JPS5946745A - Automatic focal point aligning unit for charged particle beam device - Google Patents

Automatic focal point aligning unit for charged particle beam device

Info

Publication number
JPS5946745A
JPS5946745A JP57157927A JP15792782A JPS5946745A JP S5946745 A JPS5946745 A JP S5946745A JP 57157927 A JP57157927 A JP 57157927A JP 15792782 A JP15792782 A JP 15792782A JP S5946745 A JPS5946745 A JP S5946745A
Authority
JP
Japan
Prior art keywords
lens
signal
particle beam
sample
focusing lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57157927A
Other languages
Japanese (ja)
Other versions
JPH0255899B2 (en
Inventor
Hironobu Moriwaki
森脇 弘暢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIDENSHI TECHNICS KK
Original Assignee
NICHIDENSHI TECHNICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIDENSHI TECHNICS KK filed Critical NICHIDENSHI TECHNICS KK
Priority to JP57157927A priority Critical patent/JPS5946745A/en
Publication of JPS5946745A publication Critical patent/JPS5946745A/en
Publication of JPH0255899B2 publication Critical patent/JPH0255899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To perform correct focal point alignment even when astigmatism is not accurately corrected by presetting the strength of a focusing lens so that the conversion signal of beam diameter on the surface of a sample can be set to a specified value. CONSTITUTION:The surface of a sample 5 is irradiated with a particle beam 2 generated from a charged particle beam source 1 so that a small beam diameter can be formed on the surface of the sample 5 by a focusing lens 4 and then is scanned. A scanning picture is displayed on a picture display means 7 that synchronizes with this scanning using a picture signal detected from the sample 5. Such a device is provided with a means that obtains a conversion signal corresponding to the beam diameter on the surface of the sample 5 of the charged beam 2 based on the picture signal. In addition, the device is provided with a means that fixes the lens strength L1 and L2 of the focusing lens 4 by which a conversion signal lower by a specified amount than the maximum value of the said conversion signal that can be obtained when the lens strength of the focusing lens 4 is varied sequentially and a means that sets the lens strength of the focusing lens 4 to (L1+L2)/2.

Description

【発明の詳細な説明】 本発明は走査電子顕微鏡等の荷電粒子線装防に用いられ
る自動焦点合わせ装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in automatic focusing devices used for charged particle beam protection in scanning electron microscopes and the like.

走査電子顕微鏡においては第1図に示?lにうに電子銃
1から発生Jる電子線2を集中レンズ3゜4にJ、っ゛
C試石5の表面上で微小イ「断面径を形成づるように集
束し、それど同時に該電子線2を偏向二1イル6X、6
Yに供給されるf^仁YJにJ、って試料面1−に走査
し、該走査と間開したブラウン9′;7に試オ′≧1か
ら検出器8にJ:って検出され、増幅器9で゛増幅され
た映像信号を輝度変調信号として供給りることにJ、っ
C試料走査像を表示している。
In a scanning electron microscope, it is shown in Figure 1. The electron beam 2 generated from the electron gun 1 is focused onto the surface of the test stone 5 by a concentrating lens 3 to form a minute cross-sectional diameter, and at the same time the electron beam 2 is Deflect line 2 21 il 6x, 6
The sample surface 1- is scanned with fᄒ^^ニJ to J, which is supplied to Y, and from the sample O'≧1 at Brown 9';7, detected by the detector 8, J: is detected. By supplying the video signal amplified by the amplifier 9 as a brightness modulation signal, a scanned image of the specimen is displayed.

この試N′+1走音像の像倍率は前記偏向コイル6X。The image magnification of this test N'+1 sonic image was the deflection coil 6X.

6 Yどノノウン管の偏向:1イル10X; IOYに
水1(走査信号1−1ど垂直走査信号Vと供給づる走査
電源11の出力端子と前記偏向」イル6X、6”Yどの
間(こ挿入されたiiJ変増変器幅器12幅度を変化さ
けることによ−〕(切り換えられる。即ち、試料面トに
お【)る電子線走査領域と該領域に相似なブラウン管画
面の面積比を変えることによって像倍率が調整される。
Deflection of 6" Y-no-noun tube: 1"10X; Water 1 (scanning signal 1-1) between IOY and the output terminal of the scanning power supply 11 which supplies the vertical scanning signal V and the deflection "Ill 6X, 6" By changing the width of the inserted IIJ variable width scale 12, the area ratio of the electron beam scanning area on the sample surface and the cathode ray tube screen similar to the area can be changed. By changing the image magnification, the image magnification is adjusted.

ブラウン管画面に表示される走査像の焦点合わせは集束
レンズの特に最終段集束レンズ(対物レンズ)4の励磁
電源13の出力を調整して試料面上にお(プる電子線の
断面径を最小になることを確認覆ることによ7) −U
 <jiつれるが、この調整は試料走査像の肉眼観察に
基づくものであるため、最近この調整を自動化りるため
の自動焦点合′わけ゛装置が実用化されている。第1図
中、1/Iで示リブロックはこのような自動焦点、含わ
Uを行うための自動焦点合わせ回路C′あり、走査電源
11からの垂直走査信号をトリガー信号どじ−C励磁電
源13の出力を順次変化さけると共に、増幅器9の出ツ
ノをモニターした結果に41づ′い−(励磁電源13の
適正な出力電流を決定覆る。
Focusing of the scanning image displayed on the cathode ray tube screen is done by adjusting the output of the excitation power supply 13 of the focusing lens, especially the final focusing lens (objective lens) 4, to minimize the cross-sectional diameter of the electron beam (pulled onto the sample surface). 7) -U
However, since this adjustment is based on the naked eye observation of the sample scanned image, automatic focusing devices have recently been put into practical use to automate this adjustment. In Fig. 1, the rib block indicated by 1/I has an automatic focusing circuit C' for performing such automatic focusing, including U, and uses the vertical scanning signal from the scanning power supply 11 as a trigger signal. The appropriate output current of the excitation power source 13 is determined based on the results of monitoring the output of the amplifier 9 while sequentially changing the output of the excitation power source 13.

