JPS5948122B2 - Reverse osmosis concentration method and device - Google Patents

Reverse osmosis concentration method and device

Info

Publication number
JPS5948122B2
JPS5948122B2 JP852378A JP852378A JPS5948122B2 JP S5948122 B2 JPS5948122 B2 JP S5948122B2 JP 852378 A JP852378 A JP 852378A JP 852378 A JP852378 A JP 852378A JP S5948122 B2 JPS5948122 B2 JP S5948122B2
Authority
JP
Japan
Prior art keywords
pipe
concentrated
liquid
reverse osmosis
closed loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP852378A
Other languages
Japanese (ja)
Other versions
JPS54101778A (en
Inventor
健二 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP852378A priority Critical patent/JPS5948122B2/en
Publication of JPS54101778A publication Critical patent/JPS54101778A/en
Publication of JPS5948122B2 publication Critical patent/JPS5948122B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は、被濃縮液を加圧し、逆浸透装置により濃縮液
と透過液とに分離する逆浸透濃縮方法及びその装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reverse osmosis concentration method and apparatus in which a liquid to be concentrated is pressurized and separated into a concentrated liquid and a permeated liquid using a reverse osmosis apparatus.

一般に逆浸透濃縮装置においては、被濃縮液の圧力が高
いほど、また逆浸透膜表面での乱流状態が激しいほど多
量の透過液を得ることができる。
Generally, in reverse osmosis concentrators, the higher the pressure of the liquid to be concentrated and the more severe the turbulence on the surface of the reverse osmosis membrane, the more permeate can be obtained.

一方、被濃縮液の濃度すなわち浸透圧が高くなるほど透
過液は減少する。
On the other hand, as the concentration of the liquid to be concentrated, that is, the osmotic pressure increases, the permeate decreases.

従って高濃度、換言すると浸透圧の高い被濃縮液の場合
には、一度逆浸透装置を通過させただけでは所定の濃縮
倍率に到達させることは不可能となり、繰返し通過し、
徐々に濃縮倍率を高めていく必要がある。
Therefore, in the case of a liquid to be concentrated with a high concentration, in other words, a high osmotic pressure, it is impossible to reach a predetermined concentration ratio by passing it through the reverse osmosis device once, and it is necessary to pass it repeatedly.
It is necessary to gradually increase the concentration ratio.

このことは、低濃度の被濃縮液であっても、濃縮倍率が
高くなれは゛同様になる。
This holds true even for a liquid to be concentrated with a low concentration, as the concentration ratio increases.

ところで、前述のように逆浸透膜を有する逆浸透装置を
用いて被濃縮液を繰返し通液して濃縮する従来方式とし
ては、連続式加圧循環方式と回分方式とがある。
By the way, as mentioned above, conventional methods for concentrating a liquid to be concentrated by repeatedly passing it through a reverse osmosis device having a reverse osmosis membrane include a continuous pressurized circulation method and a batch method.

第1図は従来の連続式加圧循環方式を用いた逆浸透濃縮
装置を示す系統図である。
FIG. 1 is a system diagram showing a conventional reverse osmosis concentrator using a continuous pressurized circulation system.

図において、途中に加圧ポンプ1を有する被濃縮液供給
管路2の終端側すなわち加圧ポンプ1の吐出側には、管
路3を介して循環ポンプ4の吸込側が接続されている。
In the figure, the suction side of a circulation pump 4 is connected via a pipe 3 to the terminal end side of a concentrated liquid supply pipe 2 having a pressure pump 1 in the middle, that is, to the discharge side of the pressure pump 1 .

この循環ポンプ4の吐出側には管路5を介して透過液導
出管6を有する逆浸透装置7の流入口側が接続され、こ
の逆浸透装置7の排出口側と前記管路3とは管路8を介
して接続されている。
The inlet side of a reverse osmosis device 7 having a permeated liquid outlet pipe 6 is connected to the discharge side of the circulation pump 4 via a conduit 5, and the outlet side of the reverse osmosis device 7 and the conduit 3 are connected to each other through a conduit 5. They are connected via line 8.

これにより、循環ポンプ4および逆浸透装置7とは管路
3. 5. 8により閉ループ状に連結されている。
Thereby, the circulation pump 4 and the reverse osmosis device 7 are connected to the pipe line 3. 5. 8, they are connected in a closed loop.

前記管路8の途中には、濃縮液取出管路9の一端部が接
続され、この濃縮液取出管路9の途中には背圧弁10が
設けられるとともに、該管路9の他端は濃縮液貯留槽1
も内迄延長されて開口されている。
One end of a concentrate extraction pipeline 9 is connected to the middle of the pipeline 8, a back pressure valve 10 is provided in the middle of the concentrate extraction pipeline 9, and the other end of the pipeline 9 is connected to a concentrated liquid extraction pipeline 9. Liquid storage tank 1
The opening has also been extended to the inside.

なお、前記逆浸透装置7は内部に逆浸透膜を有する通常
形式のものである。
The reverse osmosis device 7 is of a normal type and has a reverse osmosis membrane inside.

