に満足させた固定化
酵素膜は未だ得られていない。というのも、上記(4)
および(5)の要求を満たしながら、上記(1)、(2
)および(3)を同時に充足するには、製作上二律背反
的な条件を含むことになるからである。し1cがって、
製法上存在する5− 二律背反性を解決するために、第1図または第2図に示
ずように、上記機能要素(1)ないしく3)を2つある
いは3つに分け、分割されたそれぞれの機能を有する躾
を接着剤あるいは機械的手段で積層して構成していた。
An immobilized enzyme membrane that completely satisfies all of the above (1) to 5) has not yet been obtained. This is because (4) above
and (5), while satisfying the requirements of (1) and (2) above.
) and (3) at the same time would involve contradictory conditions in production. According to 1c,
5- In order to solve the trade-off that exists in the manufacturing method, the above functional elements (1) or 3) are divided into two or three parts, as shown in Figure 1 or Figure 2, and each of the divided parts is divided into two or three parts. It was constructed by laminating layers with adhesive or mechanical means.

ところが、従来の固定化酵素膜は、第1図のように強力
な接着剤等を酵素の固定化操作の段階で添加して積層し
たものでは、酵素の失活や高分子排除性の多孔質膜の孔
を塞ぐという問題があり、また第2図のように機械的に
積層したものにおいては、各膜層間の物性の相違により
膜層間に無視できない空隙を作るなどの問題があった。
However, as shown in Figure 1, conventional immobilized enzyme membranes are laminated with strong adhesives added at the stage of enzyme immobilization, resulting in deactivation of the enzyme and porous membranes that exclude polymers. There is a problem of blocking the pores of the membrane, and in the case of mechanically laminated membranes as shown in FIG. 2, there is a problem that non-negligible voids are created between the membrane layers due to differences in physical properties between the membrane layers.

しかも、上記(1)および(2)の機能を保有する2つ
の膜層はそれを形成する物質が完全に異なるものである
ので、保存中あるいは使用中に剥離し、使用不可になっ
てしまうこともあった。
Moreover, since the two membrane layers that have the functions (1) and (2) above are made of completely different substances, they may peel off during storage or use and become unusable. There was also.

発明の目的 そこで、この発明は、固定化酵素膜に要求される機能的
要素を不可分の1枚の膜として形成することにより、従
来の問題点を尽く解消し得る、酵6一 素電極用の固定化酵素膜を提供せんとするものである。
Purpose of the Invention Therefore, the present invention provides a method for an enzyme electrode that can completely eliminate the conventional problems by forming the functional elements required for an immobilized enzyme membrane as one inseparable membrane. The purpose is to provide an immobilized enzyme membrane.

発明の構成 この発明は、簡単に言えば、1枚の膜からなり、その一
方面は高分子量物質を排除しかつ固定化される酵素が基
質程度の分子量を有する物質は自由透過する孔を多数保
有した面として形成し、他方面は下地電極の被検物質で
ある低分子量物質のみを透過しかつ酵素基質ならびに電
極応答に対して妨害となる分子を排除するような緻密面
として形成し、これらの面間に合成高分子マトリクスを
形成し、その中に固定化された酵素を顆粒状に分散させ
てなる、膜の機能的構成が物理的、化学的に不可分に一
体化された固定化酵素膜である。
Structure of the Invention Simply put, this invention consists of one membrane, one side of which has a large number of pores that exclude high molecular weight substances and through which substances with a molecular weight similar to that of the substrate for immobilized enzymes can freely pass through. The other side is formed as a dense surface that allows only the low molecular weight substance that is the analyte of the base electrode to pass through and excludes molecules that interfere with the enzyme substrate and electrode response. An immobilized enzyme in which the functional structure of the membrane is physically and chemically inseparably integrated, by forming a synthetic polymer matrix between the surfaces of the membrane and dispersing the immobilized enzyme in granules. It is a membrane.

以下に、図面に示す実施例とともにこの発明をより詳細
に説明する。
The invention will be explained in more detail below along with embodiments shown in the drawings.

実施例の説明 第3図はこの発明の一実施例を示す断面図解図である。Description of examples FIG. 3 is an illustrative cross-sectional view showing one embodiment of the present invention.