第2図及び第3図は自動焦点合わU回路1 /Iの原理
を説明づるためのもので、第2図(a)は光軸方向から
眺めた試料面上にある幅を持ったIM i青15と該構
造を横切る矢印16の方向へ図(こ示す断面形状の電r
 l!i! 17を水平走査する様子を表わしく il
iす、このJ、うな電子線走査にJ:って試料から検出
される侶j゛)波形を示づものが第2図(b )(:’
 dうろ0.第、′3図(Jl)は第2図(a )ど同
じ試旧庄杏を異4i、−,た1(j1而径をイ]りる電
子線′1ε3で行うもの(゛、この走査にJ、って得ら
れる信号波形を示しl、:ものが第33図(1))であ
る。これらの図から、試1’ilを走I″ICJる電子
線断面が小さい稈、信号波形の高さが高く、ピーク波形
の幅す狭い鋭い波形になることが分る。従来の自動焦5
気含t〕iJ装買はこ、のようイ1現象を利用りるもの
で、電f“線の試利走゛白によつ−C検出される信号を
微分回路Aゝ)フィルター回路を用いて高周波成分のみ
を取り出()、高周波成分のビーク伯又はその梢(9飴
を電子線の断面径に対応りる信号とみなし、これらのピ
ーク値又は梢n l+rJが最大ど4Tるように対物レ
ンズの励(鮭を設定づ−るものが大部分である。
Figures 2 and 3 are for explaining the principle of the automatic focusing U circuit 1/I. Figure 2 (a) shows an IM i with a certain width on the sample surface viewed from the optical axis direction. In the direction of blue 15 and arrow 16 that crosses the structure (the cross-sectional shape of the electric r
l! i! Shows how 17 is horizontally scanned.il
Figure 2(b)(:'
d Uro 0. Fig. 3 (Jl) shows the same scanning as in Fig. 2 (a) performed using an electron beam 4i, -, 1 (j1 with a diameter of The signal waveform obtained by J is shown in Figure 33 (1)).From these figures, it can be seen that the electron beam cross-section of the sample 1'il is small, and the signal waveform is It can be seen that the height of the peak waveform is high and the width of the peak waveform is narrow and sharp.
The iJ system utilizes the phenomenon shown in A1, and the signal detected by the trial run of the electric F wire is converted into a differentiator circuit A) and a filter circuit. Take out only the high frequency components using (), and consider the high frequency component Beak's ratio or its top (9) as a signal corresponding to the cross-sectional diameter of the electron beam, and calculate the peak value or top of the peak n l + rJ to be at most 4T. In most cases, the objective lens is excitation (salmon is set).

第4図+31え1物レンズ電流の変化に対応さけて電子
線の断面径を表わづ前記ピーク1n又は積算値どうの変
換信号の変化覆る様子を示す1〕ので、このような典型
的な関係が111られる弱含に【、L、変換111号が
最大1直を示づ対物レンズ電流舶にJ3いてj[シい焦
点合ねけが行なわれる。
Figure 4+31 represents the cross-sectional diameter of the electron beam in response to changes in the object lens current, and shows how the converted signal changes over the peak 1n or integrated value. When the relationship 111 is weakly expressed, the conversion 111 indicates a maximum of 1 focal length, and the objective lens current is J3, and the focal point is out of focus.

ところで、走査電子顕微鏡の電子〉に学系(ごは一般に
非点収差が存右りるのC1この、月点収X苓抽正ηる〕
こめのxy 3’、j非Jj1補正駅百が相み込J:れ
でいる。この非点補正装置を正しく調”J+ρしく:1
1貞収差の影響を取り除かないと対物レンズ電流と変換
信号どの関係は第55図に示りJ、うなものとなってし
まい、図中1−Pl、 L、I’)2に示す二つの対物
電流値のいずれかにd3いη変換信号の最大lil′t
 /+’:牛り゛ることになる。しかしながら、このI
+)1.11)2のいずれかに設定しても正しい焦点は
11ノられず、従来の自動焦点合わU゛装四d’5いて
(ま市しい非点収差補正が行われてい41いと+I−L
/ < tit!能し/、fい傷合がしばしばあった。
By the way, in the electron field of a scanning electron microscope, there is generally astigmatism.
Kome's xy 3', j non-Jj1 correction station 100 is combined J: Redeira. Adjust this astigmatism correction device correctly: 1
If the influence of 1-Pl, L, I') 2 is not removed, the relationship between the objective lens current and the converted signal will be as shown in Fig. 55. The maximum lil′t of the η conversion signal that is d3 in any of the current values
/+': The cow will be destroyed. However, this I
+) 1. Even if you set it to 11) or 2, the correct focus cannot be obtained, and the conventional automatic focusing system (U4D'5) (unprecedented astigmatism correction is performed) +IL
/ <tit! There were often serious injuries.

