JPS5947237B2 - How to prevent corrosion of air-cooled steam condensers - Google Patents

How to prevent corrosion of air-cooled steam condensers

Info

Publication number
JPS5947237B2
JPS5947237B2 JP12047980A JP12047980A JPS5947237B2 JP S5947237 B2 JPS5947237 B2 JP S5947237B2 JP 12047980 A JP12047980 A JP 12047980A JP 12047980 A JP12047980 A JP 12047980A JP S5947237 B2 JPS5947237 B2 JP S5947237B2
Authority
JP
Japan
Prior art keywords
steam
air
condensate
cooled
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12047980A
Other languages
Japanese (ja)
Other versions
JPS5747196A (en
Inventor
一士 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP12047980A priority Critical patent/JPS5947237B2/en
Publication of JPS5747196A publication Critical patent/JPS5747196A/en
Publication of JPS5947237B2 publication Critical patent/JPS5947237B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は空冷式蒸気コンデンサの腐食防止方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing corrosion of an air-cooled steam condenser.

近年、じん芥焼却プラントに於て焼却熱を有効利用する
目的でボイラを設置し、蒸気で発電及び暖房、給湯を行
なうなど巾広く熱利用がなされている。
In recent years, boilers have been installed in dust incineration plants for the purpose of effectively utilizing the heat of incineration, and heat has been widely used for generating electricity, heating, and hot water using steam.

しかしどのような利用においても、プラント内に伺らか
の熱を外部へ放出する装置が必要である。
However, in any application, a device is required to release the heat generated within the plant to the outside.

空冷式蒸気コンデンサは従来の水冷式コンデンサよりも
多くの利点を有し、最近建設されているしん芥焼却プラ
ントではほとんど空冷式である。
Air-cooled steam condensers have many advantages over traditional water-cooled condensers, and most trash incineration plants being built these days are air-cooled.

これらの利点は、操作性、経済性及び環境面などにある
が、反面、3〜4年前項からコンデンサのチューブ腐食
事故が発生し、その原因について幾多の研究及び試みが
行なわれた。
These advantages are in terms of operability, economy, and environment, but on the other hand, condenser tube corrosion accidents have occurred three to four years ago, and numerous studies and attempts have been made to find the cause.

本発明はじん芥焼却プラント等に使用される空冷式蒸気
コンデンサの腐食を防止する方法を提供するもので、蒸
気コンデンサの蒸気入口配管内の蒸気中に、復水系防食
剤及び脱酸剤を温水で希釈した薬液を噴霧混合するもの
である。
The present invention provides a method for preventing corrosion of air-cooled steam condensers used in dust incineration plants, etc., in which a condensate-based corrosion inhibitor and deoxidizer are added to the steam in the steam inlet piping of the steam condenser using hot water. This involves spraying and mixing a chemical solution diluted with water.

以下その一実施例を図面に基づいて説明する。One embodiment will be described below based on the drawings.

第1図は空冷式蒸気コンデンサを装備した蒸気、復水の
サイクルの一例を示す。
Figure 1 shows an example of a steam/condensate cycle equipped with an air-cooled steam condenser.

純水装置1で作られた原水は原水補給ポンプ2により復
水タンク3に補給される。
Raw water produced by the water purifier 1 is supplied to a condensate tank 3 by a raw water replenishment pump 2.

復水タンク3内の復水は復水ポンプ4により脱気器5に
送られ、この脱気器5において復水中の溶存酸素(0□
)が除去される。
Condensate in the condensate tank 3 is sent to a deaerator 5 by a condensate pump 4, and dissolved oxygen (0□
) are removed.

その後に復水は、ボイラ給水ポンプ6でボイラ7に給水
される。
Thereafter, the condensate is supplied to the boiler 7 by the boiler feed pump 6.