この実施例では、固定化酵素膜は1枚の膜として構成ざ
る。すなわち、高分子排除性の躾IMFと、電極活性物
質を選択的に透過せしめる膜層Aとが一体的に連続して
いる。この膜層PとAとの融合部分は、膜層Pを形成す
る高分子複合体の組成が膜層A側に移行するに従いこの
膜層Aを形成する高分子成分に連続的に変化して融合し
ている。そして、高分子排除性の多孔性膜層Pと電極活
性物質透過性の緻密性膜層Aとの間には、ポリマ混成体
からなる合成高分子マトリク゛スが形成される。この合
成高分子マトリクスは、その厚み方向に異方性を有する
。すなわち、この1枚の両面およびその両面間に形成さ
れた合成高分子マトリクスは、相容性である2種以上の
合成高分子物質の組合せから選択された素材により連続
した層として形成されている。また、合成高分子マトリ
クス中には、酵素が顆粒状に分散される。この酵素を含
有する顆粒部分はその合成高分子マトリクスとは相分離
状態に内蔵される。すなわち、物理的包括によって酵素
が膜中に保持され、固定化される。
In this example, the immobilized enzyme membrane is constructed as a single membrane. That is, the polymer-excluding IMF and the membrane layer A that selectively allows the electrode active substance to permeate are integrally continuous. The fused portion of this membrane layer P and A changes continuously into the polymer component that forms this membrane layer A as the composition of the polymer composite forming the membrane layer P shifts to the membrane layer A side. It's fused. A synthetic polymer matrix made of a polymer hybrid is formed between the porous membrane layer P that excludes polymers and the dense membrane layer A that is permeable to the electrode active substance. This synthetic polymer matrix has anisotropy in its thickness direction. That is, both surfaces of this single sheet and the synthetic polymer matrix formed between the two surfaces are formed as a continuous layer of materials selected from a combination of two or more compatible synthetic polymer substances. . Furthermore, the enzyme is dispersed in the form of granules in the synthetic polymer matrix. The granule portion containing the enzyme is contained in a state of phase separation from the synthetic polymer matrix. That is, the enzyme is retained and immobilized in the membrane by physical entrapment.

このように、この実施例の固定化酵素膜はそれぞれの機
能が、物理的化学的に不可分の1枚の膜中に存在してい
るため、保存中あるいは使用中に際して、膜層間に空隙
や剥離が生じることはない。
In this way, each function of the immobilized enzyme membrane of this example exists in a single membrane that is physically and chemically inseparable, so there are no gaps or peeling between the membrane layers during storage or use. will not occur.

これに対して、従来のものでは、下地電極に接する側と
被検液に接する側との間は物理的および/または化学的
に連続していないので、操作により、それぞれの膜層が
剥離し、特に水に浸すだけでも多孔性支持膜がしばしば
剥離する。ところが、上記のように不可分の1枚の膜と
して構成した固定化酵素膜では、そのような剥離の可能
性は全く生じない。
In contrast, with conventional products, the side in contact with the base electrode and the side in contact with the test liquid are not physically and/or chemically continuous, so the respective membrane layers may peel off during operation. In particular, porous support membranes often peel off even by immersion in water. However, in the case of an immobilized enzyme membrane constructed as one indivisible membrane as described above, such possibility of peeling does not occur at all.

このような固定化酵素膜は以下のようにして作成できる
Such an immobilized enzyme membrane can be produced as follows.

K薯lN1 (a) トリアセチルセルロース(以下rTACl)を
3〜6部とジアセチルセルロース(以下rDAcJ )
を9〜12部の割合で混合した混合セルロースエステル
を、アセトン50部とシクロヘキサノン30部および水
5部からなる溶媒に溶解してキャスト液を調製した。こ
のキャスト液を9− 硝子板上にナイフコータで、30μmの厚さに均一に流
延し、10〜30秒空気中に放置した後、n−へキサン
中に投入してゲル化させ、さらに蒸溜水中に浸して侵硝
子板から剥離し、非対称膜を得た。この非対称膜を乾燥
した後、直径2〜3clllの円に切り、減圧下に保持
したグルコース酸化酵素(以下rGODJ )と牛血清
アルブミン(以下rBsAJ )とを含む水溶液中にそ
の円形の非対称膜を一夜放置した。
K1N1 (a) 3 to 6 parts of triacetylcellulose (hereinafter referred to as rTACl) and diacetylcellulose (hereinafter referred to as rDAcJ)
A casting liquid was prepared by dissolving a mixed cellulose ester prepared by mixing 9 to 12 parts of the following in a solvent consisting of 50 parts of acetone, 30 parts of cyclohexanone, and 5 parts of water. This casting solution was uniformly cast onto a 9-glass plate with a knife coater to a thickness of 30 μm, left in the air for 10 to 30 seconds, then poured into n-hexane to gel, and further distilled. An asymmetric membrane was obtained by immersing it in water and peeling it off from the vitreous plate. After drying, this asymmetric membrane was cut into circles with a diameter of 2 to 3 clll, and the circular asymmetric membrane was placed in an aqueous solution containing glucose oxidase (rGODJ) and bovine serum albumin (rBsAJ) kept under reduced pressure overnight. I left it alone.

