JPS5948427A - Preparation of anhydrous ethanol - Google Patents

Preparation of anhydrous ethanol

Info

Publication number
JPS5948427A
JPS5948427A JP15882782A JP15882782A JPS5948427A JP S5948427 A JPS5948427 A JP S5948427A JP 15882782 A JP15882782 A JP 15882782A JP 15882782 A JP15882782 A JP 15882782A JP S5948427 A JPS5948427 A JP S5948427A
Authority
JP
Japan
Prior art keywords
ethanol
distillation column
concentration
concentrated
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15882782A
Other languages
Japanese (ja)
Other versions
JPH0234329B2 (en
Inventor
Shigeru Yoshizumi
善積 茂
Toshinobu Mitsui
三井 利▲のぶ▼
Yukio Iizuka
飯塚 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15882782A priority Critical patent/JPS5948427A/en
Publication of JPS5948427A publication Critical patent/JPS5948427A/en
Publication of JPH0234329B2 publication Critical patent/JPH0234329B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare anhydrous ethanol, by concentrating an aqueous solution of ethanol having higher water-content than the azeotropic water/ethanol composition by a distillation column to obtain the azeotropic mixture, and feeding the mixture in a cell separated into two chambers with a polymer membrane, and dehydrating by pervaporation. CONSTITUTION:A dilute aqueous solution of ethanol having a concentration of about 5-15wt% is supplied through the line A to the distillation column 1, and concentrated to an ethanol concentration of about 89-93wt% by heating with steam supplied through the line B. The concentrated ethanol is distilled off from the top of the column, and transferred to the condenser 2 and the distribution apparatus 3. A part of the ethanol is recycled to the distillation column 1 and the rest part is supplied to the primary chamber 4a of the cell 4. Since the ethanol vapor having high water content is discharged through the polymer membrane 5 to the low-pressure primary chamber 4b, the concentrated ethanol is further concentrated to anhydrous ethanol having a concentration of 96-99.5wt% and free from azeotropic point and, the anhydrous ethanol is discharged continuously from the line F. The ethanol vapor discharged to the secondary chamber 4b is condensed by the condenser 6, and recycled to the distillation column 1.

Description

【発明の詳細な説明】 本発明は無水エタノールの製造方法、更に詳しくは水と
の共沸組成よりも高含水率のエタノール水溶液から蒸留
とパーベエバレーション(pervaporation
)とを併用して経済的、効率的に且つ高品質の無水エタ
ノールを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing anhydrous ethanol, more specifically, a method for producing anhydrous ethanol, and more specifically, a method for producing anhydrous ethanol by distillation and pervaporation from an aqueous solution of ethanol with a water content higher than that of the azeotropic composition with water.
), it relates to a method for economically and efficiently producing high-quality absolute ethanol.

無水エタノールとは、一般にはJIS−に−1505−
54またはJIS−に−8101−61に規定されてい
るようにエタノール分99.5係以上のものをいう゛が
、本発明では共沸点を有しない高濃度のエタノール水溶
*に相称する。無水エタノールは化粧品、燃料、各種薬
品類等の原料として利用されている。そしてその殆んど
は、水との共沸組成よフも高含水率の希薄エタノール水
溶液(例えば醪)から蒸留法によジ製造さノ1ている。
Absolute ethanol is generally defined as JIS-1505-
54 or JIS-8101-61, which refers to an ethanol content of 99.5 parts or more as specified in JIS-8101-61, is referred to as a high-concentration aqueous solution of ethanol* that does not have an azeotropic point in the present invention. Anhydrous ethanol is used as a raw material for cosmetics, fuel, various chemicals, etc. Most of them are produced by distillation from a dilute aqueous ethanol solution (for example, moromi) with a water content that is much higher than the azeotropic composition with water.