このボイラ7で発生した蒸気は、スーパーヒーター8で
さらに加熱されて乾き蒸気にされ、この乾き蒸気は、ボ
イラ7内圧力を一定に保持するボイラ圧力制御弁9を通
って発電タービン10に送られて動力発生に供せられる
The steam generated in the boiler 7 is further heated by a super heater 8 to become dry steam, and this dry steam is sent to the power generation turbine 10 through a boiler pressure control valve 9 that keeps the internal pressure of the boiler 7 constant. It is used to generate power.

エネルギーの大半を失った蒸気は低圧低温化され、空冷
式低圧蒸気コンデンサ11に送られてここで冷却され、
復水となって前記復水タンク3に戻る。
The steam that has lost most of its energy is reduced in pressure and temperature, sent to an air-cooled low-pressure steam condenser 11, and cooled there.
It becomes condensate and returns to the condensate tank 3.

一方余剰蒸気は、ボイラ圧力制御弁15を通じて空冷式
高圧蒸気コンデンサ16に流入してここで復水となり、
ドレントラップ17を通じて前記復水タンク3に戻る。
On the other hand, surplus steam flows into the air-cooled high-pressure steam condenser 16 through the boiler pressure control valve 15 and becomes condensate there.
It returns to the condensate tank 3 through the drain trap 17.

前記空冷式蒸気コンデンサ11゜16は多数のフィンチ
ューブ12が配列されている構造で、入口側に取付けた
ボイラ圧力制御弁9゜15により、弁からボイラ側の圧
力を常に一定に保つよう自動制御されている。
The air-cooled steam condenser 11゜16 has a structure in which a large number of fin tubes 12 are arranged, and is automatically controlled by a boiler pressure control valve 9゜15 installed on the inlet side so that the pressure from the valve to the boiler side is always kept constant. has been done.

このフィンチューブ12内に入った蒸気はファン13の
送風により冷却され、復水となって出口14から排水さ
れる。
The steam that has entered the fin tube 12 is cooled by air blowing from the fan 13, becomes condensed water, and is drained from the outlet 14.

このようなサイクルで運転される蒸気、復水系統に於て
、空冷式蒸気コンデンサ11,16の最下段或いは下か
ら2段目付近のフィンチューブ12が腐食し、3年から
4年の使用後に腐食洩れ事故がしばしば経験される。
In steam and condensate systems operated in such a cycle, the fin tubes 12 near the bottom or second stage from the bottom of the air-cooled steam condensers 11 and 16 corrode, and after 3 to 4 years of use, Corrosion leakage accidents are often experienced.

一般に復水ラインの腐食には、滑らかに腐食される場合
とピッチング(孔食)腐食の場合の2種類があるが、前
者は炭酸ガス(C02)による腐食であり、後者は溶存
酸素(o2)による腐食である。
In general, there are two types of corrosion on condensate lines: smooth corrosion and pitting corrosion.The former is corrosion caused by carbon dioxide gas (C02), and the latter is corrosion caused by dissolved oxygen (O2). This is due to corrosion.

現在までの腐食の実態で経験しているものは、殆んどが
ピッチング腐食であることと、腐食事故は空冷式低圧蒸
気コンデンサ11であって空冷式高圧蒸気コンデンサ1
6はその頻度が少いことである。
Most of the corrosion that has been experienced to date is pitting corrosion, and the corrosion accidents occurred in the air-cooled low-pressure steam condenser 11 and not in the air-cooled high-pressure steam condenser 1.
6 is that the frequency is low.

これらの事実関係から本発明は、次のような原理からこ
れを防止することに成功したものである。
In view of these facts, the present invention has succeeded in preventing this problem based on the following principle.