本発明は非点収差補正が正(イ「に補11され(いない
状態においても、正しい焦点合、P) L!をiJうこ
と、更には対物レンズ以外にステイグメータを(J4>
めた厳密な意味での焦点合4つI!を自動的に11つこ
とをI]的とづるちのC゛、前電粒子線汎;から発生す
る粒子線を東栄レンズにより試わ1面一1c微小なビー
ム径が形成されるように照射し、偏向手段によっ(試オ
″11面」−の一定領域を走査し、該走査と同期して前
記集束レンズのレンズ強度を変化ざUると共に試料から
15)られる映像信号より前記粒子線の試料面上にお(
)るじ−ム径に対応覆る変換信号を検出し、該変換信号
の最大値よりも所定量イ](い値の変換信号に対応する
二つのレンズ強度(1,−1,1−の饋に設定づること
を特徴どづる()の(゛ある。
The present invention has a positive astigmatism correction (A11 (correct focusing even when not present, P) L!, and a stigma meter (J4>) in addition to the objective lens.
Focusing in the strict sense of the word I! The particle beam generated from the target and the previous electric particle beam was irradiated with a Toei lens so that a beam diameter of 1 cm was formed on each surface. , a certain area (11 planes) is scanned by the deflection means, and in synchronization with the scanning, the lens strength of the focusing lens is changed, and the image signal from the sample is used to detect the particle beam. On the sample surface (
) Detects a conversion signal that corresponds to the lens diameter, and detects a conversion signal that corresponds to the maximum value of the conversion signal, and detects the two lens intensities (1, -1, 1- The feature is to set it to () of (゛).

以下、本発明の161理と実施例・技Flを図面に基づ
いC1説りる。
Hereinafter, 161 principles and embodiments/techniques of the present invention will be explained based on the drawings.

非点収Jイの1要<E原因は第6図に小り如く電工レン
ズの焦1j:(距li1.Itが直交する方向v′−′
Ii/、1イ)たメチある。同図に(13いで、×、y
軸の交」j3【にレンズ主面が通っているどηるとX方
向の焦点面に焦線Cが又y方向の焦点面に焦線1三が人
々形成され、C2[の中間に最小!j1乱円1)が形成
される。このD点が非点収差が補jlされたどきの焦点
位置に相当する。C[の間隔はいわゆる非点隔〉イへ「
である。
The cause of astigmatism J<E is shown in Fig. 6. The focus of the electrician's lens 1j: (the direction v'-' where the distance li1.It is orthogonal)
Ii/, 1a) There is so much. In the same figure (at 13, x, y
When the main surface of the lens passes through the intersection of the axes, j3, a focal line C is formed on the focal plane in the ! j1 random circle 1) is formed. This point D corresponds to the focal position after astigmatism has been compensated for. The interval of C is the so-called astigmatic interval.
It is.

いま、第7図(a )に示り−ように、x軸と角度αを
なリベク1ヘルΔ1:で表されるレンズ非点収差を4極
2対型の電磁非点補正装置(いわゆる×y型′Jl魚補
正装置)ににつて補IFづることを考える。図中SXは
○印で示される×輔及びyIIll上に位置する4極レ
ンズにj:つて牛ヂる非魚補i[ベタ1〜ルを表し、S
yはX軸及びy軸と45°回転さUた・二!(・示され
る位置に設【〕られた他の/l 0ルンス゛にJ、って
生ずる非点補正ベタ1〜ルを表1..こJで、これらの
ベタ1〜ル関係の考察を容易にでするため各ベクトルが
X軸となす角度を全て2倍にして第7図(1))に示り
如く Δ[−1S×、Syとりる、。
Now, as shown in Fig. 7(a), the lens astigmatism expressed by the angle α with respect to the x-axis is Δ1. Consider using a supplementary IF for a y-type 'Jl fish correction device). In the figure, SX is a quadrupole lens located on x and yIIll indicated by ○.
y is rotated 45 degrees with the X and y axes! (Table 1 shows the astigmatism correction patterns 1 to 1 caused by J to the other /l 0 lances set at the indicated position.) This table makes it easy to consider the relationship between these patterns. In order to achieve this, all angles that each vector makes with the X axis are doubled, and Δ[-1S×, Sy is obtained, as shown in FIG. 7 (1)).

第7図(1))においてΔFはΔ)二×とΔ「yとの×
y軸方向へり]ヘルに分割され、△「は次式6表される
In Fig. 7(1)), ΔF is Δ)2× and Δ“y××
edge in the y-axis direction], and Δ' is expressed by the following equation 6.

AF =J醪T弓 又、最小1(1乱円の直径δは非点隔差△1−に比例し
、5;k・ΔF −−〜−−・−一−・−−−−(1)
どなる。こ(ニーて゛、Kは電子線の試料に対する聞き
角αに関りる係数である。
AF = J Moromi T Yumata, minimum 1 (the diameter δ of one random circle is proportional to the astigmatism difference △1-, 5; k・ΔF −−〜−−・−1−・−−−−(1)
bawl. Here, K is a coefficient related to the hearing angle α of the electron beam with respect to the sample.

