JPS594677A - Cold accumulating material and its preparation - Google Patents
Cold accumulating material and its preparationInfo
- Publication number
- JPS594677A JPS594677A JP57113298A JP11329882A JPS594677A JP S594677 A JPS594677 A JP S594677A JP 57113298 A JP57113298 A JP 57113298A JP 11329882 A JP11329882 A JP 11329882A JP S594677 A JPS594677 A JP S594677A
- Authority
- JP
- Japan
- Prior art keywords
- organic compound
- hydrate
- heat
- water
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【発明の詳細な説明】
本発明は低温蓄熱材とその製造方法に関し、より詳細に
は5°C〜15°Cの範囲の冷熱源と好適に用いられる
低温蓄熱材と、蓄熱材原料を冷媒にも利用した、蓄熱材
の簡易な製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-temperature heat storage material and a method for producing the same, and more specifically, a low-temperature heat storage material that is suitably used with a cold heat source in the range of 5°C to 15°C, and a heat storage material raw material that is used as a refrigerant. This invention relates to a simple manufacturing method for heat storage materials, which is also used for the production of heat storage materials.
従来、冷熱の潜熱型蓄熱材としては、氷が利用されてい
る。しかしながら、氷は住居や事務所等の空調施設の低
温蓄熱材として利用するためには、下記のような欠点が
指摘され、いまだ実用化されていない。Conventionally, ice has been used as a latent heat storage material for cold heat. However, the following drawbacks have been pointed out to ice for use as a low-temperature heat storage material in air conditioning facilities for residences, offices, etc., and it has not yet been put into practical use.
(1) 空調施設における冷熱源にはO″CC以下度
は不必要であシ、夏期の冷房には5°Cから15°Cの
温度範囲の冷熱源で十分である。(1) It is not necessary for the cold source in an air conditioning facility to have a temperature below O''CC, and a cold source with a temperature range of 5°C to 15°C is sufficient for cooling in the summer.
(2) 伝熱管群や氷カプセルからなる低温蓄熱槽に
おいては、氷の結晶化の際に結晶核発生のだめの過冷却
や時間おくれが生じ、その結果、蓄熱に必要な所要エネ
ルギーが増大し、蓄熱効率を低下させる。(2) In a low-temperature heat storage tank consisting of a group of heat transfer tubes or an ice capsule, when ice crystallizes, there is supercooling and a delay in the generation of crystal nuclei, which results in an increase in the energy required for heat storage. Decrease heat storage efficiency.
(3)氷の結晶は伝熱界面から成長するので、成長にと
もなって伝熱面での対流が妨けられて伝熱速度が低下し
、更に結晶化につれて体積が膨張するので余分の空間を
必要とし、高性能な蓄熱槽の設計を困難にしている。(3) Since ice crystals grow from the heat transfer interface, as they grow, convection on the heat transfer surface is obstructed and the heat transfer rate decreases, and as the ice crystals crystallize, the volume expands, so there is no need for extra space. This makes it difficult to design a high-performance heat storage tank.
そこで本発明はかかる欠点を解消し、氷に代る低温蓄熱
材を開発すべくなされたものであり、夏期の冷房用とし
て好適に用いられ、自らの蒸発潜熱によって自らを冷却
して結晶を析出させることができるので結晶化に際して
伝熱速度が妨げられることがなく、高性能で冷熱を蓄熱
することができるなどの特長を有するものである。Therefore, the present invention has been made to solve these drawbacks and develop a low-temperature heat storage material that can replace ice.It is suitable for use in summer cooling applications, and it cools itself using its own latent heat of vaporization to precipitate crystals. Since the heat transfer rate is not hindered during crystallization, it has features such as being able to store cold heat with high performance.
すなわち本発明の低温蓄熱材は、沸点が30°C以下の
有機化合物の水和物結晶を水に懸濁せしめて成ることを
特徴とし、ただし前記水和物結晶は臨界分解点が5°C
〜18°Cである。また、かかる低温蓄熱材の製造方法
は、沸点が30°C以下であり、水と反応して臨界分解
点が5°C〜18°Cの水和物を形成しうる有機化合物
を液状で水中に混入し、得られた混合物から前記有機化
合物の一部を蒸発せしめ、その蒸発熱により前記混合物
を冷却して前記有機化合物の水和物結晶を析出せしめる
ことを特徴とするものである。That is, the low-temperature heat storage material of the present invention is characterized by comprising hydrate crystals of an organic compound having a boiling point of 30°C or less suspended in water, provided that the hydrate crystal has a critical decomposition point of 5°C.