即ち、腐食原因の炭酸ガス((A)による腐食を防ぐた
めには復水中に揮発性中和アミン系を投薬することによ
りボイラ7内で蒸気と共にガス化し、復水ラインで復水
中に溶解し炭酸を中和することができるため、空冷式蒸
気コンデンサ11゜16の出口14での復水の水素イオ
ン濃度をpH9に保つようアミンの投薬量を調整すれば
炭酸ガス(CO2)による腐食は防ぐことができる。
In other words, in order to prevent corrosion caused by carbon dioxide gas ((A)), volatile neutralized amines are dosed into the condensate, which is gasified together with steam in the boiler 7, dissolved in the condensate in the condensate line, and released into carbon dioxide. Corrosion caused by carbon dioxide (CO2) can be prevented by adjusting the dosage of amine to maintain the hydrogen ion concentration of condensate at pH 9 at the outlet 14 of the air-cooled steam condenser 11゜16. I can do it.

しかも現在までそのような水質管理を行っている。Moreover, such water quality management has been carried out to this day.

従って腐食状況は滑らかな腐食状況で無くピッチング腐
食である事実から、炭酸ガス(CO2)によるものでは
ないことが立証される。
Therefore, the fact that the corrosion is not a smooth corrosion but pitting corrosion proves that it is not caused by carbon dioxide gas (CO2).

溶存酸素(0□)による腐食を防止するためには、脱気
器5で除去され更にヒドラジンにより脱酸できる。
In order to prevent corrosion due to dissolved oxygen (0□), it can be removed in a deaerator 5 and further deoxidized with hydrazine.

従って脱酸できたか否かの水質検査は、ボイラ7のドラ
ムの缶水中にヒドラジンが微量検出されればボイラドラ
ム中には溶存酸素(02)は無いことが証明されたこと
になる。
Therefore, in the water quality test to determine whether deoxidation has been achieved, if a trace amount of hydrazine is detected in the canned water of the drum of boiler 7, it is proven that there is no dissolved oxygen (02) in the boiler drum.

ところでヒドラジンは、復水中で溶存酸素(02)があ
れば化合し分解するが、残溜ヒドラジンは復水が蒸気状
態になっても気体状態にはならない。
By the way, hydrazine will combine and decompose if there is dissolved oxygen (02) in the condensate, but the residual hydrazine will not become a gas even if the condensate becomes a vapor.

従ってボイラドラムで発生した蒸気中にはヒドラジンは
存在しない。
Therefore, hydrazine is not present in the steam generated in the boiler drum.

これらの事実はボイラ缶水中のヒドラジン濃度を高くし
ても空冷式蒸気コンデンサILI6の出口14で復水中
のヒドラジン濃度を検査しても検出されなかったことか
ら証明出来る。
These facts can be proven from the fact that even if the hydrazine concentration in the boiler can water was increased, the hydrazine concentration in the condensate water was not detected when tested at the outlet 14 of the air-cooled steam condenser ILI6.

従って空冷式蒸気コンデンサIL16の内部が負圧にな
り、バルブのシール部やフランジ部等から酸素(02)
が混入した場合、復水中にヒドラジンが無いため当然ピ
ッチング腐食することとなる。
Therefore, the inside of the air-cooled steam condenser IL16 becomes negative pressure, and oxygen (02) is released from the valve seal and flange.
If hydrazine is mixed in, pitting corrosion will naturally occur because there is no hydrazine in the condensate.

空冷式低圧蒸気コンデンサ11では負圧にならないよう
、コンデンサ出口部配管14Aに何らかの抵抗体(例え
ば圧力制御弁等)を装備しても大気圧以上の圧力制御は
可能であるが、負圧に対しては何等制御のほどこし力が
ない。
In the air-cooled low-pressure steam condenser 11, it is possible to control the pressure above atmospheric pressure by equipping the condenser outlet piping 14A with some kind of resistor (such as a pressure control valve) to prevent negative pressure. There is no control over it.

まして発電タービン10の出口は大気圧程度まで圧力を
下げた方がタービン効率が高くなるため、空冷式低圧蒸
気コンデンサ11の出口管14Aに抵抗体を装備するこ
とは好ましくない。
Furthermore, since the turbine efficiency will be higher if the pressure at the outlet of the power generation turbine 10 is lowered to around atmospheric pressure, it is not preferable to equip the outlet pipe 14A of the air-cooled low pressure steam condenser 11 with a resistor.