このような構成において、管路2に導かれた被濃縮液は
加圧ポンプ1により加圧され、閉ループ管路の一部を構
成する管路3を介して循環ポンプ4の吸込側に供給され
、この循環ポンプ4によりさらに加圧されて逆浸透装置
7に導かれ、ここで濃縮作用がなされ、透過液が透過液
導出管6から排出され、一方、逆浸透装置7内に残留し
た濃縮液は管路8へと排出される。
In such a configuration, the liquid to be concentrated led to the pipe line 2 is pressurized by the pressurizing pump 1, and is supplied to the suction side of the circulation pump 4 via the pipe line 3 that constitutes a part of the closed loop pipe line. The permeate is further pressurized by the circulation pump 4 and guided to the reverse osmosis device 7, where it is concentrated, and the permeate is discharged from the permeate outlet pipe 6, while the concentrated liquid remaining in the reverse osmosis device 7 is is discharged into conduit 8.

この際、逆浸透装置7の入口における圧力(以下単に入
口圧力という)は通常50〜5Qkg/cm″が好まし
く用いられている。
At this time, the pressure at the inlet of the reverse osmosis device 7 (hereinafter simply referred to as inlet pressure) is usually preferably 50 to 5 Qkg/cm''.

逆浸透装置7の透過液流量は、圧力に依存するため、逆
浸透装置7の内部における圧力損失は微少であることが
望ましいが、前述の如く乱流状態も影響するため自ずと
限界があり、通常20〜30kg/cm’の圧力損失が
生ずる。
Since the permeate flow rate of the reverse osmosis device 7 depends on the pressure, it is desirable that the pressure loss inside the reverse osmosis device 7 is small, but as mentioned above, there is a limit due to the influence of turbulence, and it is usually A pressure loss of 20-30 kg/cm' occurs.

従って、管路8に至る部分の圧力(以下単に出口圧力と
いう)は、30〜40kg/cm”となっている。
Therefore, the pressure in the portion leading to the pipe line 8 (hereinafter simply referred to as outlet pressure) is 30 to 40 kg/cm''.

この出口圧力状態にある濃縮液のごく一部は、背圧弁1
0を介して濃縮液貯留槽11に導かれるが、大部分は循
環ポンプ4により再び入ロ圧力迄加圧されて繰返し濃縮
される。
A small portion of the concentrate at this outlet pressure state is removed by the back pressure valve 1
0 to the concentrated liquid storage tank 11, most of it is pressurized again to the inlet pressure by the circulation pump 4 and concentrated repeatedly.

この循環により、管路8、逆浸透装置7内の液の濃度は
、一定比率で取出管路9から濃縮液を取出すようにした
場合、透過液導出管6の流量が順次減少し、やがてほぼ
一定の流量となったときの循環ポンプ4の運転状態で平
衡状態に達し、以後は連続して濃縮操作が持続できる。
Due to this circulation, the concentration of the liquid in the pipe line 8 and the reverse osmosis device 7 will be reduced to approximately An equilibrium state is reached in the operating state of the circulation pump 4 when the flow rate becomes constant, and the concentration operation can be continued continuously thereafter.

この連続式加圧循環方式においては、管路3゜5.8に
より構成される閉ループ管路を大気に開放していないか
ら、出口圧力を大気開放することなく利用できるため、
後述する回分方式に比べて運転動力を50%以下に低減
できる特徴を有している。
In this continuous pressurized circulation system, the closed loop pipe line consisting of the pipe line 3°5.8 is not opened to the atmosphere, so the outlet pressure can be used without releasing it to the atmosphere.
It has the feature that the operating power can be reduced to 50% or less compared to the batch method described later.

しかし、前記平衡状態に達すると逆浸透装置7の内部を
流れる液の濃度は濃縮前に比べて極めて高くなっている
・ため、透過液の流量は、第5図の曲線Aに示されるよ
うに運転時間の経過とともに平衡状態に達した位置で急
激に低下してしまう。
However, when the equilibrium state is reached, the concentration of the liquid flowing inside the reverse osmosis device 7 is extremely high compared to before concentration, so the flow rate of the permeated liquid becomes as shown by curve A in FIG. As the operating time elapses, it suddenly decreases at the position where the equilibrium state is reached.

このため、必要な量の濃縮液を得るためには、後述する
回分方式に比べ逆浸透装置7の規模を大きくしなければ
ならない欠点を有している。
Therefore, in order to obtain the necessary amount of concentrated liquid, this method has the disadvantage that the scale of the reverse osmosis device 7 must be larger than that of the batch method described later.

第2.@よ、従来の回分方式を用いた逆浸透濃縮装置の
系統図である。
Second. @Yo, this is a system diagram of a reverse osmosis concentrator using a conventional batch method.

この図において、前記第1図と同一もしくは相当構成部
分は同一符号を用いるものとする。
In this figure, the same or equivalent components as in FIG. 1 are designated by the same reference numerals.

被濃縮液供給管路2は、大気開放された濃縮槽12内に
その終端か゛開口され、この濃縮槽12の下部には循環
ポンプ4の吸込側管路3が接続されている。
The liquid to be concentrated supply pipe 2 has its terminal end opened in a concentration tank 12 which is open to the atmosphere, and a suction side pipe 3 of a circulation pump 4 is connected to the lower part of the concentration tank 12 .

この循環ポンプ4の吐出側管路5には、透過液導出管6
を有する逆浸透装置7が接続され、この逆浸透装置7に
は途中に背圧弁10を有する管路8の一端が接続され、
この管路8の他端は前記濃縮槽12に開放されている。
The discharge side pipe line 5 of this circulation pump 4 includes a permeated liquid outlet pipe 6.
A reverse osmosis device 7 having the
The other end of this pipe line 8 is open to the concentration tank 12 .

