JPS594671B2 - Magnetic field vector detection method - Google Patents

Magnetic field vector detection method

Info

Publication number
JPS594671B2
JPS594671B2 JP53034205A JP3420578A JPS594671B2 JP S594671 B2 JPS594671 B2 JP S594671B2 JP 53034205 A JP53034205 A JP 53034205A JP 3420578 A JP3420578 A JP 3420578A JP S594671 B2 JPS594671 B2 JP S594671B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
component
local
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53034205A
Other languages
Japanese (ja)
Other versions
JPS54127371A (en
Inventor
祐信 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP53034205A priority Critical patent/JPS594671B2/en
Publication of JPS54127371A publication Critical patent/JPS54127371A/en
Publication of JPS594671B2 publication Critical patent/JPS594671B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明は着磁体等の局部磁界発生体の近傍で一様磁界ベ
クトルの精密な計測を行なうための磁界計測方式に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic field measurement method for precisely measuring a uniform magnetic field vector in the vicinity of a local magnetic field generator such as a magnetized body.

着磁体の近傍等局部的な磁界が存在する位置で一様に分
布した磁界ベクトルを計測する場合、一般的には計測点
における局部磁界のベクトルが既知でなければ計測値か
ら局部磁界による影響を消去することはできない。
When measuring a uniformly distributed magnetic field vector at a location where a local magnetic field exists, such as near a magnetized object, generally speaking, if the vector of the local magnetic field at the measurement point is not known, the influence of the local magnetic field cannot be calculated from the measured value. It cannot be deleted.

このため、一様磁界の計測を行なう場合、局部磁界をあ
らかじめ分離して計測するか、または計測点として局部
磁界発生体から十分離れた場所を選ぶことが必要であつ
た。しかし、両者とも実現困難な場合が多く、このよう
な条件下における精密な磁界ベクトルの計測は不可能と
考えられていた。本発明は上記のような条件下で、局部
磁界の大きさにかかわらず一様磁界ベクトルの精密測定
を可能とするもので、以下図面について詳細に説明する
Therefore, when measuring a uniform magnetic field, it is necessary to separate the local magnetic field beforehand and measure it, or to select a location sufficiently distant from the local magnetic field generator as the measurement point. However, both of these methods are often difficult to achieve, and it has been considered impossible to accurately measure magnetic field vectors under these conditions. The present invention enables accurate measurement of a uniform magnetic field vector under the above conditions regardless of the magnitude of the local magnetic field, and will be described in detail below with reference to the drawings.

第1図は着磁体または磁気誘導、電流等による局部磁界
発生体(以下単に着磁体と記す)とその近傍における複
数個の磁界検出点の位置関係を示す見取図で、1は着磁
体、2は検出点の位置を示すための直角座標系、3、4
、5は任意個数(以下3点の場合について説明する)の
検出点、6、7、8は各検出点における着磁体1に起因
する磁界ベクトルを示す。
Figure 1 is a sketch showing the positional relationship between a magnetized body or a local magnetic field generating body generated by magnetic induction, current, etc. (hereinafter simply referred to as a magnetized body) and a plurality of magnetic field detection points in the vicinity. Cartesian coordinate system for indicating the position of the detection point, 3, 4
, 5 indicates an arbitrary number of detection points (the case of three points will be explained below), and 6, 7, and 8 indicate magnetic field vectors caused by the magnetized body 1 at each detection point.