(b)  上記(a>記載の膜とは別に、DAC5部お
よびアセトン60部とシクロへキサノン35部からなる
第2のキャスト液を調製した。この第2のキャスト液を
硝子・板上に流延した後、直ちに高速回転機にかけて均
一に薄くその硝子板をコーティングした。この第2のキ
ャスト液の溶媒が揮散しないうちに、上記(a )で作
成された、GODを含んだ湯側状態の非対称膜のスポン
ジ層を内側にして、第2のキャスト液がコーティングさ
れた硝子板上に載せ、乾燥空気中に数時間放置した。そ
の後、このようにして形成された固定化酵10− 素膜を剥離した。このように、(a)で作成した非対称
膜を、第2のキャスト液の溶媒が揮散しないうちにその
上に載せて乾燥させることによって、第3図の高分子複
合体の組成がP側からA側に移行するに従いAを形成す
る高分子成分に連続的に変化して融合し、物理的化学的
に一体化されるのである。
(b) Separately from the membrane described in (a) above, a second casting solution consisting of 5 parts of DAC, 60 parts of acetone, and 35 parts of cyclohexanone was prepared. This second casting solution was poured onto the glass plate. After spreading, the glass plate was immediately coated in a high-speed rotary machine in a uniform and thin layer. Before the solvent of this second casting liquid evaporated, the hot water side containing GOD prepared in (a) above was coated. The asymmetric membrane was placed with the sponge layer on the inside on a glass plate coated with the second casting solution and left in dry air for several hours.Then, the thus formed immobilized enzyme membrane In this way, by placing the asymmetric membrane prepared in (a) on top of the second casting liquid and drying it before the solvent evaporates, the composition of the polymer composite shown in Figure 3 is obtained. As it moves from the P side to the A side, it continuously changes and fuses with the polymer component that forms A, and is physically and chemically integrated.

このようにして形成した固定化酵素膜の第2のキャスト
液で形成した面すなわち硝子板にコートされた面を下地
電極に対向させて装着し、酵素電極を作成した。その結
果得られた性能等を、比較例(後述)とともに表に示し
た。
The surface of the thus formed immobilized enzyme membrane formed with the second casting solution, that is, the surface coated on the glass plate, was mounted facing the base electrode to prepare an enzyme electrode. The performance obtained as a result is shown in the table together with comparative examples (described later).

実施例2 (a)  DACを10部とニトロセルロース(以下r
NcJ )5部を、硝酸リチウムを飽和したジメヂルホ
ルムアミドに溶解し、キャスト液を得た。このキャスト
液を硝子板上に流延し、乾燥空気中に30〜50秒放隨
した後、蒸溜水中に投入して非対称膜を得た。このNo
−DACからなる非対称膜を風乾後円形に切り、それを
上記実施例1と同様に、減圧下に、GODおよびBSA
を含む溶液に浸し一夜放置した。
Example 2 (a) 10 parts of DAC and nitrocellulose (r
NcJ) was dissolved in dimethylformamide saturated with lithium nitrate to obtain a casting liquid. This casting solution was cast onto a glass plate, left to stand in dry air for 30 to 50 seconds, and then poured into distilled water to obtain an asymmetric membrane. This No.
- The asymmetric membrane consisting of DAC was air-dried and then cut into circular shapes, which were then treated with GOD and BSA under reduced pressure in the same manner as in Example 1 above.
It was immersed in a solution containing it and left overnight.

(b)  上記(a>で作成した非対称膜を前記実施例
1の(b)と同様に処理して、固定化酵素膜を得た。こ
の固定化酵素膜を装着した酵素電極によって得られた性
能等を、比較例とともに、表に示した。
(b) The asymmetric membrane prepared in (a) above was treated in the same manner as in (b) of Example 1 to obtain an immobilized enzyme membrane. Performance etc. are shown in the table along with comparative examples.