また、前記濃縮槽12の下部には、途中に移送ポンプ1
3を有する濃縮液取出管路9の一端部が接続され、この
管路9の他端は濃縮液貯留槽11に開口されている。
In addition, a transfer pump 1 is provided in the lower part of the concentration tank 12.
3 is connected to one end of a concentrate extraction pipe 9, and the other end of this pipe 9 is opened to a concentrate storage tank 11.

このような構成において、被濃縮液供給管路12から被
濃縮液を濃縮槽12に一定量供給する。
In such a configuration, a fixed amount of the liquid to be concentrated is supplied from the liquid to be concentrated supply line 12 to the concentration tank 12 .

この被濃縮液は循環ポンプ4により昇圧されて逆浸透装
置7に導かれ、この逆浸透装置7により若干濃□縮され
た液は管路8を介して再び濃縮槽12に戻され、再び循
環ポンプ4により前記順路で送られて濃縮を繰返される
The liquid to be concentrated is pressurized by the circulation pump 4 and guided to the reverse osmosis device 7, and the liquid slightly concentrated by the reverse osmosis device 7 is returned to the concentration tank 12 via the pipe 8 and circulated again. The pump 4 sends it through the above-mentioned route and the concentration is repeated.

これにより濃縮槽12内の液が所定濃度になると、循環
ポンプ4が停止されるとともに、移送ポンプ13が作動
され、濃縮槽12内の液は取出管路9を経て濃縮液貯留
槽11に移送される。
As a result, when the liquid in the concentration tank 12 reaches a predetermined concentration, the circulation pump 4 is stopped, the transfer pump 13 is activated, and the liquid in the concentration tank 12 is transferred to the concentrated liquid storage tank 11 via the extraction pipe 9. be done.

この移送が完了すると再び所定量の被濃縮液が供給管路
2から供給され、前述と同様にして濃縮が行なわれ、所
定量だけの濃縮液が分割して(回分的に)取出される。
When this transfer is completed, a predetermined amount of the liquid to be concentrated is again supplied from the supply pipe 2, concentration is carried out in the same manner as described above, and a predetermined amount of the concentrate is taken out in portions (batchwise).

この方式においても、入口□圧力、出口圧力は前記と同
様である。
In this system as well, the inlet □ pressure and outlet pressure are the same as described above.

この回分方式における透過液の流量は、第5図の曲線B
に示されるごとく、運転時間の経過とともに徐々に低下
するように変化するが、平均透過液量は連続式加圧循環
方式に比べて優れている。
The permeate flow rate in this batch system is curve B in Figure 5.
As shown in Figure 2, although it gradually decreases with the passage of operating time, the average permeate volume is superior to that of the continuous pressurized circulation system.

しかし、この方式では、出口圧力を大気に開放するため
、運転動力の効率が悪く、前記連続式加圧循環方式に比
べて2倍以上の動力を必要とする欠点を有している。
However, this method has the disadvantage that the efficiency of operating power is poor because the outlet pressure is released to the atmosphere, and that it requires more than twice as much power as the continuous pressurized circulation method.

本発明の目的は、前記従来技術の欠点を解消し透過液の
平均流量を低下させることなく運転動力の低い逆浸透濃
縮方法及びその装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the drawbacks of the prior art and provide a reverse osmosis concentration method and apparatus thereof that require low operating power without reducing the average flow rate of the permeate.

本発明は、連続式加圧循環方式における欠点が平衡状態
において逆浸透装置内に高濃度の液が流れるために生ず
ることに着目してなされたもので閉ループ管路を構成す
る管路に、該閉ループ管路の流れと濃縮液取出管路への
流れとを切替える流路切替装置を設けて高濃度の液を間
欠的に抜出して低濃度の液に置換するようにして前記目
的を達成しようとするものである。
The present invention was developed by focusing on the fact that the disadvantage of continuous pressurized circulation system is that a highly concentrated liquid flows inside the reverse osmosis device in an equilibrium state. The above objective is achieved by providing a flow path switching device that switches between the flow in the closed loop pipe and the flow into the concentrate extraction pipe, and by intermittently extracting a high concentration liquid and replacing it with a low concentration liquid. It is something to do.

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

ここにおいて前記従来例と同一構成部分は同一符号を用
い、説明を簡略にする。
Here, the same components as those in the conventional example are denoted by the same reference numerals to simplify the explanation.

第31図は本発明の第1実施例を示すものである3図に
おいて、途中に加圧ポンプ1を有する被濃縮液供給管路
2の終端は、循環ポンプ4の吸込側管路3に接続され、
この循環ポンプ4の吐出側管路5には、透過液導出管6
を有する逆浸透装置7を介して管路8の一端が接続され
、この管路8の他端は前記管路3に接続されている。
FIG. 31 shows the first embodiment of the present invention. In FIG. 3, the terminal end of the concentrated liquid supply pipe 2 having the pressurizing pump 1 in the middle is connected to the suction side pipe 3 of the circulation pump 4. is,
The discharge side pipe line 5 of this circulation pump 4 includes a permeated liquid outlet pipe 6.
One end of a conduit 8 is connected through a reverse osmosis device 7 having a reverse osmosis device 7, and the other end of this conduit 8 is connected to the conduit 3.

これにより、管路3. 5. 8で大気に開放されてい
ない閉ループ管路が構成されている。
As a result, conduit 3. 5. 8 constitutes a closed loop conduit that is not open to the atmosphere.

前記管路8の途中には、三方切替弁14を介して濃縮液
取出管路9の一端が接続され、この管路9の他端は濃縮
液貯留槽11に開口されている。
One end of a concentrate extraction pipe 9 is connected to the middle of the pipe 8 via a three-way switching valve 14 , and the other end of the pipe 9 is opened to a concentrate storage tank 11 .