ここで、着磁体1を磁気双極子の集合体と考えると、着
磁体1による近傍の磁界は一般的には複雑な分布を示す
ため、近傍のすべての点における磁界を等価にするため
には無限対の磁気双極子が必要になるが、検出点の数を
限定することにより、等価磁気双極子の数も限定するこ
とができる。第2図は上記を説明するための限定された
等価磁気双極子と磁界検出点の位置を示す透視図で、9
、yは大きさが+mx、−mxで、XY平面内のZ軸に
対称な位置にあるX成分磁気双極子、10、1σは大き
さが+mY、−mYでYZ平面内のX軸に対称な位置に
あるY成分磁気双極子、11、11’は大きさが+m2
、−m2でZX平面内のY軸に対称な位置にあるZ成分
磁気双極子を示す。
Here, if we consider the magnetized body 1 as a collection of magnetic dipoles, the nearby magnetic field due to the magnetized body 1 generally shows a complicated distribution, so in order to make the magnetic fields at all nearby points equal, Although an infinite number of pairs of magnetic dipoles are required, by limiting the number of detection points, the number of equivalent magnetic dipoles can also be limited. Figure 2 is a perspective view showing the limited equivalent magnetic dipole and the position of the magnetic field detection point to explain the above.
, y are the X component magnetic dipoles with sizes +mx, -mx and located symmetrically to the Z axis in the XY plane, 10, 1σ are the sizes +mY, -mY and symmetrically to the X axis in the YZ plane The Y-component magnetic dipoles 11 and 11' located at the position have a size of +m2
, -m2 indicate a Z component magnetic dipole located symmetrically to the Y axis in the ZX plane.

このように配置された磁気双極子による各検出点におけ
る磁界ベクトルのX方向成分はX成分磁気双極子のみで
決定され、同様にY、Z方向成分もそれぞれY、Z成分
磁気双極子により分離して決定される。したがつて、以
下にこれらの一成分について詳細に説明する。第3図は
X成分磁気双極子によるX方向磁界ベクトルを示し、1
2、13、14はそれぞれ磁界ベクトル6,7,8のX
成分磁界ベクトルである。
The X-direction component of the magnetic field vector at each detection point by the magnetic dipoles arranged in this way is determined only by the X-component magnetic dipole, and similarly, the Y- and Z-direction components are separated by the Y- and Z-component magnetic dipoles, respectively. Determined by Therefore, one of these components will be explained in detail below. Figure 3 shows the X-direction magnetic field vector due to the X-component magnetic dipole, and 1
2, 13, and 14 are the X of magnetic field vectors 6, 7, and 8, respectively.
is the component magnetic field vector.

各検出点をそれぞれA,b,cとし、A,b,cから各
磁極までの距離をそれぞれ1x,n,x1x,n,x1
x,原点からaまでの距離をZ,原点から磁極までの距
離をXとすれば、各検出点における等価磁極によるX方
向磁界の大きさEaX,ebX,ecxはそれぞれで与
えられる。
Let each detection point be A, b, c, respectively, and the distance from A, b, c to each magnetic pole is 1x, n, x1x, n, x1, respectively.
x, the distance from the origin to a is Z, and the distance from the origin to the magnetic pole is X, the magnitude of the X-direction magnetic field EaX, ebX, and ecx due to the equivalent magnetic pole at each detection point is given by each.

ただし、aからbおよびcまでの距離をD1およびD,
とする。いつぼう、実際の着磁体1が各検出点に与える
X方向磁界をそれぞれHax,hbx,hcxとすれば
、EaX:HaX9ebXゞHbXPeCXゞHcxと
なるような磁極の位置X,Zおよびその大きさMxが決
定できれば、着磁体1は上記の磁気双極子対に置きかえ
ることができる。
However, the distances from a to b and c are D1 and D,
shall be. If the X-direction magnetic fields given by the actual magnetized body 1 to each detection point are Hax, hbx, and hcx, respectively, then the positions X and Z of the magnetic poles and their size Mx are such that EaX:HaX9ebXゞHbXPeCXゞHcx. If this can be determined, the magnetized body 1 can be replaced with the above magnetic dipole pair.

ここで1haX/HbXゝn′1x3! Hax/Hc
xゞn′2X3と:おくと、〔1〕 〔2〕式からEa
X/EbX=NlX3、〔1〕 〔3〕式から、EaX
/ECX=N2X3となることからN,X=n′IX,
n,X=n′2Xとなる磁極の位置が存在すれば、上記
の置きかえは可能となる。
Here 1haX/HbXゝn'1x3! Hax/Hc
x n'2
X/EbX=NlX3, [1] From formula [3], EaX
/ECX=N2X3, so N,X=n'IX,
If there exists a magnetic pole position where n,X=n'2X, the above replacement becomes possible.