第7図(C)中△[′は非点補正装置を動作さけたと2
′!の合成、i11点ベクトルを示し、△「′に対応り
るJ[点隔差へF−’4ま次式で表される。
△[' in Fig. 7(C) indicates 2 when the astigmatism correction device is avoided.
′! , the i11 point vector is expressed by the following equation:

ΔL′・F肩;N百−叡−・・−・−(すしたがり−U
 (1)式からこのときの最小錯乱円の1径は次のよう
(ごなる。
ΔL'・F shoulder;
From equation (1), the radius of the circle of least confusion in this case is as follows.

c’=yJ7ヱ罷野−J母ヱー・−−・・(3):J 
ν jス−1から、最小111乱円の状態で非点収Z補11
−装四の2絹の/I局レンズを夫々独1°fに走査しδ
′が順次最小hit lごイ「ろまうに制御りれば△l
”)0即ちδ′ ンOに/jしiq、非点収差不完全に
浦11(・さることがう)る、。
c'=yJ7 Ekaino-J mother---(3):J
From ν j s−1, astigmatism Z compensation 11 in the state of minimum 111 random circles
-Scan the two silk/I station lenses of the four parts at 1°f, respectively, and δ
′ is the minimum hit in order.
``) 0, that is, δ', and the astigmatism is incomplete.

所で゛、第0レロJお【ノる対物電流1+1i +−1
)l 、 1. P2は夫ノZ盲′16図【に、1ハノ
る焦線C,l−にス・1応しくおり、iIジノい焦点合
4つμ即ら最小111乱円1)が形成されるようにりる
ためには対物1ノンズ電流の値をL1ヤし2 λ  に設定りれぽJ、いが、この最適値の求め方を第
8図に承り本発明の実施例装置に阜づいて説明する。
By the way, the 0th rero J o [objective current 1+1i +-1
)l, 1. P2 corresponds to the focal line C, l-, which corresponds to the focal line C, l-, so that a minimum of 111 random circles 1) are formed. In order to achieve this, the value of the objective current 1 is set to L1 and 2 λ, but the method for determining this optimum value is shown in FIG. 8 and based on the apparatus according to the embodiment of the present invention. explain.

第8図中第1図と同一71号を付したものは同一構成要
素を表わしている。第8図の装面には2対の4極レンズ
15x、15y及びイれらへ励磁電流を供給する非点補
正電源゛1Gからなる×y型非点補正装置が絹み込まれ
てJ3す、各44fiレンズへの電流値は電流制御回路
17の出力によって調整される。又、対物レンズの励磁
電源13も電流制御回路18の出力によって調整される
。これらの電流制御回路17.18はスデッゾぎり変則
路19の出力によっ−Cfli制御される。試料5から
発生りる2次電子等の(、′;号は検出器8により映像
イハ弓どしC検出された後増幅器9を介して自8に]1
度二1ン1−ラス1〜調整回路20に供給され、該回路
におい(映像信号の信号レベルが所定の藺に又映像信号
の:1ン1〜ンス1〜が所定範囲に収;LるJ、うに自
動調整さける。自動輝度コン1〜ラスト調整回路2oの
出力の一部はブラ「クン管7の輝度変調信′:Jどしく
用いられると同時に前記スデッf可変回路′19にらI
(給される。スデップ可変回路゛19は入力2Sれた1
194像化5−)に早づいCその高周波成分の強度信号
に対応りる電子線ttJi面径を表づ変換信号を発生し
、該変換イトラが最大11r1と4【るJ:うにぞの出
力制御信号をステップ状に増減さlる。中央制御回路2
1は垂直ルPi It”i号をタイミング信)シどして
2つの電流調整回路17,1ε3.ステップ角変回路1
9及びスイッチSi’、S2.33に制御信号を供給り
る。
In FIG. 8, the same reference numeral 71 as in FIG. 1 represents the same component. In the mounting shown in Fig. 8, an xy-type astigmatism correction device consisting of two pairs of quadrupole lenses 15x and 15y and a 1G astigmatism correction power supply that supplies an excitation current to them is incorporated into the J3. , the current value to each 44fi lens is adjusted by the output of the current control circuit 17. Further, the excitation power source 13 for the objective lens is also adjusted by the output of the current control circuit 18. These current control circuits 17 and 18 are controlled by the output of the Sudezogiri irregular path 19. Secondary electrons, etc. generated from the sample 5 are detected by the detector 8 and sent to the camera 8 via the amplifier 9.
The signal level of the video signal is within a predetermined range, and the signal level of the video signal is within a predetermined range. A part of the output of the automatic brightness controller 1 to the last adjustment circuit 2o is used as a brightness modulation signal of the brightness tube 7.
(Supplied. The step variable circuit 19 receives input 2S and 1
Immediately after 194 imaging 5-), a conversion signal representing the surface diameter of the electron beam ttJi corresponding to the intensity signal of the high frequency component is generated, and the conversion signal is at maximum 11r1 and 4[J: sea urchin output. The control signal is increased or decreased in steps. Central control circuit 2
1 is a vertical loop (Pi It"i) as a timing signal) and then two current adjustment circuits 17, 1ε 3. Step angle changing circuit 1
9 and switches Si', S2.33.