~18°C. In addition, in the method for producing such a low-temperature heat storage material, an organic compound having a boiling point of 30°C or less and capable of reacting with water to form a hydrate with a critical decomposition point of 5°C to 18°C is prepared in a liquid state in water. A part of the organic compound is evaporated from the resulting mixture, and the mixture is cooled by the heat of evaporation to precipitate hydrate crystals of the organic compound.
本発明の低温蓄熱材は、水和物を形成しうる有機化合物
の水和物結晶を水に懸濁せしめたものである。ここで有
機化合物には、通常ではメタンのハロゲン化物およびプ
ロパンが属し、その沸点が30°C以下の、いわゆる低
沸点化合物であり、かつその水和物結晶の臨界分解点が
5°C〜18°Cのものである。The low-temperature heat storage material of the present invention is one in which hydrate crystals of an organic compound capable of forming a hydrate are suspended in water. Here, organic compounds usually include methane halides and propane, and are so-called low-boiling compounds whose boiling point is 30°C or less, and whose hydrate crystals have a critical decomposition point of 5°C to 18°C. °C.
下記第1表に代表的な低沸点化合物の例と、その水和物
の特性を示す。Table 1 below shows examples of typical low boiling point compounds and the properties of their hydrates.
(本頁以下余白)
この第1表から明らかなように、これら有機化合物の水
和物結晶の析出温度(臨界分解点温度)は、いづれも氷
の析出温度である氷点0°Cよりも高い温度、すなわち
5°Cから18°Cの温度範囲にあり、しかもこれら水
和物の生成熱は70〜90にCaI/に、であり、氷の
結晶化熱B □ K(Jl!/に、とほぼ同程度である
。(Margins below this page) As is clear from Table 1, the precipitation temperatures (critical decomposition point temperatures) of hydrate crystals of these organic compounds are all higher than the freezing point of 0°C, which is the precipitation temperature of ice. temperature, i.e. in the temperature range from 5°C to 18°C, and the heat of formation of these hydrates is 70 to 90 CaI/, and the heat of crystallization of ice B □ K (Jl!/, It is about the same level.
有機化合物に水和物形成能があっても、有機化合物の沸
点が30°Cを越えたり、或は水和物の臨界分解点が5
°C〜18°Cの範囲を外れた場合には、蓄熱槽内の圧
力が低圧となり、槽内で蒸発した化合物を凝縮液化させ
るだめの圧縮機に高価な装置を必要とし、また冷房に必
要な冷熱源温度は5°C〜15°Cの範囲が適温であり
、水和物懸濁液を冷房の冷熱源として使用するには、1
8°C以上の蓄熱温度では冷房効果が低く、また5°C
以下では冷凍するだめの動力が増加し好ましくない。Even if an organic compound has the ability to form a hydrate, if the boiling point of the organic compound exceeds 30°C or the critical decomposition point of the hydrate exceeds 5
If the temperature is outside the range of °C to 18 °C, the pressure inside the heat storage tank will be low, requiring expensive equipment for the compressor to condense and liquefy the compounds evaporated in the tank, and also requiring expensive equipment for cooling. The appropriate cold source temperature is between 5°C and 15°C, and in order to use the hydrate suspension as a cold source for air conditioning,
The cooling effect is low at heat storage temperatures of 8°C or higher, and
Below this, the power of the freezing tank increases, which is not preferable.
また水和物結晶が懸濁される水は、水溶性の無機塩また
は有機化物の水溶液であっても良く、たとえば食塩、硫
酸すl−IJウムや、アルコールの水溶液などが、水和
物の臨界分解点の圧力と温度を低下させるために用いら
れ、これら水溶液は高い臨界分解点を示す化合物の場合
に好適に用いられる。The water in which the hydrate crystals are suspended may be an aqueous solution of water-soluble inorganic salts or organic compounds, such as common salt, sodium sulfate, alcohol, etc. These aqueous solutions are used to lower the pressure and temperature at the decomposition point, and these aqueous solutions are preferably used for compounds that exhibit a high critical decomposition point.