従って空冷式高圧蒸気コンデンサ11が負圧になった場
合、復水出口管14Aがら空気が多量に混入することを
防止する目的で、一般には復水タンク3の水圧下まで出
口管14Aを挿入し水面シールしている。
Therefore, when the air-cooled high-pressure steam condenser 11 becomes negative pressure, the outlet pipe 14A is generally inserted up to the water pressure of the condensate tank 3 in order to prevent a large amount of air from entering the condensate outlet pipe 14A. The water surface is sealed.

一方、余剰蒸気を復水する空冷式高圧蒸気コンデンサ1
6の出口にはドレントラップ17を装備している。
On the other hand, air-cooled high-pressure steam condenser 1 that condenses surplus steam
6 is equipped with a drain trap 17.

このドレントラップ1Tは復水を流すため、コンデンサ
内部に2〜3 kg/cry!の圧力が必要であり、従
ってコンデンサ内部は常に正圧力である。
This drain trap 1T allows condensate to flow, so 2 to 3 kg/cry! is inside the capacitor! Therefore, there is always positive pressure inside the capacitor.

よって酸素(0□)の混入もまれであり、ピッチング腐
食事故も空冷式低圧蒸気コンデンサ11に比較して少い
Therefore, contamination with oxygen (0□) is rare, and pitting corrosion accidents are also less common than in the air-cooled low-pressure steam condenser 11.

本発明は上記の事実関係から、ピッチング腐食を次のよ
うな原理から防止することに成功したものである。
In view of the above facts, the present invention has succeeded in preventing pitting corrosion based on the following principle.

即ち、長期間の運転における復水の分析を行った結果、
蒸気コンデンサ11,16の出口復水はpH9以上でヒ
ドラジンは検出されていなかった。
In other words, as a result of analyzing condensate during long-term operation,
The condensate at the outlets of the steam condensers 11 and 16 had a pH of 9 or higher and no hydrazine was detected.

空冷式高圧蒸気コンデンサ16に於ては全鉄イオンはほ
とんど検出されないが、空冷式低圧蒸気コンデンサ11
では0.10ppIn前後検出されており、これはチュ
ーブの腐食が微量づつ進行していることを意味している
Almost no total iron ions are detected in the air-cooled high-pressure steam condenser 16, but in the air-cooled low-pressure steam condenser 11
In this case, around 0.10 ppIn was detected, which means that the corrosion of the tube is progressing little by little.

しかも空冷式低圧蒸気コンデンサ11の入口蒸気圧力0
.1〜0.3 ky/dのような小さな圧力範囲で運転
することは蒸気と空気の熱交換気であり、熱伝導速度が
遅いためややもすると負圧になる可能性が多い。
Moreover, the inlet steam pressure of the air-cooled low-pressure steam condenser 11 is 0.
.. Operating in a small pressure range of 1 to 0.3 ky/d involves heat exchange between steam and air, and the rate of heat transfer is slow, so there is a high possibility that the pressure will become negative.

負圧になって酸素(0□)が蒸気中に混入しても、酸素
(02)を化合し分解するヒドラジンが蒸気中に存在し
ないために腐食が起きるのである。
Even if oxygen (0□) mixes into the steam under negative pressure, corrosion occurs because hydrazine, which combines and decomposes oxygen (02), is not present in the steam.

従って蒸気コンデンサlLi6の入口の蒸気中に液体状
の薬品を噴霧混合し、蒸気復水中に防止剤を保存させる
ことにより腐食を防止する必要がある。
Therefore, it is necessary to prevent corrosion by spraying and mixing a liquid chemical into the steam at the inlet of the steam condenser 1Li6 and storing an inhibitor in the steam condensate.