今、仮に非点補正装置を使用Uず対物レンズ電流ど変換
化6の関係が非点収差の影響で第0図に示1ような波形
で表されるものとづる。この場合に第8図の装置にi1
5 LJる自動焦点合わせ装置を作動さlるど、先ず中
央制御回路21がスイッチS1、S2をAンの状態どし
、電流調整回路17の出力によって41モレンズ15x
、15yへの励磁電流を零に設定りる。次にスイッチ5
う3が端子a側にIJJり換えられてステップ可変回路
・19の出力が電流調整回路18へ供給され、ス・1物
1ノンズ電流が第10図に示1如く低い電流レベルh目
うステップ状に順次増加りる。このスデッノ用変の時間
幅t(,1垂直走査の周期と一致しく(13す、電流の
変化幅Δ11.Δ■2は調整段階に応じC切り白λられ
るが初めの段階では大きい可変幅に設定される。
Now, suppose that the relationship between the objective lens current and the conversion 6 is expressed by a waveform as shown in FIG. 1 due to the influence of astigmatism without using the astigmatism correction device. In this case, the device shown in FIG.
5 When the automatic focusing device is activated, the central control circuit 21 first sets the switches S1 and S2 to the A state, and the output of the current adjustment circuit 17 causes the 41mm lens 15x to be adjusted.
, 15y is set to zero. Next switch 5
3 is switched to the terminal a side, and the output of the step variable circuit 19 is supplied to the current adjustment circuit 18, and the step 1 current is set to a low current level h as shown in FIG. 10. It will increase sequentially. The time width t(, 1) of this Sdenno change corresponds to the period of vertical scanning (13), and the current change width Δ11. Set.

第10図の場合には対物1ノンズ電流の11「iが初め
の低い値から大ぎな変化幅Δ■1で増加し、変(β信号
が予め定められたLレベルを越えるとルベルに電流値を
設定し、新たに小さな変化幅△I2で電流を増加さUつ
つ常に19られた変操信号の最大値を求めそれよりも2
0%減の値Sを51怖しく記憶し、値Sど等しい変換信
号が19られるまで電流のスーアップ増加を行う(第9
図には変換信号が実際の最大値Pに達した後のPどSの
1直が示されている。〉このようにしてレベルSに対応
りるレンズ電流L 2に達Jると、ステップ可変回路′
19tまレンズ電流1.、2 (又は−ぞれに対応Jる
信号)を記憶覆ると同時に、再びレンズ電流をl sに
戻してSの変換(i号が得られるまで微小スj−ツゾ幅
の電流増加を行ないレンズ電流(1(又はぞれにヌ・1
応する信号)の値を求める。次にスi゛ツゾiiJ変回
路1−1 +L乙        Ll−)L219は
一丁一の値を演算し、  2  の出力゛電流が得られ
るような制御信号を電流÷11J整回路18へ供給りる
1、従っ°η第8図の装置j’?に、13い−4は非点
収差が存白りる状態であってb最小錯乱円の状態に電f
−線を集束さUることがぐさるのC・、従来J、すb信
頼度の高い自動焦点合わUを行うことができる。
In the case of Fig. 10, the objective 1 nons current 11'i increases from the initial low value with a large change width Δ■1, and changes (when the β signal exceeds the predetermined L level, the current value changes to level 1). is set, and while increasing the current with a new small change width △I2, find the maximum value of the variable signal that is always 19, and set it by 2.
The value S of 0% reduction is memorized 51 times, and the current is increased rapidly until a conversion signal equal to the value S is 19 times (9th step).
The figure shows one shift of P to S after the conversion signal reaches its actual maximum value P. 〉In this way, when the lens current L2 corresponding to the level S is reached, the step variable circuit'
19t Lens current 1. , 2 (or the corresponding J signal), at the same time, return the lens current to l s again and convert S (increase the current by a minute width until i is obtained). Lens current (1 (or 1 for each)
find the value of the corresponding signal). Next, the switch L219 calculates each value and supplies the control signal to the current ÷ 11J adjustment circuit 18 so that the output current of 2 is obtained. R1, follow °η the device j' in Figure 8? 13-4 is a state in which astigmatism is evident, and the electric field f is in the state of the circle of least confusion b.
- It is possible to perform automatic focusing with high reliability when focusing the beam.

以にのように1ノで第ε3図の装置−にお()る一応の
焦点合わlが完了づると、中央制御回路21はスインS
3を1)側端子へ、又スイッチS1をAン状態どしU 
/l極レンズ15xへの最適励磁電流強度を求める動作
を開始さ1!る。/I極レンズ15×又G;L 15 
yへのIjlIIii&電流を連続的に可変させた場合
の変換伏目変化は第4図に類似の波形を承りので、ステ
ップiiJ変回路10は4極レンズ15×への励磁電流
をIF; ILL tl+’+ /J曹ら順次ス′jツ
ブ状に微小幅で増加さけ、8スフ−ツブにおいて検出さ
れる変換信号が最大(「1承り励磁用流値の値(又はこ
・れに対応する信号)を検出1ノ、この値を記憶1ノて
l〜1ノンズ15×への励磁電流をこの顧に固定りる1
1次に中火制御回路19からの制御信号がスイッチ$2
をAン状(71にし−U /l iijレンズ16yl
Nの励磁電流を4極レンズ15×の場合と同様にして順
次スアーツブ状に増加させて変換化fJが最大値を示J
励磁電流を検出して、その値を保持り−る。
As described above, when the focusing l in the apparatus shown in Fig. ε3 is completed in step 1, the central control circuit 21 switches the
3 to the 1) side terminal, and switch S1 to A state.
/Start the operation to find the optimum excitation current intensity for the l-pole lens 15x1! Ru. /I pole lens 15 x G; L 15
When the IjlIIIi & current to y is continuously varied, the transformation change has a waveform similar to that shown in FIG. +/J Cao et al. sequentially increase in a small width in the shape of a block, and the conversion signal detected at the 8 block is the maximum Detect 1, memorize this value, and fix the excitation current to 1~1 nons 15x at this point.
Firstly, the control signal from the medium heat control circuit 19 is sent to switch $2.
to A shape (71-U/l Iij lens 16yl
The excitation current of N is increased sequentially in a straight-striped manner in the same manner as in the case of the 15x quadrupole lens, and the conversion fJ shows the maximum value.
Detects the excitation current and holds its value.