かかる本発明の低温蓄熱材は、低沸点有機化合物を自ら
冷媒として用いることによって製造される。すなわち前
述したような、水と反応して水和物を形成しうる能力の
ある低沸点有機化合物を液状で水または前述したような
無機塩や有機化合物を含む水中に混入させる。そして、
この有機化合物の一部分を蒸発させながら、残部の有機
化合物を水と反応させて有機化合物の水和物を形成させ
る。すると、有機化合物の蒸発による蒸発熱によって反
応系は冷却され、水和物結晶が析出して水中に懸濁した
状態になり、低温蓄熱材が得られる。すなわち、低沸点
有機化合物は自ら冷媒として作用することによって、自
らの水和物結晶を析出させるのである。従って本発明の
低温蓄熱材製造方法においては、たとえば従来の代表的
な低温蓄熱材である氷の製造の場合のような伝熱管群や
冷却カプセルを全く必要としない。The low-temperature heat storage material of the present invention is produced by using a low-boiling organic compound itself as a refrigerant. That is, a low boiling point organic compound capable of reacting with water to form a hydrate, as described above, is mixed in liquid form into water or water containing an inorganic salt or an organic compound as described above. and,
While a portion of this organic compound is evaporated, the remaining organic compound is reacted with water to form a hydrate of the organic compound. Then, the reaction system is cooled by the heat of evaporation due to evaporation of the organic compound, and hydrate crystals precipitate and become suspended in water, yielding a low-temperature heat storage material. That is, the low boiling point organic compound precipitates its own hydrate crystals by acting as a refrigerant. Therefore, in the method for producing a low-temperature heat storage material of the present invention, there is no need for a group of heat transfer tubes or a cooling capsule, which is required, for example, in the production of ice, which is a typical conventional low-temperature heat storage material.
すなわち本発明においては、反応系が特定の界面からで
はなく、系全体が均等に冷却されるので、従来のように
熱移動速度が水和物の結晶によって妨げられることがな
く、冷熱を冷水の顕熱と水和物結晶の生成熱と形で高性
能で蓄熱することができるのである。In other words, in the present invention, the reaction system is not cooled from a specific interface, but the entire system is uniformly cooled, so the heat transfer rate is not hindered by hydrate crystals as in the past, and the cold heat is transferred to the cold water. It is possible to store heat with high performance through sensible heat and the heat of formation of hydrate crystals.
低沸点有機化合物との混和比率は、この有機化合物の蒸
発熱によって水和物結晶を析出せしめ得れば適宜、決定
することができ、有機化合物の種類とその蒸発熱によっ
ても異なるが、通常でハ非可燃性のフロン11.フロン
12.フロン21.フロン22であり、好ましくは臨界
分解点の温度と圧力が蓄熱操作しやすい範囲、すなわち
11,8°Cと3,340m7rLHgにある7oン1
2、捷たはフロン11とフロン12の混合物である。The mixing ratio with a low-boiling organic compound can be determined as appropriate as long as hydrate crystals can be precipitated by the heat of vaporization of this organic compound, and although it varies depending on the type of organic compound and its heat of vaporization, it is usually C. Non-flammable Freon 11. Freon 12. Freon 21. Freon 22, preferably 7on1, whose critical decomposition point temperature and pressure are in the range where heat storage operation is easy, i.e. 11.8°C and 3,340m7rLHg.
2. It is a mixture of Freon 11 and Freon 12.
かかる本発明の製造方法を、たとえば低温有機化合物と
してフロン12 (CCl2F2−水和物生成熱=70
6にc′a!//に、)を用いた場合について具体的に
示せば、水中にフロン12を液状で混和し、フロン12
の一部を蒸発させながら、その蒸発熱によって混合物を
冷却し、蒸熱温度8°Cで水和物結晶含有率40%まで
冷熱蓄熱操作を行ない、フロン12の水和物結晶が水に
懸濁した低温蓄熱材を得た。この蓄熱材の蓄熱量は、冷
熱利用可能温度(最高放熱温度)をフロン12の水和物
分解温度11.8°Cに近い11°Cまでとして、懸濁
液l Kg当りの全蓄熱量を計算すると、30.0にc
m!/に、(冷水顕熱1,8にcal+水和物生成熱2
8.21:c−Il)となる。また、1 m8当りの蓄
熱量は31.5 X 103KQII (懸濁液の比容
積ヲ0.954 X 10 ’ m”Agとした)。こ
の冷熱蓄熱量は冷水のみによる蓄熱容量3 X IQ”
Kail (ただし、冷熱利用温度差を3°Cとして計
算した)に対して約10倍に相当する。The production method of the present invention can be carried out using, for example, Freon 12 (CCl2F2-heat of hydrate formation = 70
c'a to 6! To specifically show the case where ) is used, Freon 12 is mixed in liquid form in water, and Freon 12 is mixed in water.