そしてこの製造方法は、該希薄エタノール水性液を蒸留
塔(醪塔や濃縮塔)でエタノール/水系の共沸点近く壕
で濃縮し、次いで脱水する方法であるが、この際の脱水
手段として従来、固体又は液体の脱水剤で脱水する方法
、減圧蒸留で共沸点を外し脱水する方法、エントレーナ
全力U1え共I)1)蒸留で脱水する方法等がある。し
かし、前記脱水剤で脱水する方法はその性質上大容嶺処
理に不向であり、また前記減圧蒸留で脱水する方法は蒸
留後の凝縮に際し低温の冷却水を使用しなけわばならな
い不利益があるため、現在ではニレトレーナで脱水する
方法が一般的である。
In this production method, the dilute aqueous ethanol liquid is concentrated in a distillation column (a moromi column or a concentration column) near the azeotropic point of the ethanol/water system, and then dehydrated. There are methods such as dehydration using a solid or liquid dehydrating agent, dehydration by removing the azeotropic point by vacuum distillation, and dehydration by entrainer distillation. However, the method of dehydrating with a dehydrating agent is not suitable for large volume treatment due to its nature, and the method of dehydrating with vacuum distillation has the disadvantage of having to use low-temperature cooling water for condensation after distillation. Therefore, dehydration using an elm trainer is now common.

エントレーナを用いるこの方法は、アルコール発酵等で
得られる前記希薄エタノール水溶液を蒸留塔でエタノー
ル/水系の共沸点近く1で濃縮して、これを脱水塔(共
沸塔)に供給し、エタノール/水/エントレーナの三成
分系で最低共沸点を有するようなエントレーナ(例えば
現在最も一般的に用いらねているのはベンゼン)%を加
え、この三成分系を共沸蒸留し、前記脱水塔の塔頂がら
共沸蒸留物を留出させ、次いでこの共沸蒸留物を凝集し
た後デカンタで液々平衡によりエントレーナに富む層と
水に富む層とに分離し、一方ではエン)・レーナに富む
層を前記脱水塔に返送し、他方では水に富む層を回収塔
で処理してエントレーナを回収しつつ、前記脱水塔の塔
底より無水エタノールを得る方法である。
In this method using an entrainer, the dilute aqueous ethanol solution obtained by alcoholic fermentation, etc. is concentrated in a distillation column near the azeotropic point of the ethanol/water system, and this is fed to a dehydration column (azeotropic column) to form an ethanol/water solution. % of entrainer having the lowest azeotropic point in the ternary system of entrainer (for example, benzene is currently most commonly used) is added, and this ternary system is azeotropically distilled, and the column of the dehydration column is An azeotropic distillate is distilled off from the top, and then this azeotropic distillate is coagulated and then separated in a decanter by liquid-liquid equilibrium into an entrainer-rich layer and a water-rich layer; In this method, the water-rich layer is returned to the dehydration tower, and the water-rich layer is treated in the recovery tower to recover entrainer, while anhydrous ethanol is obtained from the bottom of the dehydration tower.

ところが、このエントレーナを用いる従来法には次のよ
うな欠点がある。
However, the conventional method using this entrainer has the following drawbacks.

(1)  エタノール/水系以外の第三成分であるエン
トレーナを加えるため装置全体が大型化し、脱水塔、テ
カンタ及び回収塔等の連結により工程が煩雑である。
(1) Addition of entrainer, which is a third component other than the ethanol/water system, increases the size of the entire apparatus, and the process is complicated due to the connection of a dehydration tower, a tecanter, a recovery tower, etc.

(2)  エタノール/水/エントレーナの三成分系を
共沸蒸留し、さらに後でエントレーナを回収するため余
分な多大の熱エネルギーを必要とする。
(2) A large amount of extra thermal energy is required to azeotropically distill the ethanol/water/entrainer ternary system and to recover the entrainer later.

(3)  エタノール/水/エントレーナの三成分系で
最低共沸点を有するエントレーナの選定及びその使用量
の調整等、作業が面倒である。
(3) In the three-component system of ethanol/water/entrainer, selection of the entrainer having the lowest azeotropic point and adjustment of its usage amount are troublesome.

(4)無水エタノール中に第三成分であるエントレーナ
の混入するおそれがあり、特にそれが毒性のものである
場合は用途との関係で問題となる。
(4) There is a risk that entrainer, which is a third component, may be mixed into anhydrous ethanol, which poses a problem in relation to the intended use, especially if it is toxic.