前記三方切替弁14は、管路8を流通させるとともに取
出管路9を閉塞させる状態と、管路8の取出管路9の接
続部より下流への流れを閉塞させるとともに管路8と取
出管路9とを連通させる状態とを切替えうるようにされ
ている。
The three-way switching valve 14 allows the pipe line 8 to flow and closes the take-out pipe line 9, and also blocks the flow downstream from the connection part of the take-out pipe line 9 of the pipe line 8 and connects the pipe line 8 and the take-out pipe It is possible to switch between the state of communication with the line 9.

また、管路8の途中において、取出管路9との接続部と
、管路3との接続部との中間位置には、三方切替弁15
を介してバイパス管路16の一端が接続されるとともに
、このバイパス管路16の他端は加圧ポンプ1をバイパ
スして被濃縮液供給管路2の上流側に接続されている。
Further, in the middle of the pipe line 8, a three-way switching valve 15 is provided at an intermediate position between the connection part with the extraction pipe line 9 and the connection part with the pipe line 3.
One end of the bypass line 16 is connected through the bypass line 16, and the other end of the bypass line 16 is connected to the upstream side of the concentrated liquid supply line 2, bypassing the pressurizing pump 1.

前記三方切替弁15は、管路8を連通させバイパス管路
16を閉塞させる状態と、管路8のバイパス管路16と
の接続部より上流側を閉塞させバイパス管路16と管路
8とを連通させる状態とを切替えうるようにされている
The three-way switching valve 15 allows the pipe line 8 to communicate with the bypass pipe line 16 and closes the bypass pipe line 16, and the pipe line 8 upstream from the connection part with the bypass pipe line 16 to be closed and connects the bypass pipe line 16 and the pipe line 8. It is possible to switch between the state in which the

また、これらの三方切替弁14.15により流路切替装
置が構成されている。
Further, these three-way switching valves 14 and 15 constitute a flow path switching device.

なお、前記循環ポンプ4は、加圧ポンプ1よりも数段流
量の大きい、たとえば5〜10倍程度の流量を有するポ
ンプとされている。
Note that the circulation pump 4 is a pump having a flow rate several steps larger than that of the pressure pump 1, for example, about 5 to 10 times.

次に、本実施例の作用につき濃縮状態と置換状態とに分
けて説明する。
Next, the operation of this embodiment will be explained separately for the concentration state and the replacement state.

濃縮状態においては、各三方切替弁14.15はそれぞ
れ管路8を連通させる状態とされるとともに、供給管路
2から加圧ポンプ1を介して循環ポンプ4に被濃縮液が
供給されている。
In the concentrated state, each of the three-way switching valves 14 and 15 communicates with the pipe line 8, and the liquid to be concentrated is supplied from the supply pipe line 2 to the circulation pump 4 via the pressurizing pump 1. .

その被濃縮液は、逆浸透装置7により透過液を透過液導
出管9がら排出して濃縮され、管路8,3を経て循環ポ
ンプ4に還流し、再び前述のルートで循環を繰り返す。
The liquid to be concentrated is concentrated by discharging the permeated liquid through the permeated liquid outlet pipe 9 by the reverse osmosis device 7, and is returned to the circulation pump 4 via the pipes 8 and 3, and the circulation is repeated again by the above-mentioned route.

この際、透過液の流出に見合う分の被濃縮液が供給管路
2から供給されるが、この濃縮の初期においては閉ルー
プ管路内の液濃度が薄い為、透過液の流出量は多く、順
次少なくなる(第5図中曲線C1、C2・・・参照)。
At this time, the liquid to be concentrated corresponding to the outflow of the permeate is supplied from the supply pipe 2, but at the beginning of this concentration, the liquid concentration in the closed loop pipe is low, so the amount of permeate flowing out is large. It gradually decreases (see curves C1, C2, etc. in FIG. 5).

このようにして閉ループ管路内の液が所定の濃度に達す
る迄循環を繰り返し、所定の濃度に達すると、以下の操
作で濃縮液の置換を行なう。
In this manner, circulation is repeated until the liquid in the closed loop pipe reaches a predetermined concentration, and when the predetermined concentration is reached, the concentrated liquid is replaced by the following operation.

置換状態では、各三方切替弁14.15を操作し、管路
8と取出管路9とを連通させるとともに、管路16と管
路8とも連通させる。
In the replacement state, the three-way switching valves 14 and 15 are operated to connect the pipe line 8 and the extraction pipe line 9, and also to make the pipe line 16 and the pipe line 8 communicate with each other.

この際、加圧ポンプ1は逆浸透装置7に無理な圧力を加
えない為停止させておくのがよい。
At this time, it is preferable to stop the pressure pump 1 so as not to apply excessive pressure to the reverse osmosis device 7.

三方切替弁14.15が前述の状態に切替えられると、
供給管路2内の被濃縮液は、加圧ポンプ1をバイパスし
てバイパス管路16、管路8および吸込側管路3を経て
循環ポンプ4の作用により逆浸透装置7に送られ、さら
に管路8へと侵入する。
When the three-way switching valve 14.15 is switched to the above-mentioned state,
The liquid to be concentrated in the supply pipe 2 is sent to the reverse osmosis device 7 by the action of the circulation pump 4 via the bypass pipe 16, the pipe 8 and the suction side pipe 3, bypassing the pressurizing pump 1, and further Invades pipe 8.