第4図はこれらの関係を明確にするための説明図で、検
出点A,bに対してn′IXが与えられると、同図から
も明らかなように、n′IXは2点A,bからの距離の
比であることから、磁極の位置はAbからの距離の比が
一定値n/IXであるような点の軌跡すなわち中心がA
,bを結ぶ線(Z軸)上にあり、A,bを内分および外
分する2点を通る円15の周上にあり、同様にA,cの
2点に対して円16の周上にあることから、両円の交点
1Tが検出点A,b,cに対する等価磁極の位置である
ことが分る。
FIG. 4 is an explanatory diagram to clarify these relationships. As is clear from the figure, when n'IX is given to detection points A and b, n'IX becomes two points A and B. Since it is the ratio of the distance from Ab, the position of the magnetic pole is the locus of the point where the ratio of the distance from Ab is a constant value n/IX, that is, the center is A
, b, and on the circumference of circle 15 passing through the two points that divide A and b internally and externally. From the above, it can be seen that the intersection point 1T of both circles is the position of the equivalent magnetic pole with respect to the detection points A, b, and c.

同様なことがYおよびZ方向成分磁極の位置に関しても
成立する。例えばZ成分の場合、A,b,c点からZ成
分磁気双極子の中心までの距離をそれぞれZ,Z+D,
,Z+D,とし、上記中心からそれぞれZ軸上で士ムだ
け離れた位置に磁気双極子があるものとすると、A,b
,c点におけるZ成分磁気双極子によるZ方向磁界eぉ
,EbZ,eCZはそれぞれとなり、着磁体1による各
点の磁界をHaz,hbz,hczとすると1eaZゞ
HaZPebZゞHbZ!ECZ:Hczを同時に満足
するようなNlZ,Z,ムの値としてZ成分等価磁気双
極子が与えられる。
The same holds true for the positions of the Y and Z component magnetic poles. For example, in the case of the Z component, the distances from points A, b, and c to the center of the Z component magnetic dipole are Z, Z + D, respectively.
.
, the Z-direction magnetic fields eo, EbZ, eCZ due to the Z-component magnetic dipole at point c are respectively, and if the magnetic fields at each point due to the magnetized body 1 are Haz, hbz, hcz, then 1eaZゞHaZPebZゞHbZ! The Z-component equivalent magnetic dipole is given as the values of NlZ, Z, and Mu that simultaneously satisfy ECZ:Hcz.

また磁極の大きさmは〔1〕式からMx=Eaxl3x
/ 2 =Haxl3x/2として求めることができる
。以上に各検出点の着磁体1による磁界が与えられると
等価磁気双極子が決定できることを示したが、各検出点
に磁界検出器を置いた場合、検出器の出力は着磁体1に
よる磁界と被測定磁界の和となるため、着磁体1による
磁界のみを分離して検出することはできない。これを分
離するためには3個の未知数Mx,X,Zに対して、一
様磁界成分を含まない条件での観測値が少なくとも3個
必要である。第5図は両者を分離する一実施例として、
磁界の微係数を求めるための磁界検出器の配置を示し、
3は磁界検出点aの位置、18および19はa点からそ
れぞれ士責ムZだけ離して置かれた磁界検出器1および
a′の位置を示す。
Also, the size m of the magnetic pole is calculated from the formula [1], Mx=Eaxl3x
/ 2 = Haxl3x/2. It has been shown above that the equivalent magnetic dipole can be determined when the magnetic field is applied by the magnetized body 1 at each detection point, but when a magnetic field detector is placed at each detection point, the output of the detector is equal to the magnetic field caused by the magnetized body 1. Since it is the sum of the magnetic fields to be measured, it is not possible to separate and detect only the magnetic field caused by the magnetized body 1. In order to separate this, it is necessary to have at least three observed values for the three unknowns Mx, X, and Z under conditions that do not include the uniform magnetic field component. Figure 5 shows an example of separating the two.
Shows the arrangement of a magnetic field detector to find the differential coefficient of the magnetic field,
3 indicates the position of the magnetic field detection point a, and 18 and 19 indicate the positions of the magnetic field detectors 1 and a', respectively, which are placed a distance Z apart from the point a.