While evaporating a part of the mixture, the mixture is cooled by the heat of evaporation, and a cold heat storage operation is performed at a vapor temperature of 8°C until the hydrate crystal content reaches 40%, and the hydrate crystals of Freon 12 are suspended in water. A low-temperature heat storage material was obtained. The amount of heat stored in this heat storage material is calculated by setting the available cold heat temperature (maximum heat dissipation temperature) to 11°C, which is close to the hydrate decomposition temperature of Freon 12, 11.8°C, and calculating the total amount of heat stored per 1 kg of suspension. When calculated, it is 30.0 c
m! / to (cold water sensible heat 1,8 cal + hydrate formation heat 2
8.21:c-Il). Also, the amount of heat storage per 1 m8 is 31.5 x 103KQII (the specific volume of the suspension is 0.954 x 10'm"Ag). This amount of cold heat storage is 3 x IQ"
This corresponds to approximately 10 times that of Kail (calculated assuming a temperature difference of 3°C in the use of cold energy).
以上述べた如く、本発明の低温蓄熱材は臨界分解点が5
°C〜18°Cの有機化合物水和物結晶を水に懸濁せし
めたものであるので、この水和物の生成熱を利用して5
°C〜15℃の温度範囲の空調施設の冷房用循環液とし
て直接利用したり、或は熱交換器を用いて冷水を製造し
、この冷水を冷房用循環液として利用することもできる
。As mentioned above, the low temperature heat storage material of the present invention has a critical decomposition point of 5.
Since it is made by suspending organic compound hydrate crystals at a temperature of 18°C to 18°C in water, the heat of formation of this hydrate can be used to
It can be used directly as a circulating fluid for air conditioning in air conditioning facilities with a temperature range of 15° C., or it can be used to produce cold water using a heat exchanger and use this cold water as a circulating fluid for cooling.
しかも本発明の蓄熱材は原料となる有機化合物が特殊な
ものではなく、市販品を容易に入手することができ、か
つ単に水和物を形成せしめるだけなので極めて安価に製
造することができる。Moreover, the heat storage material of the present invention does not require any special organic compound as a raw material, and can be easily obtained as a commercially available product, and can be manufactured at an extremely low cost because it simply forms a hydrate.
まだ、本発明の蓄熱材の製造にあたっては、有機化合物
自体が冷媒として作用し、蓄発熱によって反応系を冷却
するので、別途に冷媒を使用する必要もなく、それだけ
蓄熱材の製造コストを低減させることができる。However, in the production of the heat storage material of the present invention, the organic compound itself acts as a refrigerant and cools the reaction system by accumulating heat, so there is no need to use a separate refrigerant, which reduces the production cost of the heat storage material. be able to.
更に本発明において原料となる有機化合物は、その沸点
が30°C以下なので、冷熱源として使用した後に、液
化して再び水和物の形成に循環使用することが極めて容
易である。Furthermore, since the organic compound used as a raw material in the present invention has a boiling point of 30° C. or lower, it is extremely easy to liquefy it after being used as a cold heat source and recirculate it to form a hydrate.
更にまた、蓄熱材の製造の際に反応系が特定の界面から
でなく、系全体が均等に冷却されるので熱の伝導が水和
物結晶によって防害されることがなく、冷熱を冷水の顕
熱と、水和物結晶の生成熱として高能率で蓄熱すること
ができる。Furthermore, during the production of heat storage materials, the reaction system is not cooled from a specific interface, but the entire system is uniformly cooled, so the conduction of heat is not inhibited by hydrate crystals, and the cold heat is cooled by the cold water. Heat can be stored with high efficiency as heat and the heat of formation of hydrate crystals.
以下、本発明を実施例にもとづき詳細に説明する。Hereinafter, the present invention will be explained in detail based on examples.
実施例
図は低沸点有機化合物にフロン12を用いて冷熱蓄熱操
作を行なった場合の経過の1例を、水−フロン12系の
相平衡図に破線で示したものである。The example diagram shows an example of the course of a cold heat storage operation using Freon 12 as a low-boiling organic compound, as shown by a broken line in a phase equilibrium diagram of a water-Freon 12 system.
図において、線分1はフロン12の凝縮線を、線分2お
よび6は水和物生成線を、そしてこれら線分の交点4は
水和物の臨界分解点を示す。In the figure, line segment 1 indicates the condensation line of Freon 12, line segments 2 and 6 indicate hydrate production lines, and intersection point 4 of these lines indicates the critical decomposition point of hydrate.