無水エタノールの製法としては前記の他、高分子膜で2
室に画したセルの該2室の一方を減圧し、高圧側に希薄
エタノール水溶液を供給してパーベーパレーションによ
り減圧側に異った組成のエタノール水溶液を生成せしめ
次に画室の液組成物を夫々側の蒸留塔により更に組成を
変えてゆく方法も提案されている(特開昭54−332
79)が蒸留塔が二基以上必要であること、蒸留を繰り
返す必要があること、2系統の蒸留のため操作が煩雑で
あること等問題が多い。
In addition to the methods described above, methods for producing anhydrous ethanol include
One of the two chambers of the cell divided into chambers is reduced in pressure, a dilute ethanol aqueous solution is supplied to the high pressure side, and an ethanol aqueous solution with a different composition is generated on the reduced pressure side by pervaporation, and then the liquid composition in the compartment is A method has also been proposed in which the composition is further changed by using distillation columns on each side (Japanese Patent Laid-Open No. 54-332).
79) has many problems, such as the need for two or more distillation columns, the need to repeat distillation, and the complicated operation due to two systems of distillation.

本発明は、従来法における斜上の欠点を解消する改善さ
れた無水エタノールの製造方法を提供するもので、その
主たる特徴は蒸留塔により、エタノールを水との共沸組
成に至る前の89〜93重量%1で濃縮し、その後の脱
水手段としてパーベニハレーションをすることにある。
The present invention provides an improved method for producing anhydrous ethanol that eliminates the drawbacks of sloping in conventional methods. It is concentrated to 93% by weight 1, and then pervenihalation is performed as a means of dehydration.

水/エタノールの共沸点ではエタノール濃度は約96重
量係であるが上記89〜93重量係にとどめるのは以下
の理由による。即ち、共沸点近く1で蒸留精製すると、
蒸留塔の必要段数が多くなったり、還流量を多くとる必
要があり、従って設備コストが高くなり又は蒸気使用量
が多大となってエネルギーコストが高くなり、他方、8
9チまで濃縮しなければ、パーベーパレーション側の設
備が過大となり又ハ、バーベーパレーション工程で回収
される水分含景の高いエタノールの量が増え、蒸留側に
も負担がかメることとなる。しかして蒸留によるエタノ
ールの濃度が上記範囲にあることが無水エタノールの精
製において最も経済的、効率的であることが見出された
のである。
At the water/ethanol azeotropic point, the ethanol concentration is about 96% by weight, but the reason why it is kept at 89-93% by weight is as follows. That is, when purified by distillation at 1 near the azeotropic point,
The number of stages required for the distillation column increases, the reflux amount needs to be increased, and therefore the equipment cost increases or the amount of steam used increases, resulting in high energy costs.
If it is not concentrated to 9%, the equipment on the pervaporation side will be too large, and the amount of ethanol with high water content recovered in the barvaporation process will increase, which will place a burden on the distillation side. Become. It has therefore been found that it is most economical and efficient to purify anhydrous ethanol if the concentration of ethanol by distillation is within the above range.

以下、図面に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on the drawings.