I,a′はその点における磁界ベクトルの各軸方向成分
(この場合はX軸)に比例した出力が得られる磁界検出
器である。このように検出器を配置することにより、両
検出器出力信号の和からa点における磁界ベクトルを、
差信号と八Zの大きさからa点における磁界のZ軸方向
の微係数を求めることができる。〔1〕,〔2〕,〔3
〕式を微分すると、となり、各検出点における磁界の微
係数が与えられると、M,X,ZまたはNlX,n,X
を、また〔1〕,〔2〕,〔3〕式からEaX,ebX
,eCXを求めることができる。
I, a' are magnetic field detectors that provide outputs proportional to each axial component (in this case, the X axis) of the magnetic field vector at that point. By arranging the detectors in this way, the magnetic field vector at point a can be calculated from the sum of the output signals of both detectors.
The differential coefficient of the magnetic field at point a in the Z-axis direction can be determined from the difference signal and the magnitude of 8Z. [1], [2], [3]
] When the equation is differentiated, it becomes, and given the differential coefficient of the magnetic field at each detection point, M, X, Z or NlX, n,
Also, from equations [1], [2], and [3], EaX, ebX
, eCX can be obtained.

被計測一様磁界をHxとすると、各検出点ではそれぞれ
Eax+Hx,ebx+Hx,ecx+Hxの値が計測
されているため、これらの任意の計測値から上記の方法
で求められた局部磁界成分を差し引くことにより、一様
磁界成分を求めることができる。また磁界のY方向成分
およびZ方向成分についても同じ手法で磁界成分を求め
る、即ち〔4〕,〔5〕,〔6〕式を微分して得られる
3つの式に3つの検出点で得られた微係数を代入してR
r]Z,Z,ムが求められることにより、3次元磁界ベ
クトルが求められる。
If the uniform magnetic field to be measured is Hx, the values of Eax+Hx, ebx+Hx, and ecx+Hx are measured at each detection point, so by subtracting the local magnetic field component obtained by the above method from these arbitrary measured values, , the uniform magnetic field component can be determined. In addition, the magnetic field components are determined using the same method for the Y-direction component and the Z-direction component of the magnetic field, that is, the three equations obtained by differentiating equations [4], [5], and [6] are obtained at the three detection points. Substituting the differential coefficient obtained by R
By determining r]Z, Z, and mu, a three-dimensional magnetic field vector is determined.

なお、3個所の検出点に対して、第5図のようにそれぞ
れ2個の検出器を置いて各点における磁界の微係数を求
める代りに、各検出点に3個の検出器を置き、として近
似することにより、(D,,Dl《Zのとき成立する)
A,b点の検出器出力の差ムAbとA,c点の検出器出
力の差ムAcの比を求めることにより、〔灼と〔的の両
式から直接NlX,n,Xを決定することができる。
In addition, instead of placing two detectors at each of the three detection points as shown in Figure 5 and finding the differential coefficient of the magnetic field at each point, three detectors are placed at each detection point, By approximating as (D,,Dl《holds when Z)
By finding the ratio of the difference Ab between the detector outputs at points A and b and the difference Ac between the detector outputs at points A and c, NlX, n, and X can be determined directly from the equations be able to.

以上に局部磁界の分布とその大きさがともに不明である
場合の一様磁界の検出法について述べたが、磁界分布が
固定されていて、その大きさのみが不明である場合、1
組の磁界検出器を用いて攬単に局部磁界を消去すること
ができる。
The method for detecting a uniform magnetic field when both the local magnetic field distribution and its magnitude are unknown has been described above, but when the magnetic field distribution is fixed and only its magnitude is unknown, 1
The local magnetic field can be easily canceled using a set of magnetic field detectors.

第3図において、検出点A,bに磁界検出器を置くと、
両検出器の出力(Eax+Hx)と(EbX+Hx)の
差ムは〔1〕,〔2〕式からとなり、磁界分布が固定し
ていれば、NlXの値は一定値となるため、この値が既
知であればa点の磁界検出器出力(Eax+Hx)から
Eax=ム/(1一NlX−りとしてEaxを差回1く
ことによりHxが求められる。
In Fig. 3, if magnetic field detectors are placed at detection points A and b,
The difference between the outputs (Eax+Hx) and (EbX+Hx) of both detectors is obtained from formulas [1] and [2], and if the magnetic field distribution is fixed, the value of NlX will be a constant value, so this value is known. In this case, Hx can be obtained from the magnetic field detector output (Eax+Hx) at point a by subtracting Eax by 1 as Eax=mu/(1-NlX-).