この臨界分解点4は、低沸点有機化合物の種類によって
夫々異なり、フロン12では前記第1表に示したように
11.8°C、3,3401RmHgにある。また区域
5は水とフロン12の気相と水和物が共存する領域であ
り、区域6はフロン12の液相と水和物とが、区域7は
水とフロア、12の液相とが、区域8は水とフロン12
の気相が共存する領域を夫々示している。低温蓄熱槽内
の水中にフロン12を液状で直接混入し、フロン12液
を蒸発させると、その蒸発熱で槽内の温度と圧力は図の
破線9に従って低下し、その温度と圧力の関係は水和物
が生成する区域5に入る。そして水和物分解点温度より
も2°Cから3°Cの過冷却状態を経て、たとえば点1
0(温度9°C)で水和物結晶が析出し始める。更にフ
ロン12液を加え、それを蒸発させながら水和物結晶の
晶析操作を続け、結晶含有率が約40%に達した時点、
たとえば点11(温度8°C)でフロン液の注入を中止
し、残留したフロン液を蒸発回収すると槽内の温度と圧
力は水和物生成m(線分2)上の点12に達し、冷熱蓄
熱操作を終了する。This critical decomposition point 4 differs depending on the type of low-boiling organic compound, and for Freon 12, it is at 11.8°C and 3,3401 RmHg as shown in Table 1 above. Zone 5 is a region where water, the gas phase of Freon 12, and hydrate coexist, Zone 6 is a region where the liquid phase of Freon 12 and hydrate coexist, and Zone 7 is a region where water, the floor, and the liquid phase of Freon 12 coexist. , Area 8 is water and Freon 12
The regions in which the gas phases coexist are shown. When Freon 12 is directly mixed in liquid form into the water in the low-temperature heat storage tank and the Freon 12 liquid is evaporated, the temperature and pressure inside the tank will decrease according to the broken line 9 in the figure due to the heat of evaporation, and the relationship between the temperature and pressure is as follows. Enter zone 5 where hydrates are formed. Then, after passing through a supercooled state of 2°C to 3°C below the hydrate decomposition temperature, for example, point 1
0 (temperature 9°C), hydrate crystals begin to precipitate. Furthermore, add Freon 12 liquid and continue the crystallization operation of hydrate crystals while evaporating it, and when the crystal content reaches about 40%,
For example, when the injection of fluorocarbon liquid is stopped at point 11 (temperature 8°C) and the remaining fluorocarbon liquid is evaporated and recovered, the temperature and pressure inside the tank reach point 12 on hydrate formation m (line segment 2). End the cold heat storage operation.
かかる冷熱蓄熱操作で得られた水和物結晶の懸濁液のも
つ冷熱の放熱は、外部からの熱入力によって水和物結晶
の一部が分解し、その分解熱(=生成熱)と水の顕熱に
よって生じ、また水和物の分解にともなって槽内の圧力
と温度は図の線分2に沿って上昇する。そして太一部分
の水和物結晶が分解されて、槽内の温度が水和物分解点
温度11.8°Cに近い温度、たとえは点15 (11
’c )になったとき、再び低沸点有機化合物を液状で
注入し、槽内の圧力を凝縮線1に近い点14まで上昇さ
せて冷熱蓄熱操作を開始する。この場合、槽内には未分
解の水和物結晶が残存しているので、結晶核発生のため
の過冷却や待ち時間はあまり必要なく、低沸点有機化合
物の蒸発にともなって、水和物結晶がすみやかに析出す
る。そして点14から点11、そして点12−!jで、
上記と同様に冷熱蓄熱操作を行なうことができる。また
点16において、引き続き外部からの熱入があれば、冷
熱蓄熱操作と同時に冷熱の放熱をも続けて行なうことが
可能である。The heat dissipated from the cold heat of the suspension of hydrate crystals obtained by such cold heat storage operation is due to the decomposition of a part of the hydrate crystals due to external heat input, and the heat of decomposition (=heat of formation) and water. The pressure and temperature inside the tank rise along line segment 2 in the figure as the hydrate decomposes. Then, the hydrate crystal in the thick part is decomposed, and the temperature inside the tank is close to the hydrate decomposition point temperature of 11.8°C, for example, point 15 (11
'c), the low boiling point organic compound is again injected in liquid form, the pressure inside the tank is raised to a point 14 near the condensation line 1, and the cold heat storage operation is started. In this case, undecomposed hydrate crystals remain in the tank, so there is no need for supercooling or waiting time to generate crystal nuclei, and as the low-boiling organic compounds evaporate, the hydrate crystals Crystals precipitate quickly. Then from point 14 to point 11 and then point 12-! In j,
Cold heat storage operation can be performed in the same manner as above. Further, at point 16, if there is continued heat input from the outside, it is possible to perform the cold heat storage operation and the cold heat dissipation simultaneously.