そこで本発明は、脱気器5で溶存酸素(02)を除去し
た復水を復水噴射ポンプ18で圧送する配管中に、ヒド
ラジン溶解液タンク19とアミン溶解液タンク20の薬
液を薬液ポンプ21で注入して復水と混合し、蒸気コン
デンサ11,16への供給管22を通して蒸気コンデン
サ入口蒸気混合管23の内部に薬液噴射ノズル24で蒸
気と薬液を混合する機構を装備している。
Therefore, in the present invention, the chemical solution in the hydrazine solution tank 19 and the amine solution tank 20 is transferred to the chemical solution pump 21 in the piping for pumping the condensate from which dissolved oxygen (02) has been removed in the deaerator 5 using the condensate injection pump 18. A mechanism is provided for mixing the steam and the chemical with a chemical injection nozzle 24 inside the steam condenser inlet steam mixing pipe 23 through the supply pipe 22 to the steam condensers 11 and 16.

空冷式高圧蒸気コンデンサ16の場合は上記構造のもの
を装備することにより高圧加熱された余剰空気を復水す
る際、腐食防止にも役立つが加熱蒸気の減温、減圧に役
立ち、空冷式高圧蒸気コンデンサ16の伝熱面積に余裕
率を増大させることになる。
In the case of the air-cooled high-pressure steam condenser 16, by equipping it with the structure described above, it is useful for preventing corrosion when condensing excess air heated at high pressure, but also for reducing the temperature and pressure of the heated steam. This increases the margin ratio in the heat transfer area of the capacitor 16.

このような構造を装備して運転の結果、空冷式蒸気コン
デンサ11,16の出口復水管の復水中にはほとんど全
鉄イオンが検出されなくなり、腐食の進行が停止してい
ることが証明された。
As a result of operation with this structure installed, almost no iron ions were detected in the condensate of the outlet condensate pipes of the air-cooled steam condensers 11 and 16, proving that the progress of corrosion had stopped. .

しかも全復水ラインでヒドラジンが検出され、酸素(0
□)の無い復水を循環させているため蒸気コンデンサ’
lLi6人ロ以降でのピッチング腐食を防止することを
実機に於て試み成功した。
Furthermore, hydrazine was detected in all condensate lines, and oxygen (0
□) Since the condensate is circulated without
We successfully tried to prevent pitching corrosion on a 6-person LiLi machine using an actual machine.

よって、じん芥焼却プラント等に使用されている微圧調
整が難しいがために起きる空冷式蒸気コンデンサの腐食
を防止し、しかも高圧蒸気コンデンサに於ては減温、減
圧効果も兼ね、運転に於ても経済性などに有利で実用上
の効果は極めて多大である。
Therefore, it prevents corrosion of air-cooled steam condensers used in dust incineration plants, etc., which occurs due to the difficulty of fine pressure adjustment, and also has the effect of reducing temperature and pressure in high-pressure steam condensers, making them easier to operate. However, it is advantageous in terms of economy and the practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図はサイクル図、
第2図は要部の拡大図である。 3・・・・・・復水タンク、5・・・・・・脱気器、7
・・・・・・ボイラ、11・・・・・・空冷式低圧蒸気
コンデンサ、12・・・・・・フィンチューブ、16・
・・・・・空冷式高圧蒸気コンデンサ、18・・・・・
・復水噴射ポンプ、19・・・・・・ヒドラジン溶解液
タンク、20・・・・・・アミン溶解液タンク、21・
・・・・・薬液ポンプ、22・・・・・・供給管、23
・・・・・・蒸気コンデンサ入口蒸気混合管、24・・
・・・・薬液噴射ノズル。
The drawings show an embodiment of the present invention, and FIG. 1 is a cycle diagram;
Figure 2 is an enlarged view of the main parts. 3... Condensate tank, 5... Deaerator, 7
...boiler, 11 ... air-cooled low-pressure steam condenser, 12 ... fin tube, 16.
...Air-cooled high-pressure steam condenser, 18...
・Condensate injection pump, 19...Hydrazine solution tank, 20...Amine solution tank, 21.
... Chemical pump, 22 ... Supply pipe, 23
...Steam condenser inlet steam mixing pipe, 24...
...Medical liquid injection nozzle.