Y,Z成分についても同様である。以上説明したように
、本発明の方式によれば、磁界分布とその大きさが不明
な局部磁界発生体の近傍での磁界計測が可能となるため
、たとえば船舶、車両、航空機等で近傍に着磁体または
電流が存在する場所においても、地磁気ベクトルを規準
とした精密な3次元方位の決定を行なうことができる。
The same applies to the Y and Z components. As explained above, according to the method of the present invention, it is possible to measure magnetic fields near local magnetic field generators whose magnetic field distribution and magnitude are unknown. Even in places where magnetic bodies or electric currents exist, precise three-dimensional orientation can be determined using the geomagnetic vector as a standard.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は着磁体と複数個の磁界検出点および着磁体によ
る各検出点の磁界ベクトルを示す3次元座標系の透視図
、第2図は等価磁気双極子の位置を示す3次元座標系の
透視図、第3図は第2図のXZ平面図、第4図は等価磁
気双極子の位置を求めるための説明図、第5図は磁界検
出点と磁界検出器の位置関係を示す説明図である。 1 ・・・・・・着磁体、2・・・・・・ 3次元直角
座標系、3,4,5・・・・・・磁界検出点、6,7,
8・・・・・・着磁体1による磁界ベクトル、9,9′
・・・・・・X成分等価磁気双極子、10,10′・・
・・・・Y成分等価磁気双極子、11,11/・・ ・
・Z成分等価磁気双極子、12,13,14・・・・・
・等価磁気双極子によるX成分磁界ベクトル、15・・
・・・・検出点3,4の条件を満足する等価磁気双極子
の軌跡、16・・・・・・検出点3,5の条件を満足す
る等価磁気双極子の軌跡、17・・・・・・検出点3,
4,5の条件を満足する等価磁気双極子の位置、18,
19・・・・・・検出点3に対する磁界検出器の位置。
Figure 1 is a perspective view of a three-dimensional coordinate system showing a magnetized body, multiple magnetic field detection points, and the magnetic field vector at each detection point by the magnetized body, and Figure 2 is a perspective view of a three-dimensional coordinate system showing the position of an equivalent magnetic dipole. A perspective view, Figure 3 is an XZ plan view of Figure 2, Figure 4 is an explanatory diagram for determining the position of the equivalent magnetic dipole, and Figure 5 is an explanatory diagram showing the positional relationship between the magnetic field detection point and the magnetic field detector. It is. 1... Magnetized body, 2... Three-dimensional rectangular coordinate system, 3, 4, 5... Magnetic field detection point, 6, 7,
8...Magnetic field vector due to magnetized body 1, 9,9'
...X component equivalent magnetic dipole, 10,10'...
...Y component equivalent magnetic dipole, 11,11/... ・
・Z component equivalent magnetic dipole, 12, 13, 14...
・X component magnetic field vector due to equivalent magnetic dipole, 15...
... Locus of an equivalent magnetic dipole that satisfies the conditions of detection points 3 and 4, 16... Locus of an equivalent magnetic dipole that satisfies the conditions of detection points 3 and 5, 17... ...Detection point 3,
The position of the equivalent magnetic dipole that satisfies the conditions of 4 and 5, 18,
19...Position of the magnetic field detector with respect to detection point 3.

Claims (1)

