JPS594844B2 - Denkai capacitor - Google Patents

Denkai capacitor

Info

Publication number
JPS594844B2
JPS594844B2 JP50081707A JP8170775A JPS594844B2 JP S594844 B2 JPS594844 B2 JP S594844B2 JP 50081707 A JP50081707 A JP 50081707A JP 8170775 A JP8170775 A JP 8170775A JP S594844 B2 JPS594844 B2 JP S594844B2
Authority
JP
Japan
Prior art keywords
capacitor
paper
separator
rayon
manila
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50081707A
Other languages
Japanese (ja)
Other versions
JPS525463A (en
Inventor
良昭 柿木
達治 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50081707A priority Critical patent/JPS594844B2/en
Publication of JPS525463A publication Critical patent/JPS525463A/en
Publication of JPS594844B2 publication Critical patent/JPS594844B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電極間に介在させるセパレータを改良すること
により特性を飛躍的に向上させることの出来る電解コン
デンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic capacitor whose characteristics can be dramatically improved by improving the separator interposed between the electrodes.

一般に電解コンデンサは第1図に示すように2枚のアル
ミニウムタンタル等の弁作用金属箔1を電極としその間
にセパレータ2を挟んでこれを巻回してコンデンサ素子
3を構成しこのコンデンサ素子3に電解液を含浸しこれ
をケース4に封入して構成されている。
Generally, as shown in Figure 1, an electrolytic capacitor has two valve metal foils 1 made of aluminum tantalum or the like as electrodes, and a separator 2 is sandwiched between the electrodes, which are then wound to form a capacitor element 3. It is constructed by impregnating a liquid and enclosing it in a case 4.

このような電解コンデンサにおいて、セパレータがコン
デンサのインピーダンス値、損失値(janδ)の低下
、低温時における静電容量特性、損失特性インピーダン
ス特性および周波数特性などの諸特性大きく影響するこ
とが知られている。
In such electrolytic capacitors, it is known that the separator greatly affects various characteristics such as the impedance value of the capacitor, the reduction in loss value (jan δ), capacitance characteristics at low temperatures, loss characteristics, impedance characteristics, and frequency characteristics. .

ここでコンデンサのインピーダンスを例にとれば ただし上式の Z:コンデンサのインピーダンス ω:角速度でω−2πf f:測定周波数 C:コンデンサの静電容量 L:コンデンサのインダクタンス R:コンデンサ内部の等個直列抵抗 コンデンネの等個直列抵抗Rはセパレータ、電解液によ
る極間抵抗R0と誘電体皮膜の誘電体損失による抵抗R
2の合成されたものであり第2図に電解コンデンサの等
何回路をあられす。
Here, taking the impedance of a capacitor as an example, in the above equation Z: Impedance of the capacitor ω: Angular velocity ω-2πf f: Measurement frequency C: Capacitance of the capacitor L: Inductance of the capacitor R: Equivalent series inside the capacitor The equal series resistance R of the resistor capacitor is the resistance R0 between electrodes due to the separator and electrolyte, and the resistance R due to dielectric loss of the dielectric film.
Figure 2 shows the circuit of an electrolytic capacitor.

第2図においてCはコンデンサの静電容量、R1はセパ
レータ、電解液による極間抵抗でこの抵抗は周波数fに
関係せず、温度に関係する。
In FIG. 2, C is the capacitance of the capacitor, and R1 is the interelectrode resistance caused by the separator and electrolyte, and this resistance is not related to the frequency f, but is related to the temperature.

R2は誘電体皮膜の誘電体損失による抵抗、R2は周波
数に逆比例する( R2α了) 、Raは誘電体皮膜の
抵抗で非常に大きい(R3> R1、R3> R2)
R2 is the resistance due to the dielectric loss of the dielectric film, R2 is inversely proportional to the frequency (R2α了), Ra is the resistance of the dielectric film and is very large (R3>R1, R3>R2)
.

低温時の高周波領域(10KHz以上)でばR1)>R
2孔:コンデンサが箔を巻回して構成することにより生
じるリアクタンス この電解コンデンサの低温でさらに高周波領域において
のインピーダンス値を下げるためにはR1>R2,さら
に箔の巻回数の少ないコンデンサにおいてはLが少さい
ため、リアクタンスLωはR1に比較して非常に小さく
無視できるため極間抵抗R1を小さくすればよいことに
なる。
In the high frequency range (10KHz or higher) at low temperatures, R1)>R
2 holes: Reactance caused by the capacitor being constructed by winding foil. In order to further lower the impedance value in the high frequency range at low temperatures of this electrolytic capacitor, R1>R2, and in a capacitor with a small number of foil turns, L should be Since the reactance Lω is very small compared to R1 and can be ignored, it is sufficient to reduce the inter-electrode resistance R1.