このにうにして、電子線を最小錯乱円に保−)だ状態で
×y型型態点収差補正装置調整されるので、対物レンズ
その他の光学系に起因する非点収差の正確な補正が行わ
れる。又この状態′c4;L対物レンズ電流値と変換信
号どの関係が第5図のJ:うに二つのピーク値を右りる
波形から第4図のよう41甲−のピーク値を有する波形
に変化し−(いるので、中火制御回路21はスイッチS
3をFUび”a 111+1端了に接続して、ステップ
可変回路1つにJ、る2回目の焦点合わし調整を行う。
In this way, the xy-type point aberration corrector is adjusted while keeping the electron beam within the circle of least confusion, so astigmatism caused by the objective lens and other optical systems can be corrected accurately. It will be done. Also, in this state 'c4: What is the relationship between the L objective lens current value and the conversion signal? The waveform that has two peak values of J in Figure 5 changes to the waveform that has a peak value of 41 A as shown in Figure 4. (Therefore, the medium heat control circuit 21 is set to switch S.
3 to the FU and "a 111+1 end" to perform the second focusing adjustment to one step variable circuit.

この2回ト1の焦点合わl調整は前述した1回目の方式
にJ、る焦点合わUであって−bよいが、従来の方式即
ら変換イバン)がJrA人値を示すときの3・1物レン
ズ電流tlご設定りる方式のものであっCも差し支えな
い。
This two-step focusing adjustment is equivalent to the first method described above, but it is good to have a focusing U of -b. It is a type that allows you to set the single-object lens current tl, so C is also acceptable.

以十のようにしく第8図の実施例装置によれば非点収差
の補正をも含めたi’a%儒41が、味にお()る自動
焦点合わμが行われるので、走査電子粕微鏡を最適系1
′1で使用りるために必要’:i: ;IL!J整1@
 flが従来に比較しC′著しく軒減される。
As described above, according to the apparatus of the embodiment shown in FIG. Optimal system for lees microscopy 1
'Necessary for use in 1': i: ;IL! J Seiichi 1@
fl is significantly reduced compared to the conventional case.

尚、本発明は第83図の実施例’A flJに限定され
るものr t、Lなく、例えば土)ホし/、−21i’
i+ 11の焦点合わけ調整が完了したtνに再度非点
収差補正の調整を打つ(もJ、く、逆に2回目の焦点合
わt!調整を省略したり、自動輝度コン1ヘラス]〜調
整回路20を設置ノずに省略したりりることも1り能で
ある。成るいは非J:a収差補jl−装買に夕・jする
調整I幾構を設【ノずλ・j物しンスに対する調整機構
のみを設けた装置であっても従来の焦点合わせ装動上す
し正確な焦点合わI!を行うく二とが′C′さる。又、
実メ廟例装詔の変換信号どして映15!信号に含Jjれ
るl:li周波成分の最大値又LL梢梓110を用いた
が、jl−シい焦点では映像信号のピーク圃が高くなる
ことに着目して、映像イn@の1極1ノ1又は負イセ性
への変化分を一定時間にねたっ゛(積算した1111を
用いることもできる。更にスアップ可変回V819は対
物レンズ又t;L 4極レンズへの励磁電流をステップ
状に増減させているが、連続的に増減さl!る方式のも
のを採用−りることも容易である。
Note that the present invention is limited to the embodiment 'A flJ shown in FIG.
Adjust the astigmatism correction again at tν when the focusing adjustment of i+ 11 is completed. It is also possible to omit or omit the circuit 20 without installing it.Alternatively, it is possible to install a number of adjustment circuits for adjusting the aberration compensation jl-equipment. Even if the device is equipped with only an adjustment mechanism for the focus, it is still necessary to use a conventional focusing device to achieve accurate focusing.Also,
What is the conversion signal of the real edict? The maximum value of the l:li frequency component included in the signal was used, and the LL Kozue Azusa 110 was used, but focusing on the fact that the peak field of the video signal becomes high at a jl-sh focal point, the single pole of the video in@ It is also possible to use the integrated value 1111 for a certain period of time to calculate the change to 1 to 1 or negative bias.Furthermore, the step-up variable turn V819 changes the excitation current to the objective lens or the L quadrupole lens in steps. However, it is also easy to adopt a system that increases and decreases continuously.