Claims (1)

【特許請求の範囲】[Claims] 1 空冷式蒸気コンデンサを用いて蒸気を冷却し復水さ
せるに際し、前記空冷式蒸気コンデンサの蒸気入口配管
内の蒸気中に、復水系防食剤及び脱酸剤を温水で希釈し
た薬液を噴霧混合することを特徴とする空冷式蒸気コン
デンサの腐食防止方法。
1. When cooling and condensing steam using an air-cooled steam condenser, a chemical solution prepared by diluting a condensate-based corrosion inhibitor and deoxidizing agent with warm water is mixed by spraying into the steam in the steam inlet piping of the air-cooled steam condenser. A method for preventing corrosion of an air-cooled steam condenser.
JP12047980A 1980-08-29 1980-08-29 How to prevent corrosion of air-cooled steam condensers Expired JPS5947237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12047980A JPS5947237B2 (en) 1980-08-29 1980-08-29 How to prevent corrosion of air-cooled steam condensers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12047980A JPS5947237B2 (en) 1980-08-29 1980-08-29 How to prevent corrosion of air-cooled steam condensers

Publications (2)

Publication Number Publication Date
JPS5747196A JPS5747196A (en) 1982-03-17
JPS5947237B2 true JPS5947237B2 (en) 1984-11-17

Family

ID=14787185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12047980A Expired JPS5947237B2 (en) 1980-08-29 1980-08-29 How to prevent corrosion of air-cooled steam condensers

Country Status (1)

Country Link
JP (1) JPS5947237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175571A (en) * 1986-01-30 1987-08-01 三洋電機株式会社 Method of operating low-temperature showcase
JP4717288B2 (en) * 2001-09-03 2011-07-06 電源開発株式会社 Charge control device for steam turbine condensate drop

Also Published As

Publication number Publication date
JPS5747196A (en) 1982-03-17

Similar Documents

Publication Publication Date Title
KR101907257B1 (en) Thermal power facility recovering moisture from exhaust gas and method for processing the recovered water of the same
US20060242970A1 (en) Low-emission natural gas vaporization system
US5343705A (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
CN113526600B (en) Desalting and deoxidizing equipment and method
JPS5947237B2 (en) How to prevent corrosion of air-cooled steam condensers
CN209876971U (en) Steam air preheating device and system
JP2019209249A (en) Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility
JPS6030401B2 (en) Recirculation device for intermediate superheater
JP2007017035A (en) System for effectively using energy
CN107255270A (en) A kind of exceeded administering method of thermal power generation unit condensate dissolved oxygen content
CN203402942U (en) High-flow medium-pressure condensate polishing device
JP4622714B2 (en) Energy efficient use system
JPWO2020031667A1 (en) Acid electrical conductivity measuring device and method and steam turbine plant
JP2011094849A (en) Thermal power generation plant and operation method for the same
CN103899369A (en) Closed water cooling system with twin-jet nozzle for evaporative cooling
CN213811298U (en) Recirculated cooling water and flue gas waste heat recovery device
KR102541651B1 (en) Apparatus and method for producing high-pressure steam using waste heat of fuel cell stack
Athey et al. Deaerating condenser boosts combined-cycle plant efficiency
CN111692895B (en) Cold torch gas liquid separating, vaporizing and heating system
CN208829282U (en) A kind of concentrate recovering system of the steam containing ammonia
JPS62233606A (en) Boiler maintenance system
US3299665A (en) Purge system for refrigeration apparatus
SU1638360A1 (en) Power plant for geothermal power station
WO2019176119A1 (en) Boiler facility and thermal power generation facility
RU2543591C2 (en) Method of establishing water-chemical mode based on complex amine-containing reagent for water-steam circuit of power generating unit with combined-cycle gas turbines