またこのR1のうち電解液の電導度を上げる改良はコン
デンサの高温負荷特性においてガス発生の防止、損失変
化の防止など非常に困難な事でありまた現在の電解液に
おいては充分な検討がされてきており、これ以上の飛躍
的な特性向上は困難と考えられる。
In addition, improving the conductivity of the electrolyte in R1 is extremely difficult due to the high-temperature load characteristics of the capacitor, such as preventing gas generation and loss change, and has not been sufficiently studied for current electrolytes. Therefore, it is considered difficult to dramatically improve the characteristics any further.

したがってセパレータを検討改善することによって特性
向上を計らなければならない。
Therefore, it is necessary to improve the characteristics by studying and improving the separator.

このようにして現在までセパレータの開発はクラフトパ
ルプ紙よりマニラ紙(マニラ麻繊維紙)さらには合成繊
維紙それらの混抄紙を使用することが検討され、ポリプ
ロピレン繊維マニラ麻繊維混抄紙などが開発されてきた
In this way, in the development of separators up to now, the use of manila paper (manila hemp fiber paper), synthetic fiber paper, and mixtures of these papers rather than kraft pulp paper has been considered, and papers made from polypropylene fibers and manila hemp fibers have been developed. .

合成繊維は繊維形状において断面の径が細く円形の理想
的なものができるためすぐれた特性のコンデンサが開発
されてきた。
Synthetic fibers have an ideal fiber shape with a narrow cross-sectional diameter and a circular shape, so capacitors with excellent characteristics have been developed.

しかるに合成繊維では紙にするためには静電気の発生な
どがありその上クラフト紙や、マニラ紙等と混抄する場
合は繊維の特性が非常に異なるため種々の困難なことが
多い。
However, when synthetic fibers are made into paper, they generate static electricity, and when mixed with kraft paper, manila paper, etc., the characteristics of the fibers are very different, so there are many difficulties.

これらの目的にかなう繊維を種、々検討した結果レーヨ
ン(再生セルロース繊維)を使用したレーヨン紙および
レーヨン混抄紙をセパレータとして使用することにより
飛躍的にすぐれたコンデンサを作ることができた。
As a result of various studies on fibers suitable for these purposes, we were able to create a dramatically superior capacitor by using rayon paper made of rayon (regenerated cellulose fiber) and rayon-mixed paper as separators.

またレーヨンは再生セルロース繊維のためにマニラ紙や
クラフト紙とも自由に混抄することができる。
Rayon can also be freely mixed with manila paper and kraft paper due to its regenerated cellulose fibers.

第3図にはこれらの本発明のセパレータを使用した電解
コンデンサと従来の電解コンデンサのf−Z特性(周波
数−インピーダンス特性)を示した。
FIG. 3 shows fZ characteristics (frequency-impedance characteristics) of an electrolytic capacitor using the separator of the present invention and a conventional electrolytic capacitor.

製品としては50W・■、33μFで極間抵抗の差すな
わちセパレータの差の明確な低温(−40°0での測定
である。
The product is 50W·■, 33μF, and the difference in interelectrode resistance, that is, the difference in separator, is clearly visible at a low temperature (-40°0).

このように本発明のレーヨン紙を使用した電解コンデン
サは飛躍的な性能向上となる。
As described above, the performance of the electrolytic capacitor using the rayon paper of the present invention is dramatically improved.

表1には第3図の実験に使用したセパレータの条件を示
す。
Table 1 shows the conditions of the separator used in the experiment shown in FIG.

このように−40℃100KHzのインピーダンスで比
較すれば現用マニラ紙の約1/4、マニラP−P混抄紙
と比較しても約1/2と非常にすぐれた値を示す。
As described above, when comparing the impedance at -40°C and 100 KHz, the impedance is about 1/4 of the current Manila paper, and even compared to Manila P-P mixed paper, it is about 1/2, which is an extremely excellent value.

さらにレーヨン紙では引ぼり強度が弱いためマニラ紙と
の混抄により引ぼり強度を十分に高くすることも可能で
ある。
Furthermore, since rayon paper has low draw strength, it is possible to sufficiently increase the draw strength by mixing it with manila paper.

またマニラ紙との混抄紙においても特性は十分にすぐれ
た値を示す。
Furthermore, even when mixed with Manila paper, the properties show sufficiently excellent values.

表2に製品50W−V、33μF、−40℃。Table 2 shows the product 50W-V, 33μF, -40℃.

100 KHzでのコンデンサのインピーダンス値と本
発明のセパレータにおける諸条件を示した。
The impedance value of the capacitor at 100 KHz and various conditions for the separator of the present invention are shown.

このように本発明はレーヨン紙ならびにレーヨン混抄紙
を使うことにより従来のマニラ紙よりも飛躍的にすぐれ
たコンデンサを開発することができ、さらにレーヨンは
コストの点でマニラ紙より安いという利点がある。
In this way, the present invention uses rayon paper and rayon-mixed paper to develop capacitors that are significantly superior to conventional Manila paper, and rayon also has the advantage of being cheaper than Manila paper in terms of cost. .