第1図は本発明の概略の工程図である。例えばアルコー
ル発酵で得ら力るエタノール濃度5〜15重量係程鹿の
希薄エタノール水溶液(醪)が、矢印Aにしたがって、
従来法と同様に、蒸留塔回収部である醪塔や蒸留塔濃縮
部である濃縮塔を含む意味での蒸留塔1に連続供給され
る。この蒸留塔1の底部にはスチームが矢印Bにし女が
って供給されていて、希薄エタノール水溶液は蒸留塔1
で加熱されつつ、エタノール濃度89〜93重量%1捷
しぐはエタノール濃度90〜91重量係程度まで濃縮さ
れ、塔頂から矢印Cにしたがって留出する。この含水エ
タノールである留出液はコンデンサ2で凝縮さね1分配
装置3でその一部が矢印りにしたがって前記蒸留塔1に
返送されつつ、その他はセル4の一次側4aに供給され
る。セル4ば、多孔質でない均一な高分子膜5で一次側
14nと二次側4bとの二基に分離されているもので、
二次側4bはコンデンサ6及び減ハークツク7全介して
連結されている真空ポンプ8で一次側4aよりも低圧に
維持されている。矢印Eにしたがってセル4の一次側4
aに供給される前記濃縮されたエタノール水溶液は、前
記高分子膜5を介してパーペエパレーンヨンにより二次
側4bに水分含量の高いエタノール蒸気が排出される結
果相対的に濃縮され、−次側4aの先端から矢印Fにし
たがってエタノール濃度96ないし99.5重量係程度
の共沸点を持たない無水エタノールとなって連続的に取
り出される。一方、二次側4bに排出された水分含量の
高いエタノール蒸気はコンデンサ6で凝縮され、減圧タ
ンク7を介してポンプ9にょジ、矢印Hにしたがって前
記蒸留塔1に返送される。
FIG. 1 is a schematic process diagram of the present invention. For example, if a dilute ethanol aqueous solution (moromi) obtained by alcoholic fermentation with an ethanol concentration of 5 to 15% by weight is prepared by following arrow A,
As in the conventional method, it is continuously supplied to the distillation column 1, which includes the mashing column which is the distillation column recovery section and the concentration column which is the distillation column concentrating section. Steam is supplied to the bottom of the distillation column 1 in the direction of arrow B, and the dilute ethanol aqueous solution is supplied to the bottom of the distillation column 1.
While being heated, the ethanol concentration of 89-93% by weight is concentrated to an ethanol concentration of 90-91% by weight, and distilled from the top of the column according to arrow C. This distillate, which is water-containing ethanol, is condensed in a condenser 2, and a part of it is returned to the distillation column 1 in the direction of the arrow in the distributing device 3, while the other part is supplied to the primary side 4a of the cell 4. The cell 4 is separated into two groups, a primary side 14n and a secondary side 4b, by a non-porous uniform polymer membrane 5.
The secondary side 4b is maintained at a lower pressure than the primary side 4a by a vacuum pump 8 connected through a condenser 6 and a vacuum pump 7. Primary side 4 of cell 4 according to arrow E
The concentrated ethanol aqueous solution supplied to a is relatively concentrated as a result of ethanol vapor having a high water content being discharged to the secondary side 4b through the polymer membrane 5 by the perpetuating layer. Anhydrous ethanol having an ethanol concentration of about 96 to 99.5 weight coefficient and having no azeotropic point is continuously taken out from the tip of the side 4a in the direction of arrow F. On the other hand, ethanol vapor with a high water content discharged to the secondary side 4b is condensed in a condenser 6, passed through a vacuum tank 7 to a pump 9, and returned to the distillation column 1 according to the arrow H.

即ち本発明は、前記従来法のように予め濃縮せずにバー
ベエパレーションして後、更に蒸留をくり返すなどの煩
雑な方法でなく、蒸留塔1でエタノール/水系の共沸点
近くまで濃縮されたエタノール水溶液を、いわばワンス
テップで無水エタノールにする方法である。
That is, the present invention does not involve the complicated method of performing barbe evaporation without prior concentration and then repeating distillation as in the conventional method, but instead concentrates the ethanol/water system in the distillation column 1 to near the azeotropic point. This method converts aqueous ethanol solution into absolute ethanol in one step.

第2図は前記セル4の縦断面拡大略視図である。FIG. 2 is an enlarged schematic vertical cross-sectional view of the cell 4. As shown in FIG.

筒体10の内部に複数のチューブ状高分子膜5が間隔を
空は両端で固定さねてぃて、セル4はこのチューブ状高
分子膜5により前記のごどぐ一次側4aと二次(111
14bとの二基に分離さねている。矢印EKしたがって
供給さhる含水エタノールはチューブ状高分子膜5の内
側である一次側4aを通過する間だ1図中小矢印で示す
二次側41)方向へ一部物質移動をするのであるが、チ
ューブ状高分子膜5を介してパーベエパレーンヨンにょ
V) 水分含量の高いエタノール蒸気の形で物質移動し
、その後矢印GVCL、たがって排出される結果相対的
に濃縮さね、結局、セル4の末端から矢印Fにしたがっ
て無水エタノールが連続的に得らカる。この際、二次側
41〕に排出されるエタノール含有蒸気への気化による
熱損失を予め考慮して、矢印Eにしたがってセル4に供
給されるエタノール溶液を例えばエタノール含有蒸気の
形で行うこともrrJ能である。
Inside the cylindrical body 10, a plurality of tubular polymer membranes 5 are fixed at both ends with a gap between them. (111
It is separated into two groups with 14b. According to the arrow EK, while the supplied water-containing ethanol passes through the primary side 4a, which is the inner side of the tubular polymer membrane 5, there is some mass transfer toward the secondary side 41) indicated by the small arrow in Figure 1. , mass transfer in the form of ethanol vapor with high water content through the tubular polymeric membrane 5, which is then discharged as a result of relative concentration, eventually. Absolute ethanol is continuously obtained from the end of cell 4 in the direction of arrow F. At this time, the ethanol solution may be supplied to the cell 4 according to arrow E in the form of, for example, ethanol-containing vapor, taking into consideration heat loss due to vaporization to the ethanol-containing vapor discharged to the secondary side 41]. It is rrJ Noh.