以十のJ、うに、本発明にJ、れば、ル杏電子顕微鏡、
イAンマイクロアノーライ1アー、電子ビーム露光装置
装防のように荷電粒子線を細く集束さUだ状態で使用す
る荷電粒子線装置の焦点合わ(!操作を高い信頼度で自
動化することが可能と41す、荷電粒子線装置の操作上
の白土に大きな効果が151られる。
J, uni, the present invention, J, le, an electron microscope,
Ian Microanoriser 1, focusing (! operation) of charged particle beam equipment that uses a finely focused charged particle beam, such as an electron beam exposure equipment, can be automated with high reliability. If possible, it would have a great effect on the operation of charged particle beam devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1゛図は従来の自動焦点合わi!装置を1品えたン[
査電子顕微鏡を示す略図、第2図乃至第1図は自動焦点
合わUの原理を説明するだめの略図、第5図乃至第7図
は非点収差の影響とその補正方法を説明するだめの略図
、第8図は本発明の一実施例装動を示J略図、第9図及
び第10図は第8図の装置の動作を説明覆るIこめの略
図である。 1:電子銃、3,4:集束レンズ、8:検出j!:S、
11:走査電源、12:可変増幅器、13:励{公電源
、14:自動焦点合わけ回路、1!iX,’15y:l
141レンズ、16:非点補■回路、17.1E3=電
流1.■整回路、19:スデップ用変回路、20:自動
輝石−1ン1・ラス{・調整回路、21:中央制御回路
。 特γ1出願人 株式会着1二1電子デクニクス 代表者 太 [Tl     進 f)灸イ言号
Figure 1 shows the conventional automatic focusing i! I got one piece of equipment [
Figures 2 to 1 are schematic diagrams showing the scanning electron microscope. Figures 2 to 1 are schematic diagrams for explaining the principle of automatic focusing U. Figures 5 to 7 are diagrams for explaining the effects of astigmatism and its correction method. FIG. 8 is a schematic diagram illustrating the operation of an embodiment of the present invention, and FIGS. 9 and 10 are schematic diagrams illustrating the operation of the apparatus of FIG. 8. 1: Electron gun, 3, 4: Focusing lens, 8: Detection j! :S,
11: Scanning power supply, 12: Variable amplifier, 13: Excitation {public power supply, 14: Automatic focusing circuit, 1! iX,'15y:l
141 lens, 16: Astigmatism ■circuit, 17.1E3=current 1. ■Adjustment circuit, 19: Variation circuit for SDP, 20: Automatic pyroxene-1-1-las {・Adjustment circuit, 21: Central control circuit. Special γ1 Applicant Stock Meeting 121 Electronic Dekunics Representative Tai [Tl Shinf) Moxibustion I Word Name

Claims (1)

【特許請求の範囲】[Claims] 1.4Xl電粒子線源から発生する粒子線を集束レンズ
により試Fi1面十で微小なビーム径が形成されるよう
に無口・1りると共に試料面」を走査し、該走査と同期
した像表示手段に試料か[)検出された映像信号を用い
た走査像を表示づる装置にd3いで、前記粒子線の試1
′+1面十におけるビーム径に対応する変換信号を前記
映像信号に基づいて1りる手段と、前記集束1ノンズの
レンズ強度を順次変化させたとさに1りlうれる前記変
換信号の最大伯、しりも所定帛低い変換信号が1qられ
る前記集束レンズのレンズ強11J−(+−1,12)
を求める手段と、前記集束レンズのレンズ強度を L’
l±L2  に設、ヒ゛リ−る手段を具備りる荷電粒子
線装置にお(プる自動焦点合わ、l装置。 2、前記粒子線の試料面一ににJ3tJるビーム径に対
応りる変換信号を前記映像信号に基づいて得る手段に、
前記映像信号のレベルとコントラスト定のqし回内に自
動設定りる回路を組み込Δ,だ’17+ a’1請求の
範囲第′1項記載の前電粒子線装巨にJ3 1Jる自動
焦点合わt!装置。 3、荷電粒子線源から発生する粒子線を集束レンズ及び
xy型非点補正装貿にj、り試料面.1で微小4「ビー
ム径が形成されるように照Q’l するど共に、該粒子
線ににって試料面上を走査し、該走査と同期した像表示
手段に試litから検出され・l、二映像悄′;5を供
給して走査像を表示Jる装置に(1′)いて、前記粒子
線の試料面上におりるビーム径にス・j応りる変換信号
を前記映像信号に基づい′C得る手段ど、前記集束レン
ズのレンス′強度を順次変化さLIIJときに得られる
前記変換信号の最大値より一t)所定G1少い変換信号
が得られる前記集束レンズのレンズ強度(L.1.12
)を求める手段と、前記集束レンズのレンズ強度を L
1+L2  に設定するJ一段ど、前乙 記×y型非点補正装勧にお(プる二つの補正信号弾11
を順次変化させて前記変換信号が最大どなるように設定
する非点補正制御手段を具備したことを9″1徴どする
侑7fi fl’l r−線負買にお【ノる自動焦点合
わせ装置。
A particle beam generated from a 1.4Xl electric particle beam source is scanned over the sample surface with a silent lens so that a minute beam diameter is formed on one surface of the sample using a focusing lens, and an image is generated in synchronization with the scanning. At d3, test 1 of the particle beam is displayed on a device that displays a scanned image using the detected video signal of the sample on the display means.
The maximum ratio of the converted signal obtained by means of calculating a converted signal corresponding to the beam diameter in the +1 plane based on the video signal and by sequentially changing the lens strength of the focusing lens. , the lens strength 11J-(+-1,12) of the focusing lens to which a predetermined lower conversion signal is 1q
and the lens strength of the focusing lens L'
A charged particle beam device is installed at 1 ± L2, and is equipped with automatic focusing, 1 device. 2. Conversion corresponding to the beam diameter of means for obtaining a signal based on the video signal;
Incorporating a circuit for automatically setting the level and contrast of the video signal in the predetermined range Δ, DA'17+a'1 The electric particle beam device according to claim '1 is automatically set to J31J. Focus! Device. 3. A particle beam generated from a charged particle beam source is passed through a focusing lens and an xy-type astigmatism correction device onto the sample surface. At the same time, the sample surface is scanned by the particle beam, and detected from the sample by the image display means synchronized with the scanning. A device (1') for displaying a scanned image by supplying an image with two images, converts a conversion signal corresponding to the beam diameter of the particle beam onto the sample surface into the image. The means for obtaining 'C' based on the signal sequentially changes the lens 'intensity of the focusing lens such that a conversion signal that is 1t) less than the maximum value of the conversion signal obtained when (L.1.12
) and the lens strength of the focusing lens as L
1 + L2, J 1st step, x y type astigmatism correction is recommended (Pull two correction signal bullets 11)
The automatic focusing device is equipped with astigmatism correction control means for sequentially changing the conversion signal to set the maximum value of the conversion signal. .
JP57157927A 1982-09-09 1982-09-09 Automatic focal point aligning unit for charged particle beam device Granted JPS5946745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57157927A JPS5946745A (en) 1982-09-09 1982-09-09 Automatic focal point aligning unit for charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57157927A JPS5946745A (en) 1982-09-09 1982-09-09 Automatic focal point aligning unit for charged particle beam device