比較例 DACを10部、アセトン55部、シクロへキサノン3
5部からなるキャスト液を硝子板上に流延し、空気中に
約10分間放置した後、n−ヘキサン中に投入し、非対
称膜を作成した。この非対称膜のスポンジ層に、GOD
とグルタルアルデヒドを含む溶液を塗布し、その上に多
孔性ポリカーボネート膜を積層して第2図に示すような
固定化酵素膜を得た。これを下地電極面に装着して酵素
電極を作成した。その結果得られた性能が表に上記実施
例1および2の結果とともに、示される。
Comparative Example: 10 parts of DAC, 55 parts of acetone, 3 parts of cyclohexanone
A casting solution consisting of 5 parts was cast onto a glass plate, left in the air for about 10 minutes, and then poured into n-hexane to form an asymmetric membrane. In the sponge layer of this asymmetric membrane, GOD
A solution containing glutaraldehyde and glutaraldehyde was applied, and a porous polycarbonate membrane was laminated thereon to obtain an immobilized enzyme membrane as shown in FIG. This was attached to the base electrode surface to create an enzyme electrode. The resulting performance is shown in the table together with the results of Examples 1 and 2 above.

なお、この発明に利用され得る相容性の素材としては、
二酢酸セルロースおよび三酢酸セルロースの酢酸セルロ
ース類を組合せた系あるいはニトロセルロースおよび酢
酸セルロースの系の他に、ニトロセルロースおよびポリ
ビニル酢酸の系、ニトロセルロースおよびポリアクリル
酸メチルの系。
In addition, compatible materials that can be used in this invention include:
In addition to a combination of cellulose acetates such as cellulose diacetate and cellulose triacetate, or a system of nitrocellulose and cellulose acetate, a system of nitrocellulose and polyvinyl acetate, and a system of nitrocellulose and polymethyl acrylate.

ニトロセルロースおよびポリメタクリル酸メチルの系も
しくはポリメタクリル酸およびポリビニル酢酸の系など
が挙げられる。
Examples include a nitrocellulose and polymethyl methacrylate system or a polymethacrylic acid and polyvinyl acetic acid system.

また、先の実施例では、多官能性試薬などによる酵素の
化学的な固定化を行なわず、物理的な包括によるもので
あったが、この酵素を膜中に分散13− させてなる酵素膜の製膜途上で、化学薬品によって酵素
同士をあるいは、BSAなどの保護物質と酵素を共有結
合させてざらに不動化させてもよい。
In addition, in the previous example, the enzyme was not chemically immobilized using a polyfunctional reagent, but instead was physically encased, but an enzyme membrane in which the enzyme is dispersed in the membrane is prepared During film formation, the enzymes may be roughly immobilized by covalent bonding with each other or with a protective substance such as BSA using chemicals.

しかしながら、この発明は上記材料や酵素の複合高分子
マトリクス中への物理的包括固定の上に行ない得る固定
化方法には限定されるべきでないことはもちろんである
However, it goes without saying that this invention should not be limited to immobilization methods that can be carried out by physically entrapping the above-mentioned materials and enzymes into a composite polymer matrix.

発明の効果 以上のように、この発明によれば、要求される異なる機
能的要素を、物理的化学的に不可分の一体の1枚の膜に
よって構成することができるので、固定化酵素膜の剥離
を生じることがない。
Effects of the Invention As described above, according to the present invention, different required functional elements can be constructed by a single membrane that is physically and chemically inseparable. will not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれこの発明の背景となる異
なる従来例を示す断面図解図である。 第3図はこの発明の一実施例を示す断面図解図である。 図において、Pは多孔性膜層、Aは緻密性膜層を示す。 14− 第1図        槍2 第3図 289−
FIG. 1 and FIG. 2 are sectional views showing different conventional examples which form the background of the present invention. FIG. 3 is an illustrative cross-sectional view showing one embodiment of the present invention. In the figure, P indicates a porous membrane layer and A indicates a dense membrane layer. 14- Figure 1 Spear 2 Figure 3 289-

Claims (4)