これにより、管路8. 3. 5、循環ポンプ4、逆浸
透装置7および管路8内に滞留した濃縮済の液は被濃縮
液に押されて順次三方切替弁14を経て取出管路9に送
られ、濃縮液貯留槽11に排出される。
As a result, conduit 8. 3. 5. The concentrated liquid accumulated in the circulation pump 4, the reverse osmosis device 7, and the pipe line 8 is pushed by the liquid to be concentrated and is sequentially sent to the extraction pipe line 9 via the three-way switching valve 14, and is transferred to the concentrated liquid storage tank 11. is discharged.

この濃縮液の排出が完了すると、再び各三方切替弁14
.15が操作されて、それぞれ管路8を連通させ、前述
の濃縮作用が開始される。
When the discharge of this concentrated liquid is completed, each three-way switching valve 14
.. 15 are operated to connect the respective conduits 8, and the above-mentioned concentration action is started.

このように、濃縮状態及び置換状態を繰返して間欠的に
濃縮液を取出す。
In this way, the concentrated state and the replacement state are repeated and the concentrated liquid is taken out intermittently.

この間欠的取出しの周期は、第5図からも判るように、
従来の回分方式に比べ数分の1程度の周期とされ、しか
も透過液流量の大きい範囲のみを用いて行なわれる。
As can be seen from Fig. 5, the period of this intermittent extraction is as follows:
The period is about a fraction of that of the conventional batch method, and it is carried out using only a large range of permeate flow rate.

本実施例によれば、流路切替装置としての三方切替弁1
4.15の操作により間欠的に閉ループ系内の高濃度液
を取出すことができるため、従来の連続式加圧循環方式
の欠点である透過液の流量の急激な低下を防止でき、逆
浸透装置7の大型化を防止できる。
According to this embodiment, the three-way switching valve 1 as a flow path switching device
As the highly concentrated liquid in the closed loop system can be taken out intermittently by the operation in 4.15, it is possible to prevent a sudden drop in the flow rate of the permeate, which is a drawback of the conventional continuous pressurized circulation system. 7 can be prevented from increasing in size.

すなわち、本実例では、第5図の曲線C1、C2・・・
に示される如く、透過液流量の急激な低下をきたす前に
濃縮作用を停止してサイクルを終了し、濃縮液を取出す
ようにしたいものである。
That is, in this example, the curves C1, C2... in FIG.
As shown in Figure 2, it is desirable to stop the concentration action, complete the cycle, and take out the concentrated liquid before the permeate flow rate suddenly decreases.

また、三方切替弁15を切替え、バイパス管路16から
大容量の循環ポンプ4を介して被濃縮液を供給するよう
にしたから、逆浸透装置7に悪影響を与えることなく、
高濃度液を低濃度液で極めて短かい時間で置換できる。
In addition, since the three-way switching valve 15 is switched and the liquid to be concentrated is supplied from the bypass pipe 16 via the large-capacity circulation pump 4, the reverse osmosis device 7 is not adversely affected.
High concentration liquid can be replaced with low concentration liquid in an extremely short time.

さらに、前記各効果の総合的効果として、前記従来の連
続式加圧循環方式と回分方式との長所のみを併せもつ方
式となり、設備費、運転費とも安価な方式とすることが
できる。
Furthermore, as a comprehensive effect of each of the above-mentioned effects, it becomes a system that combines only the advantages of the conventional continuous pressurized circulation system and the batch system, and can be a system that is low in equipment cost and operating cost.

次に、第・4図は本発明の第2実施例を示すもので、前
記第1実施例と異なるのは、管路8の途中すなわち逆浸
透装置7と三方切替弁14との間に中間タンク17を設
けたことと、途中に圧力開放弁18を有し管路8の途中
すなわち前記中間タンク17と逆浸透装置7との間と取
出管路9とを連通させる圧力開放管路19を設けたこと
である。
Next, FIG. 4 shows a second embodiment of the present invention, which differs from the first embodiment in that there is a In addition to the provision of the tank 17, a pressure release line 19 having a pressure release valve 18 in the middle and communicating the middle of the line 8, that is, between the intermediate tank 17 and the reverse osmosis device 7, and the extraction line 9 is provided. This is what we have set up.

本実施例によれば、前記第1実施例の効果の他に、次の
ような効果を付加できる。
According to this embodiment, the following effects can be added in addition to the effects of the first embodiment.

すなわち、中間タンク17は閉ループ系内に保持される
液を増加させ、結果として高濃度液を低濃度液で置換す
る頻度を減少させ、置換に要する無駄な時間を節約でき
て濃縮効率を上昇できる。
That is, the intermediate tank 17 increases the amount of liquid held in the closed loop system, and as a result, the frequency of replacing high concentration liquid with low concentration liquid is reduced, which saves wasted time required for replacement and increases concentration efficiency. .

また、置換に要する時間は短かい程よいが、これは圧力
開放弁18を有する圧力開放管路19により達成できる
Further, the shorter the time required for the replacement, the better, and this can be achieved by a pressure release line 19 having a pressure release valve 18.

すなわち、置換時間を短かくするには、濃縮状態から置
換状態への移行ならびにその逆の移行過程において加圧
ポンプ1及び循環ポンプ4は停止したり再起動したりし
ない方がよい。
That is, in order to shorten the replacement time, it is better not to stop or restart the pressurizing pump 1 and the circulation pump 4 during the transition from the concentration state to the replacement state and vice versa.