【特許請求の範囲】 1 局部磁界発生体の近傍での一様磁界の計測において
、複数個の磁界検出器で構成される複数箇所の磁界検出
点をもち、検出器出力信号の差を用いて局部磁界発生体
と等価な磁気双極子の位置と大きさを決定し、局部磁界
成分を消去してなることを特徴とする磁界ベクトル検出
方式。 2 磁界分布が固定していて、その大きさのみが不明で
ある場合、1組の磁界検出器出力信号の差を用いて局部
磁界成分を消去してなることを特徴とする上記特許請求
の範囲第1項記載の磁界ベクトル検出方式。
[Claims] 1. In the measurement of a uniform magnetic field in the vicinity of a local magnetic field generator, a method having a plurality of magnetic field detection points constituted by a plurality of magnetic field detectors and using the difference in the output signals of the detectors. A magnetic field vector detection method characterized by determining the position and size of a magnetic dipole equivalent to a local magnetic field generator and eliminating the local magnetic field component. 2. In the case where the magnetic field distribution is fixed and only its magnitude is unknown, the local magnetic field component is canceled by using the difference between the output signals of a pair of magnetic field detectors. The magnetic field vector detection method described in item 1.
JP53034205A 1978-03-27 1978-03-27 Magnetic field vector detection method Expired JPS594671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53034205A JPS594671B2 (en) 1978-03-27 1978-03-27 Magnetic field vector detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53034205A JPS594671B2 (en) 1978-03-27 1978-03-27 Magnetic field vector detection method

Publications (2)

Publication Number Publication Date
JPS54127371A JPS54127371A (en) 1979-10-03
JPS594671B2 true JPS594671B2 (en) 1984-01-31

Family

ID=12407646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53034205A Expired JPS594671B2 (en) 1978-03-27 1978-03-27 Magnetic field vector detection method

Country Status (1)

Country Link
JP (1) JPS594671B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566169A (en) * 1979-06-27 1981-01-22 Japan Radio Co Ltd Method and device for magnetic-field vector detection
JPS59228110A (en) * 1983-06-09 1984-12-21 Honda Motor Co Ltd Vehicle mounted geomagnetism sensor
CN103135137B (en) * 2013-03-13 2015-11-18 重庆大学 A kind of grounded screen topology detection method based on the differential method
CN104007308B (en) * 2014-06-16 2017-02-01 重庆大学 Grounding grid branch current detecting method based on differential method

Also Published As

Publication number Publication date
JPS54127371A (en) 1979-10-03

Similar Documents

Publication Publication Date Title
Yamazaki et al. Basic analysis of a metal detector
EP1810046B1 (en) Sensor for measuring magnetic flux
US5642045A (en) Magnetic field gradiometer with improved correction circuits
CN113325353B (en) Magnetometer spatial attitude calibration method and system
US6204667B1 (en) Electromagnetic gradiometer having a primary detector and a plurality of secondary detectors
Arbenz et al. Characterization of permanent magnet magnetization
US6643594B2 (en) Electromagnetic wave source probing device and probing method with the probing device
JPS594671B2 (en) Magnetic field vector detection method
RU101206U1 (en) PERMANENT MAGNETIC FIELD SENSOR ASSEMBLY, AC MAGNETIC FIELD SENSOR ASSEMBLY AND COMBINED SENSORS ASSEMBLY FOR DIAGNOSTIC OF PIPELINE TECHNICAL CONDITION
CN116299095A (en) Far-field total magnetic moment measuring method based on magnetic gradient full tensor
JP2003107116A (en) Electromagnetic wave source survey method and program for electromagnetic wave source survey and survey antenna used for electromagnetic wave source survey
JPS63197203A (en) Magnetic method for determining orbit of moving object to discover magnetic object fixed or moving and apparatus for implementing the same
Kildishev et al. Application of magnetic signature processing to magnetic center pinpointing in marine vehicles
RU1279376C (en) Device for determination of coordinates and magnetic moment of dipole source of magnetic
RU2130619C1 (en) Magnetometric device determining angular position of body (versions)
SU1095117A2 (en) Stand for testing auto tractor generators gradiometer
RU2166735C1 (en) Device for remote determination of coordinates and attitude of object (versions)
RU2252422C1 (en) Method and device for measuring electric current
Primin et al. Algorithms for the Analytical Solution of the Magnetostatics Inverse Problem for the Signal Source of the Dipole Model
CN111060861B (en) Atomic magnetometer gradient tolerance calibrating device
Severino et al. A reconfigurable miniaturized transducer based on rotating coils for testing particle accelerator magnets
Cobb et al. Magnetic Field Measurement and Spectroscopy in Multipole Fields
RU2151405C1 (en) Device determining position of object
Wang et al. A Small Target Localization Method Based on the Magnetic Gradient Tensor. Micromachines 2022, 13, 1639
JPH0894306A (en) Method for detection of metal