Publications (2)

Publication Number Publication Date
JPS5946745A true JPS5946745A (en) 1984-03-16
JPH0255899B2 JPH0255899B2 (en) 1990-11-28

Family

ID=15660507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57157927A Granted JPS5946745A (en) 1982-09-09 1982-09-09 Automatic focal point aligning unit for charged particle beam device

Country Status (1)

Country Link
JP (1) JPS5946745A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191866U (en) * 1985-05-20 1986-11-29
JPH01220351A (en) * 1988-02-27 1989-09-04 Jeol Ltd Automatic focusing of scanning type electron microscope or the like
JPH01231251A (en) * 1988-03-09 1989-09-14 Hitachi Ltd Focusing device of electron microscope
JPH01239742A (en) * 1988-03-17 1989-09-25 Nichidenshi Tekunikusu:Kk Automatic focus control device of scanning electron microscope
WO2004030056A1 (en) * 2002-09-24 2004-04-08 Nikon Corporation Method for correcting astigmatism, method for determining astigmatic sensitivity and method for exposure in charged particle beam aligner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191866U (en) * 1985-05-20 1986-11-29
JPH01220351A (en) * 1988-02-27 1989-09-04 Jeol Ltd Automatic focusing of scanning type electron microscope or the like
JPH01231251A (en) * 1988-03-09 1989-09-14 Hitachi Ltd Focusing device of electron microscope
JPH01239742A (en) * 1988-03-17 1989-09-25 Nichidenshi Tekunikusu:Kk Automatic focus control device of scanning electron microscope
WO2004030056A1 (en) * 2002-09-24 2004-04-08 Nikon Corporation Method for correcting astigmatism, method for determining astigmatic sensitivity and method for exposure in charged particle beam aligner

Also Published As

Publication number Publication date
JPH0255899B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
Hillier et al. The magnetic electron microscope objective: contour phenomena and the attainment of high resolving power
CN100397549C (en) System and method for fast focal length alterations
CN104488064B (en) For the device and method on the surface for checking sample
JPH0322336A (en) Magnification compensator for scanning electron microscope
US4214163A (en) Method and apparatus for correcting astigmatism in a scanning electron microscope or the like
Martin et al. A new electron microscope
JPS5946745A (en) Automatic focal point aligning unit for charged particle beam device
JPS614144A (en) Diffraction pattern display method by electron microscope
US7060985B2 (en) Multipole field-producing apparatus in charged-particle optical system and aberration corrector
US5258617A (en) Method and apparatus for correcting axial coma in electron microscopy
WO2009015615A1 (en) A device providing a live three-dimensional image of a speciment
GB660787A (en) Improvements in or relating to electronic microscopes
JP2946857B2 (en) Charged particle beam equipment
JPS6231473B2 (en)
JPS6151377B2 (en)
JP4634324B2 (en) Transmission electron microscope
JP7361213B2 (en) Charged particle beam device, control method for charged particle beam device
JPH0228601Y2 (en)
JPH027506B2 (en)
JPS589545B2 (en) How to get the most out of your day
JPH0395841A (en) Electron microscope
JPS60146441A (en) Transimission type electron microscope
Mackay et al. Deflection focusing of electron microscopes
JPH11317186A (en) Charged particle beam exposure device
JPS5851663B2 (en) electron microscope focusing device