しかし、前記第3図の実施例においては、各状態の切替
時に入口圧力、出口圧力が急激に変化するため、逆浸透
装置7の逆浸透膜を破壊する虞れがあり、加圧ポンプ1
だけは一旦停止する必要がある。
However, in the embodiment shown in FIG. 3, since the inlet pressure and outlet pressure change rapidly when switching between states, there is a risk of destroying the reverse osmosis membrane of the reverse osmosis device 7, and the pressure pump 1
Only needs to be stopped once.

これに対し、本実施例のように、圧力開放弁1B及び圧
力開放管路19を設け、濃縮状態から置換状態に移行す
るに先だって圧力開放弁18を開き、系内の圧力を低下
させれば、加圧ポンプ1及び循環ポンプ4を共に連続運
転してもよく、置換に要する時間を短縮できる。
In contrast, if the pressure release valve 1B and the pressure release pipe 19 are provided as in this embodiment, and the pressure release valve 18 is opened before the transition from the concentration state to the replacement state, the pressure in the system is reduced. Both the pressurizing pump 1 and the circulation pump 4 may be operated continuously, and the time required for replacement can be shortened.

また、置換状態から濃縮状態に移行する場合は、移行完
了後圧力開放弁18を閉じるのが急激な圧力変動をなく
す意味で効果がある。
Further, when transitioning from the substitution state to the concentration state, closing the pressure release valve 18 after the transition is completed is effective in eliminating sudden pressure fluctuations.

さらに、圧力開放弁18及び圧力開放管路19の口径は
、圧力を下げる効果があればよいから、極めて小径のも
のでよい。
Further, the diameters of the pressure release valve 18 and the pressure release conduit 19 may be extremely small as long as they have the effect of lowering the pressure.

なお、前記各実施例においでは、循環ポンプ4を供給管
路2の接続部と逆浸透装置7との間に設置したが、循環
ポンプ4の設置場所はこれに限定されず、たとえば、バ
イパス管路16の接続部と供給管路2の接続部との中間
等、閉ループ管路の他の位置に設けてもよい。
In each of the above embodiments, the circulation pump 4 was installed between the connection part of the supply pipe line 2 and the reverse osmosis device 7, but the installation location of the circulation pump 4 is not limited to this, and for example, the place where the circulation pump 4 is installed is not limited to this. It may also be provided at other locations in the closed loop line, such as intermediate the connection between line 16 and supply line 2.

すなわち、加圧ポンプ1で加圧された被濃縮液を循環ポ
ンプ4で更に加圧するのではなく、加圧ポンプ1の吐出
流と循環ポンプ4の吐出流とを合流させて逆浸透装置7
に送り、逆浸透装置7からの戻りを循環ポンプ4に導く
ようにしてもよい。
That is, instead of further pressurizing the concentrated liquid pressurized by the pressure pump 1 by the circulation pump 4, the discharge flow of the pressure pump 1 and the discharge flow of the circulation pump 4 are combined and the reverse osmosis device 7
, and the return from the reverse osmosis device 7 may be guided to the circulation pump 4.

また、バイパス管路16は供給管路2から分岐して設け
られたものに限らず、供給管路2とは別系統に被濃縮液
を導入できる管路としてもよく、要するに、循環ポンプ
4へ加圧ポンプ1を介することなく低濃度の被濃縮液を
導くことができればよい。
Furthermore, the bypass pipe line 16 is not limited to one provided branching off from the supply pipe line 2, and may be a pipe line that can introduce the liquid to be concentrated into a system separate from the supply pipe line 2. It is sufficient if the liquid to be concentrated at a low concentration can be introduced without going through the pressurizing pump 1.

さらに、流量切替装置として二個の三方切替弁14.1
5を用いたが、他の構成、たとえば、三方切替弁14は
そのままとし、三方切替弁15は通常の開閉弁としてバ
イパス管路16の途中に設けた構成あるいは、三方切替
弁14.15は用いず三個の開閉弁を用い、各開閉弁を
取出管路9、バイパス管路16ならびに管路8の取出管
路9との接続部とバイパス管路16との接続部との途中
にそれぞれ設け、濃縮状態では管路8の開閉弁のみを開
として他を閉とし、置換状態ではその逆とする構成など
でもよく、さらに他の公知の方法によってもその機能は
達成できるが、三方切替弁を用いれば安価であるという
利点がある。
Furthermore, two three-way switching valves 14.1 are used as flow switching devices.
5 was used, but other configurations were used, for example, a configuration in which the three-way switching valve 14 was left as is and the three-way switching valve 15 was provided as a normal on-off valve in the middle of the bypass pipe 16, or the three-way switching valve 14 and 15 were not used. Using three on-off valves, each on-off valve is provided in the middle of the outlet pipe line 9, the bypass line 16, and the connection part of the line 8 with the outlet line 9 and the connection part with the bypass line 16. In the enrichment state, only the on-off valve of the pipe line 8 is open and the others are closed, and in the replacement state, the reverse is possible.Although this function can also be achieved by other known methods, it is not possible to use a three-way switching valve. It has the advantage of being inexpensive if used.

また、前記第2実施例において、中間タンク17の設置
位置ならびに管路8と圧力開放管路19の接続位置は、
図示のの位置に限らず、閉ループ管路の途中であればど
こでもよい。
Furthermore, in the second embodiment, the installation position of the intermediate tank 17 and the connection position of the pipe line 8 and the pressure relief pipe line 19 are as follows.
The position is not limited to the one shown in the figure, but may be anywhere along the closed loop conduit.