本発明においては高分子膜を用いるが、このような膜を
用いるパーベエバレーションそれ自体は古くから知られ
ている。そして、ここに利用される高分子膜の素材とし
ては、ポリエチレン、ポリプロピレン、ポリアミド、ポ
リエステル、ポリスチレン、セルロース系高分子物質、
こねらの共重合体等があり、さらに最近では、分子中の
一部をアミン化やスルホン化等したものもある。 これ
らの高分子膜は、結局のところ、分離係数、透過速度1
強度及び耐久性等を考慮して適宜に選択される性質のも
ので、本発明の場合に用いらねるセル4の高分子膜5も
その素材について特に限定するものではなく、ま尼その
形状、例えば前記第3図の場合にはチューブ状であるが
、この他にシート状や中空繊維状等もあって、かかる形
状も適宜選択されるのである。
Although a polymer membrane is used in the present invention, pervey evacuation itself using such a membrane has been known for a long time. The polymer membrane materials used here include polyethylene, polypropylene, polyamide, polyester, polystyrene, cellulose polymer materials,
There are copolymers of Konera, and more recently, there are also copolymers in which part of the molecule is aminated or sulfonated. Ultimately, these polymer membranes have a separation coefficient, permeation rate of 1
The material of the polymer membrane 5 of the cell 4 used in the present invention is not particularly limited, and its properties are appropriately selected in consideration of strength, durability, etc., and its shape, shape, For example, in the case of FIG. 3, the shape is a tube, but there are also sheet shapes, hollow fiber shapes, etc., and such shapes can be selected as appropriate.

以上説明した通りであるから、本発明には、蒸留塔によ
る希薄エタノール水溶液の適度な濃縮後の脱水手段とし
てパーベエパレーションをすることにより、エントレー
ナを用いるなどの手段をとることなく、したがって多数
の蒸留塔とか脱水塔や回収塔等を必要としない、1だ蒸
留をくり返す必要のないいわばワンステップの小型化さ
れた装置を用い、究極的には経済的効率的に省エネルギ
ー化された条件下で、またエントレーナの混入やその毒
性の問題もない高品質の無水エタノールを製造すること
ができる効果がある。
As explained above, the present invention employs pervey separation as a dehydration means after moderately concentrating a dilute aqueous ethanol solution using a distillation column. By using a miniaturized one-step device that does not require distillation columns, dehydration columns, recovery columns, etc., and does not require repeated distillation, the conditions are ultimately economically efficient and energy-saving. It is effective in producing high-quality anhydrous ethanol without the problem of contamination with entrainer or its toxicity.

実施例 前記第1図の工程図により、アルコール発酵で得らハだ
平均エタノール濃度65重ト1を係の希薄エタノール水
溶液を対象とし、厚さ50μで有効膜面fat 150
7722のポリエステル系チューブ状高分子膜を内蔵す
るセルを用い、次のように実施した。
EXAMPLE According to the process diagram shown in FIG. 1 above, a dilute ethanol aqueous solution obtained by alcohol fermentation with an average ethanol concentration of 65% and a thickness of 50μ and an effective membrane surface of 150% was used.
The experiment was carried out as follows using a cell containing a polyester tubular polymer membrane of No. 7722.