【特許請求の範囲】[Claims] (1) 被検物質を電気化学的に検知するための電極を
有する酵素電極に用いられる固定化酵素膜であって、 1枚の躾からなり、 一方面が高分子量物質を排除しかつ固定化される酵素の
基質程度の分子量を有する物質は自由透過する孔を有し
た面として形成され、 他方面が前記電極の被検物質である低分子量物質のみを
透過しかつ酵素基質ならびに電極応答に対して妨害とな
る分子を排除する機能を有する緻密面として形成され、 前記2つの面の間に合成高分子マトリクスが形成され、
この合成高分子マトリクス中に固定化された酵素が顆粒
状に分散してなる、固定化酵素膜。
(1) An immobilized enzyme membrane used in an enzyme electrode having an electrode for electrochemically detecting a test substance, consisting of one membrane, one side of which excludes and immobilizes high molecular weight substances. A substance having a molecular weight comparable to the substrate of the enzyme to be detected is formed as a surface with pores that freely permeate therein, and the other surface is formed as a surface having pores through which only the low molecular weight substance, which is the analyte of the electrode, passes through and is sensitive to the enzyme substrate and the electrode response. A synthetic polymer matrix is formed between the two surfaces, and a synthetic polymer matrix is formed between the two surfaces.
This is an immobilized enzyme membrane in which enzymes immobilized in this synthetic polymer matrix are dispersed in granular form.
(2) 前記1枚の膜の前記両面およびその間の合成高
分子マトリクスが相容性である2種以上の合成高分子物
質の組合せから選択された素材により連続した相として
形成される、特許請求の範囲第1項記載の固定化酵素膜
(2) A patent claim in which the synthetic polymer matrix on both surfaces of the one membrane and between them is formed as a continuous phase of a material selected from a combination of two or more compatible synthetic polymer substances. The immobilized enzyme membrane according to item 1.
(3) 前記固定化された酵素を含有する顆粒部分は前
記合成品分子マトリクスとは相分離状態に内蔵される、
特許請求の範囲第2項記載の固定化酵素膜。
(3) The granule portion containing the immobilized enzyme is contained in a state of phase separation from the synthetic product molecular matrix.
An immobilized enzyme membrane according to claim 2.
(4) 前記マトリクスはその厚み方向に異方性を有す
る、前記2種以上の相容性の合成高分子のポリマ混成体
からなる、特許請求の範囲第2項または第3項記載の固
定化酵素膜。
(4) The immobilization method according to claim 2 or 3, wherein the matrix is composed of a polymer hybrid of the two or more compatible synthetic polymers and has anisotropy in the thickness direction. Enzyme membrane.
JP57160444A 1982-09-13 1982-09-13 Immobilized enzyme membrane Granted JPS5948651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57160444A JPS5948651A (en) 1982-09-13 1982-09-13 Immobilized enzyme membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57160444A JPS5948651A (en) 1982-09-13 1982-09-13 Immobilized enzyme membrane

Publications (2)

Publication Number Publication Date
JPS5948651A true JPS5948651A (en) 1984-03-19
JPH0348462B2 JPH0348462B2 (en) 1991-07-24

Family

ID=15715056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57160444A Granted JPS5948651A (en) 1982-09-13 1982-09-13 Immobilized enzyme membrane

Country Status (1)

Country Link
JP (1) JPS5948651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036058A1 (en) * 1997-02-14 1998-08-20 Unichema Chemie B.V. Enzymatically catalysed process
JP2006125904A (en) * 2004-10-27 2006-05-18 Nikkiso Co Ltd Biosensor and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137788A (en) * 1974-04-22 1975-11-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137788A (en) * 1974-04-22 1975-11-01

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036058A1 (en) * 1997-02-14 1998-08-20 Unichema Chemie B.V. Enzymatically catalysed process
JP2006125904A (en) * 2004-10-27 2006-05-18 Nikkiso Co Ltd Biosensor and its manufacturing method
JP4643222B2 (en) * 2004-10-27 2011-03-02 日機装株式会社 Biosensor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0348462B2 (en) 1991-07-24

Similar Documents

Publication Publication Date Title
JP3220486B2 (en) Visible test strip for blood glucose concentration
US5460777A (en) Analytical element for whole blood analysis
US4256693A (en) Multilayered integral chemical analysis element for the blood
CA1322335C (en) Process and device for the separation of a body fluid from particulate materials
CA1248434A (en) Device and method for whole blood separation and analysis
JPS6226423B2 (en)
JPH0453262B2 (en)
US7195921B2 (en) Adhered membranes retaining porosity and biological activity
JPS584555B2 (en) Ascorbic acid detection composition, detection method, and detection element
AU633210B2 (en) Asymmetric sandwich membrane system as diagnostic test device
EP0524596B1 (en) Method of measuring analyte using dry analytical element
JPS62138758A (en) Integral type multi-layered analyzing element
JPH06500465A (en) Method for immobilizing organic macromolecules or biopolymers onto polymeric membranes
EP0298473B1 (en) Analytical element for analysis of whole blood
JPS5948651A (en) Immobilized enzyme membrane
JPS62138757A (en) Integral type multi-layered analyzing element
WO1988009824A1 (en) Improvements in diagnostic test strips
JPH0526875A (en) One-piece type multilayer analysis element
JPH0521013Y2 (en)
JPH05264539A (en) Whole blood analysis element
JP2006275716A (en) Test paper
WO2006035873A1 (en) Multilayered analytical element
JPH05322887A (en) Whole-blood analyzing element and measuring method using it
JP3147560B2 (en) Multi-item analysis method
JPH0521014Y2 (en)