このようにレーヨンの混抄率の高いほど特性はすぐれま
た混抄率を下げマニラの混抄率を上げると引ぼり強度が
強くなり無理な巻取条件のもとでも可能となる。
As described above, the higher the rayon mixing ratio, the better the properties, and lowering the mixing ratio and increasing the manila mixing ratio increases the drawing strength, making it possible to wind it even under unreasonable conditions.

また混抄率がマニラ50%レーヨン50%においても従
来のもとの比較して飛躍的にすぐれている。
Furthermore, the mixed paper ratio of 50% manila and 50% rayon is dramatically superior to the conventional paper.

以上のように本発明のレーヨン紙およびレーヨン混抄紙
を使用した電解コンデンサは工業上貢献極めて大なるも
のがある。
As described above, the electrolytic capacitor using the rayon paper and rayon mixed paper of the present invention has made an extremely large contribution to industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電解コンデンサを示す断面図、第2図は同等価
回路図、第3図は従来と本発明の電解コンデンサの周波
数−インピーダンス特性比較図である。 1・・・・・・金属箔(電極)、2・・・・・・セパレ
ータ、3・・・・・・コンデンサ素子、4・・・・・・
ケース。
FIG. 1 is a sectional view showing an electrolytic capacitor, FIG. 2 is an equivalent circuit diagram, and FIG. 3 is a comparison diagram of frequency-impedance characteristics of the conventional electrolytic capacitor and the present electrolytic capacitor. 1... Metal foil (electrode), 2... Separator, 3... Capacitor element, 4...
Case.

Claims (1)

【特許請求の範囲】[Claims] 1 電極間にレーヨンを主成分としたセパレータを介在
させて巻回し、これに電解液を含浸して構成したコンデ
ンサ素子を密閉外封したことを特徴とする電解コンデン
サ。
1. An electrolytic capacitor characterized by having a capacitor element formed by winding a separator with a rayon-based separator interposed between electrodes and impregnating the separator with an electrolytic solution, and hermetically sealing the capacitor element.
JP50081707A 1975-07-01 1975-07-01 Denkai capacitor Expired JPS594844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50081707A JPS594844B2 (en) 1975-07-01 1975-07-01 Denkai capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50081707A JPS594844B2 (en) 1975-07-01 1975-07-01 Denkai capacitor

Publications (2)

Publication Number Publication Date
JPS525463A JPS525463A (en) 1977-01-17
JPS594844B2 true JPS594844B2 (en) 1984-02-01

Family

ID=13753842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50081707A Expired JPS594844B2 (en) 1975-07-01 1975-07-01 Denkai capacitor

Country Status (1)

Country Link
JP (1) JPS594844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190146A (en) * 1993-11-26 1995-07-28 Carl Freudenberg:Fa Torsion damper

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588316U (en) * 1978-12-08 1980-06-18
JPS6039821B2 (en) * 1980-02-06 1985-09-07 三晃金属工業株式会社 Curved construction board
JPS6039823B2 (en) * 1980-02-06 1985-09-07 三晃金属工業株式会社 curved architectural board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190146A (en) * 1993-11-26 1995-07-28 Carl Freudenberg:Fa Torsion damper

Also Published As

Publication number Publication date
JPS525463A (en) 1977-01-17

Similar Documents

Publication Publication Date Title
JPS59105311A (en) Elliptical double condenser package
KR20180138563A (en) Non-aqueous electrolyte for ultracapacitors
US3654524A (en) Electrolytic book capacitor
JPS5978522A (en) Electrolytic condenser
US3487270A (en) Capacitor with electrolyte having dimethylsulfoxide and a cosolvent
JP2000331663A (en) Separator, and electrolytic capacitor, electric double layer capacitor, nonaqueous battery using the separator
CN111627708A (en) Conductive high-molecular polymer electrolytic capacitor and preparation method thereof
JPS594844B2 (en) Denkai capacitor
US2007792A (en) Electric device and dielectric material therefor
US3331002A (en) Sealed capacitor having hydrogen absorbing material therein
US2199446A (en) Electrolytic condenser
US2050587A (en) Electrolytic condenser
GB483480A (en) Improvements in or relating to electric condensers
JP2019004087A (en) Electrolytic capacitor and method for manufacturing the same
US2199447A (en) Electrolytic condenser
GB1010758A (en) Electrical capacitor
US2957114A (en) lamphier
US3753051A (en) Electrolytic capacitor having low value inductance and equivalent series resistance
JP2950575B2 (en) Electrolytic capacitor
JPS5941822A (en) Metal deposited polypropylene film condenser
US2196057A (en) Electric capacitor
JPH02240908A (en) Electric double-layer capacitor
JPH031518A (en) Solid electrolytic capacitor
US3255390A (en) Electrical capacitor
JPS63164420A (en) Electrolytic capacitor