塔底から108℃のスチームを供給しつつ、前記希薄エ
タノール水溶iを蒸留塔に連続供給し、塔頂から平均エ
タノール濃度91重量係のエタノール含有蒸気を4U時
490 Kf留出さ(!″た。 次いで、この蒸気ヲコ
ンデンザで凝縮し、この凝縮液を分配装置で前記蒸留塔
に毎時330 Kq返送しつつ、セルの一次側に毎時1
60 Kq供給した。 この際予め、セルの二次側を、
コンデンサ及び減1Lタンクを介して連結されている真
空ポンプで絶対圧300 m+n Hgに吸引しておき
、前記−次側に供給したエタノール凝縮液をパーベエバ
レーションした。 そして、平均エタノール濃度75重
最多のエタノール含有蒸気を二次側から排出し、これを
コンデンサで凝縮して、減圧タンクを介し、ポンプで前
記蒸留塔に毎時60 Kg返送しつつ、前記−次側の末
端からエタノール濃度99,5重量係の無水エタノール
を毎時100 Kr連続的に得た。
While supplying steam at 108° C. from the bottom of the column, the dilute aqueous ethanol solution I was continuously supplied to the distillation column, and ethanol-containing vapor with an average ethanol concentration of 91% by weight was distilled out from the top of the column at a rate of 490 Kf per 4 U (!''). Next, this vapor is condensed in a condenser, and the condensed liquid is returned to the distillation column at a rate of 330 Kq/hour through a distribution device, while 1 hour is sent to the primary side of the cell.
60 Kq was supplied. At this time, in advance, the secondary side of the cell is
The ethanol condensate supplied to the downstream side was evacuated by suctioning to an absolute pressure of 300 m+n Hg using a vacuum pump connected through a condenser and a 1L tank. Ethanol-containing vapor with an average ethanol concentration of 75 times the maximum is discharged from the secondary side, condensed in a condenser, and returned to the distillation column in an amount of 60 kg per hour via a vacuum tank. Anhydrous ethanol with an ethanol concentration of 99.5% by weight was continuously obtained from the end of the reactor at a rate of 100 Kr/hour.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概略の工程図、第2図は本発明に用い
られ得るセルの縦断面拡大略視図である。 1・・・蒸留塔、2.6・・・コンデンサ、3・・・分
配装置、  4・・・セル、5・・・高分子膜、 7・
・・減圧タンク、8・・・真空ポンプ、  9・・・ポ
ンプ、4a・・・−次側、 4b・・・二次側。 特許出願人 昭和電工株式会社 代理人 弁理士菊地精−
FIG. 1 is a schematic process diagram of the present invention, and FIG. 2 is an enlarged schematic vertical cross-sectional view of a cell that can be used in the present invention. 1... Distillation column, 2.6... Condenser, 3... Distribution device, 4... Cell, 5... Polymer membrane, 7.
...Reducing pressure tank, 8...Vacuum pump, 9...Pump, 4a...-Next side, 4b...Secondary side. Patent applicant Showa Denko K.K. agent Patent attorney Sei Kikuchi

Claims (1)

【特許請求の範囲】[Claims] (1)水との共沸組成よりも高含水率のエタノール水溶
液を濃縮して無水エタノールを製造する方法において蒸
留塔で89〜93M量係に濃縮したエタノール水溶液を
、高分子膜で二室に分離されたセルの一次側に供給し、
一方ではパーベエパレーションにより二次側へ水分含量
の高いエタノール蒸気を排出し、これを凝縮して前記蒸
留塔に返送しつつ、他方では前記−次側の末端から無水
エタノールを得ることを特徴とする無水エタノールの製
造方法。
(1) In the method of producing anhydrous ethanol by concentrating an ethanol aqueous solution with a water content higher than the azeotropic composition with water, an ethanol aqueous solution concentrated to 89 to 93 M in a distillation column is divided into two chambers using a polymer membrane. Supplies the primary side of the separated cells,
On the one hand, ethanol vapor with a high water content is discharged to the secondary side by parvey separation, and is condensed and returned to the distillation column, while on the other hand, anhydrous ethanol is obtained from the terminal of the secondary side. A method for producing anhydrous ethanol.
JP15882782A 1982-09-14 1982-09-14 Preparation of anhydrous ethanol Granted JPS5948427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15882782A JPS5948427A (en) 1982-09-14 1982-09-14 Preparation of anhydrous ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15882782A JPS5948427A (en) 1982-09-14 1982-09-14 Preparation of anhydrous ethanol

Publications (2)

Publication Number Publication Date
JPS5948427A true JPS5948427A (en) 1984-03-19
JPH0234329B2 JPH0234329B2 (en) 1990-08-02

Family

ID=15680242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15882782A Granted JPS5948427A (en) 1982-09-14 1982-09-14 Preparation of anhydrous ethanol

Country Status (1)