また、圧力開放管19は取出管路9と合流していなくと
もよい。
Further, the pressure release pipe 19 does not need to merge with the extraction pipe line 9.

さらに、第4図の加圧ポンプ1を定量供給型ポンプとす
ることにより、系内の濃度上昇に伴って系内の圧力が上
昇するという特性が生じ、これにより透過液量を常に一
定にする装置とすることができる。
Furthermore, by using the pressurizing pump 1 in Fig. 4 as a fixed-rate pump, a characteristic occurs in which the pressure within the system increases as the concentration within the system increases, thereby keeping the amount of permeate liquid constant. It can be a device.

また、三方切替弁14.15及び圧力開放弁18を自動
弁とするとともに、管路8に圧力検出装置を設け、この
圧力検出装置により各弁14.15.18を自動的に操
作するようにすれば、系内の濃度が一定濃度に達したと
き、自動的に高濃度液を低濃度液で置換することができ
、人手を要することなく連続運転可能な装置とできる。
In addition, the three-way switching valve 14.15 and the pressure release valve 18 are automatic valves, and a pressure detection device is provided in the pipeline 8, so that each valve 14.15.18 is automatically operated by this pressure detection device. Then, when the concentration in the system reaches a certain level, the high concentration liquid can be automatically replaced with the low concentration liquid, resulting in an apparatus that can be operated continuously without requiring manual labor.

上述のように、本発明によれば、運転動力が小さく、か
つ小規模な装置により、多量の濃縮処理を行なうことが
できる逆浸透濃縮方法及びその装置を提供できるという
効果がある。
As described above, according to the present invention, there is an effect that it is possible to provide a reverse osmosis concentration method and an apparatus thereof, which can perform a large amount of concentration treatment using a small-scale device with low operating power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の連続式加圧循環方式による逆浸透濃縮装
置を示す系統図。 第2図は従来の回分方式による逆浸透濃縮装置を示す系
統図、第3図は本発明に係る逆浸透濃縮装置の第1実施
例を示す系統図、第4図は本発明の第2実施例を示す系
統図、第5図は従来装置ならびに本発明装置における運
転時間と透過液流量との関係を示す線図である。 1・・・・・・加圧ポンプ、2・・・・・・被濃縮液供
給管路、3、 5. 8・・・・・・閉ループ管路を構
成する管路、4・・・・・・循環ポンプ、7・・・・・
・逆浸透装置、9・・・・・・濃縮液取出管路、14.
15・・・・・・流路切替装置としての三方切替弁、1
6・・・・・・バイパス管路、17・・・・・・中間タ
ンク、18・・・・・・圧力開放弁、19・・・・・・
圧力開放管路。
FIG. 1 is a system diagram showing a conventional reverse osmosis concentrator using a continuous pressurized circulation system. FIG. 2 is a system diagram showing a conventional batch-type reverse osmosis concentration device, FIG. 3 is a system diagram showing a first embodiment of the reverse osmosis concentration device according to the present invention, and FIG. 4 is a system diagram showing a second embodiment of the present invention. FIG. 5, a system diagram showing an example, is a diagram showing the relationship between operating time and permeate flow rate in the conventional device and the device of the present invention. 1... Pressure pump, 2... Concentrated liquid supply pipe line, 3, 5. 8...Pipe line constituting a closed loop pipe line, 4...Circulation pump, 7...
- Reverse osmosis device, 9... Concentrate extraction pipe, 14.
15... Three-way switching valve as a flow path switching device, 1
6...Bypass pipe line, 17...Intermediate tank, 18...Pressure release valve, 19...
Pressure relief line.

Claims (1)