図は本発明の低温蓄熱材の製造方法の実施例を示す水−
フロン12 (CCf2F2 )の相平衡図である。
温度(C)The figure shows an example of the method for manufacturing a low-temperature heat storage material of the present invention.
It is a phase equilibrium diagram of Freon 12 (CCf2F2). Temperature (C)
Claims (1)
を水に懸濁せしめてなることを特徴とする低温蓄熱材。 ただし前記水和物結晶は、その臨界分解が5°C〜18
°Cである。 2、 沸点が30°C以下であり、水と反応して臨界分
解点が5°C〜18°Cの水和物を形成しうる有機化合
物を液状で水中に混入し、得られた混合物から前記有機
化合物の一部を蒸発せしめ、その蒸発熱により前記混合
物を冷却して前記有機化合物の水和物結晶を析出せしめ
ることを特徴とする低温蓄熱材の製造方法。[Claims] 1. A low-temperature heat storage material comprising hydrate crystals of an organic compound having a boiling point of 30° C. or lower suspended in water. However, the critical decomposition of the hydrate crystal is between 5°C and 18°C.
It is °C. 2. From the mixture obtained by mixing an organic compound with a boiling point of 30°C or less and which can react with water to form a hydrate with a critical decomposition point of 5°C to 18°C into water, A method for producing a low-temperature heat storage material, characterized in that a part of the organic compound is evaporated, and the mixture is cooled by the heat of evaporation to precipitate hydrate crystals of the organic compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57113298A JPS594677A (en) | 1982-06-30 | 1982-06-30 | Cold accumulating material and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57113298A JPS594677A (en) | 1982-06-30 | 1982-06-30 | Cold accumulating material and its preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS594677A true JPS594677A (en) | 1984-01-11 |
JPH0144229B2 JPH0144229B2 (en) | 1989-09-26 |
Family
ID=14608659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57113298A Granted JPS594677A (en) | 1982-06-30 | 1982-06-30 | Cold accumulating material and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS594677A (en) |
-
1982
- 1982-06-30 JP JP57113298A patent/JPS594677A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0144229B2 (en) | 1989-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lane | Phase change materials for energy storage nucleation to prevent supercooling | |
US4637888A (en) | Reversible phase change composition for storing energy | |
US4702853A (en) | Phase change thermal energy storage material | |
NO159939B (en) | HEAT STORAGE MATERIALS WITH REVERSIBLE LIQUID / FAST PHASE CHANGE AND USE THEREOF. | |
US5159971A (en) | Cooling medium for use in a thermal energy storage system | |
GB1208467A (en) | Absorption refrigeration systems, and compositions useful in such systems and as liquid coolants | |
EP0491402B1 (en) | Latent heat storage solution | |
US4287076A (en) | Product suitable for the storage and conveyance of thermal energy | |
JPS6343992A (en) | Reversible phase transfer composition of calcium bromide hydrate | |
US6079482A (en) | Clathrate forming medium and its use in thermal energy storage systems and processes for thermal energy storage and transfer | |
EP0013569B2 (en) | Hydrated calcium-chloride reversible phase change compositions with nucleating additives | |
KR910007090B1 (en) | Reversible phase change composition for storing energy | |
JPS594677A (en) | Cold accumulating material and its preparation | |
JPH0792307B2 (en) | Ice heat storage device | |
JPS58180579A (en) | Heat storage material | |
JPS58136684A (en) | Thermal energy storage material | |
JPS6228995B2 (en) | ||
JPS63187071A (en) | Lean solution composition | |
CN117070197A (en) | Phase change cold storage material with magnesium chloride as substrate, and preparation method and application thereof | |
JPS63163735A (en) | Cold and heat accumulation method utilizing liquid enclosure hydrate | |
JPS594894A (en) | Low temperature heat-accumulating device | |
JPS5893779A (en) | Thermal energy storing composition | |
JPS5879080A (en) | Heat storing material | |
JPS61197668A (en) | Thermal energy storage material | |
JPH0528751B2 (en) |