Country Link
JP (1) JPS5948427A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195078A (en) * 1984-03-14 1985-10-03 日立化成工業株式会社 Power module substrate and manufacture
JPS61172371U (en) * 1985-04-11 1986-10-25
JPH02502638A (en) * 1987-02-02 1990-08-23 エクソン ケミカル パテンツ,インコーポレイテッド Alcohol recovery method using perfluorinated ionomer membranes
JPH02273636A (en) * 1989-04-14 1990-11-08 Toray Ind Inc Production of concentrated solution of ethanol
US5302750A (en) * 1993-05-25 1994-04-12 Exxon Chemical Patents Inc. Method for producing n-octadienol from butadiene
JPH06145083A (en) * 1992-11-02 1994-05-24 Nippon Gosei Arco-Le Kk Production of dehydrated ethanol
JPH07116077B2 (en) * 1987-02-02 1995-12-13 エクソン ケミカル パテンツ,インコーポレイテッド Recovery method of alcohol using organic acid modified polymer membrane
US5868906A (en) * 1995-05-15 1999-02-09 Athens Corporation Dehydration and purification of isopropyl alcohol to an ultradry and ultrapure level
US6235088B1 (en) 1997-04-21 2001-05-22 Kazuo Matsuura Alcohol separator for an alcohol solution

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195078A (en) * 1984-03-14 1985-10-03 日立化成工業株式会社 Power module substrate and manufacture
JPS61172371U (en) * 1985-04-11 1986-10-25
JPH02502638A (en) * 1987-02-02 1990-08-23 エクソン ケミカル パテンツ,インコーポレイテッド Alcohol recovery method using perfluorinated ionomer membranes
JPH07116077B2 (en) * 1987-02-02 1995-12-13 エクソン ケミカル パテンツ,インコーポレイテッド Recovery method of alcohol using organic acid modified polymer membrane
JPH02273636A (en) * 1989-04-14 1990-11-08 Toray Ind Inc Production of concentrated solution of ethanol
JPH06145083A (en) * 1992-11-02 1994-05-24 Nippon Gosei Arco-Le Kk Production of dehydrated ethanol
US5302750A (en) * 1993-05-25 1994-04-12 Exxon Chemical Patents Inc. Method for producing n-octadienol from butadiene
US5868906A (en) * 1995-05-15 1999-02-09 Athens Corporation Dehydration and purification of isopropyl alcohol to an ultradry and ultrapure level
US6235088B1 (en) 1997-04-21 2001-05-22 Kazuo Matsuura Alcohol separator for an alcohol solution

Also Published As

Publication number Publication date
JPH0234329B2 (en) 1990-08-02

Similar Documents

Publication Publication Date Title
EP0944575B1 (en) Esterification of fermentation-derived acids via pervaporation
Matsumura et al. Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification
US4806245A (en) Pervaporation of phenols
US4822737A (en) Process for producing ethanol by fermentation
JPS5821629A (en) Preparation of anhydrous ethanol
CN102015049A (en) Method of purifying fermented alcohol
US20150232348A1 (en) Water desalination and brine volume reduction process
CA2716624A1 (en) Method and apparatus for dewatering a mixture of ethanol and water
JPS5948427A (en) Preparation of anhydrous ethanol
JPS5940048B2 (en) How to separate liquid mixtures
US4894163A (en) Separation of liquid mixtures
CN106117120A (en) A kind of rectification water vapour penetration coupled method reclaims technique and the device of pyridine
JPH05177111A (en) Dehydration of water-organic matter solution
CA1312550C (en) Pervaporation of phenols
CN108424350A (en) A kind of technique of purification medicinal ethyl alcohol
JP2780323B2 (en) Method for producing concentrated aqueous solution of volatile organic liquid
US4911845A (en) Process and apparatus for separation of volatile components
CN208166883U (en) A kind of system of separating alcohol, ethyl acetate and aqueous mixtures
WO2006040065A1 (en) Method for producing and dehydrating cyclic formals
JP2676900B2 (en) Method for producing ethanol concentrate
US6140428A (en) Simultaneous production of dicarboxylic acids and diamines by splitting polyamides into their monomeric constituents
CN206033629U (en) Rectification device of pyridine is retrieved to vapor permeation coupling method
US20080272052A1 (en) Method for Producing and Dewatering Cyclic Formals
CN106986769B (en) Separation and integration system and separation and integration method of ethyl acetate-water system
JP2532042B2 (en) Organic acid recovery method