【特許請求の範囲】 1 逆浸透装置と循環ポンプとを有し外気に開放されて
いない閉ループ管路に加圧ポンプを介して被濃縮液を供
給しつつ該被濃縮液を前記循環ポンプにより逆浸透装置
を介して前記閉ループ管路内を循環させて濃縮し、この
循環する被濃縮液が所定濃度になったときに閉ループ管
路から濃縮済の液を取出す濃縮液取出管路を開口させる
とともにこの取出管路より下流の閉ループ管路を閉塞し
、かつ前記加圧ポンプをバイパスして新たな被濃縮液を
前記循環ポンプの吸込側に供給し、この新たな被濃縮液
を前記循環ポンプで圧送することにより閉ループ管路内
に滞留している濃縮液を前記取出管路側に排出して回収
し、これらの一連の操作を繰返して濃縮液を間欠的に外
部に排出することを特徴とする逆浸透濃縮方法。 2 逆浸透装置と循環ポンプとを大気に開放することな
く管路で閉ループに連結するとともに、この閉ループ管
路に、途中に加圧ポンプを有する被濃縮液供給管路なら
びに濃縮液取出管路を連結して構成された逆浸透濃縮装
置において、前記加圧ポンプをバイパスして前記閉ルー
プ管路の循環ポンプの吸込側に接続されるバイパス管路
を設けるとともに、前記閉ループ管路に、前記バイパス
管路からの流れ及び濃縮液取出管路への流れを阻止し閉
ループ管路の循環流れを許容する状態とバイパス管路か
らの流れ及び濃縮液取出管路への流れを許容し閉ループ
管路の該濃縮液取出管路の接続部より下流への流れを阻
止する状態とを切替可能な流路切替装置を設けたことを
特徴とする逆浸透濃縮装置。 3 前記特許請求の範囲第2項において、前記閉ループ
管路の途中に中間タンクを設けたことを特徴とする逆浸
透濃縮装置。 4 前記特許請求の範囲第2項または第3項において、
前記閉ループ管路の途中に、圧力開放弁を有する圧力開
放管路を接続したことを特徴とする逆浸透濃縮装置。
[Scope of Claims] 1. A system that includes a reverse osmosis device and a circulation pump, and supplies the liquid to be concentrated to a closed-loop pipeline that is not open to the outside air through a pressurizing pump, while the liquid to be concentrated is reversely reversed by the circulation pump. The concentrated liquid is circulated through the closed loop pipe through the infiltration device to be concentrated, and when the circulating liquid to be concentrated reaches a predetermined concentration, the concentrated liquid extraction pipe is opened to take out the concentrated liquid from the closed loop pipe. The closed loop pipe downstream of this extraction pipe is closed, the pressure pump is bypassed, and a new liquid to be concentrated is supplied to the suction side of the circulation pump, and this new liquid to be concentrated is passed through the circulation pump. The concentrated liquid remaining in the closed loop pipe is discharged to the extraction pipe side by pressure feeding and collected, and this series of operations is repeated to intermittently discharge the concentrated liquid to the outside. Reverse osmosis concentration method. 2 The reverse osmosis device and the circulation pump are connected in a closed loop through a pipe without being exposed to the atmosphere, and a liquid to be concentrated supply pipe and a concentrate extraction pipe with a pressurizing pump in the middle are connected to this closed loop pipe. In the reverse osmosis concentrator configured to be connected, a bypass pipe is provided which bypasses the pressure pump and is connected to the suction side of the circulation pump of the closed loop pipe, and the bypass pipe is connected to the closed loop pipe on the suction side of the circulation pump. A state in which the flow from the bypass pipe and the flow to the concentrate extraction pipe is blocked and a circulating flow in the closed loop pipe is allowed, and a state in which the flow from the bypass pipe and the flow to the concentrate removal pipe is allowed and the circulation flow in the closed loop pipe is allowed. A reverse osmosis concentrator, comprising a flow path switching device capable of switching between a state in which flow downstream from a connection part of a concentrate extraction pipe is blocked. 3. The reverse osmosis concentrator according to claim 2, characterized in that an intermediate tank is provided in the middle of the closed loop pipeline. 4 In claim 2 or 3,
A reverse osmosis concentrator characterized in that a pressure release line having a pressure release valve is connected in the middle of the closed loop line.
JP852378A 1978-01-27 1978-01-27 Reverse osmosis concentration method and device Expired JPS5948122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP852378A JPS5948122B2 (en) 1978-01-27 1978-01-27 Reverse osmosis concentration method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP852378A JPS5948122B2 (en) 1978-01-27 1978-01-27 Reverse osmosis concentration method and device

Publications (2)

Publication Number Publication Date
JPS54101778A JPS54101778A (en) 1979-08-10
JPS5948122B2 true JPS5948122B2 (en) 1984-11-24

Family

ID=11695493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP852378A Expired JPS5948122B2 (en) 1978-01-27 1978-01-27 Reverse osmosis concentration method and device

Country Status (1)

Country Link
JP (1) JPS5948122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266709A (en) * 1988-04-18 1989-10-24 Matsushita Electric Ind Co Ltd Lc composite part

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32144E (en) * 1977-03-28 1986-05-13 Reverse osmosis method and apparatus
US8025804B2 (en) * 2006-12-19 2011-09-27 Avi Efraty Continuous closed-circuit desalination method without containers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266709A (en) * 1988-04-18 1989-10-24 Matsushita Electric Ind Co Ltd Lc composite part

Also Published As

Publication number Publication date
JPS54101778A (en) 1979-08-10

Similar Documents

Publication Publication Date Title
KR102180787B1 (en) Water treatment system and method by reverse osmosis or nanofiltration
CN208577523U (en) A kind of water purification system with water-driven tank
JPH01502496A (en) Method and device for treating fluid containing foreign components using a membrane filtration device
CN103237592B (en) The production method of reverse osmosis membrane separator, its starting method and permeate
US3493495A (en) Apparatus and process for the osmotic separation of water from a saline solution
CN105129915B (en) A kind of water purification machine and its method for improving water quality when turning back on
JPH0255098B2 (en)
PH12019000084A1 (en) Desalination system
CN204310857U (en) For purifier and the water-purifying machine of water-purifying machine
CN108975543A (en) Water purification system and water purifier
JPH08500665A (en) Device for moving cleaning material for heat exchanger capable of flowing cooling fluid
JPS5948122B2 (en) Reverse osmosis concentration method and device
US3647687A (en) Process of conditioning sewage sludge in system with by-pass valve system for a solvent wash
CN205773713U (en) A kind of water-driven water purifier relying on tap water pressure to drive keying
CN106698724A (en) Micro-wastewater-type reverse osmosis water purifier and water purifying and automatic rinsing method thereof
JPS5815030B2 (en) How to start up a reverse osmosis desalination plant equipped with an energy recovery device
CN106076119A (en) A kind of NF membrane washing point salt equipment
CN108892263A (en) The water purification system and water purifier of TDS value after reduction reverse osmosis membrane water salt balance
CN215516743U (en) Water purification system and water purifier with same
CN205367980U (en) Little waste water purifier
CN204310887U (en) Water-purifying machine
CN208843826U (en) Water treatment system and water purification unit
JP3014512U (en) Filtration module equipment
EP4036065A1 (en) Water purifier
CN204803051U (en) Water purifier