JPH0894306A - Method for detection of metal - Google Patents

Method for detection of metal

Info

Publication number
JPH0894306A
JPH0894306A JP25131894A JP25131894A JPH0894306A JP H0894306 A JPH0894306 A JP H0894306A JP 25131894 A JP25131894 A JP 25131894A JP 25131894 A JP25131894 A JP 25131894A JP H0894306 A JPH0894306 A JP H0894306A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
conductor
detection
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25131894A
Other languages
Japanese (ja)
Other versions
JP3035724B2 (en
Inventor
Akira Hasegawa
彰 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKASAGO SEISAKUSHO KK
Takasago Ltd
Original Assignee
TAKASAGO SEISAKUSHO KK
Takasago Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKASAGO SEISAKUSHO KK, Takasago Ltd filed Critical TAKASAGO SEISAKUSHO KK
Priority to JP25131894A priority Critical patent/JP3035724B2/en
Publication of JPH0894306A publication Critical patent/JPH0894306A/en
Application granted granted Critical
Publication of JP3035724B2 publication Critical patent/JP3035724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE: To dispense with zero adjustment, to suppress a noise, to reduce a distance to a detection conductor and to realize highly accurate detection by a method wherein an auxiliary coil of which size or position is different from that of a main excitation coil is provided and a condition for canceling a magnetic field of a detection conductor is obtained based on a relative operation of the main excitation and auxiliary coils. CONSTITUTION: A main excitation coil 1 and an auxiliary coil 2 are incorporated on an identical center axis having a distance αand each of the coils 1, 2 is driven by using respective driving circuits 5, 6 each current is controlled by a driving current control circuit 7. The respective driving currents each is in a pulse wave generate magnetic fields of which magnetic poles are different from each other and simultaneously applied thereto. The magnetic field is detected by a magnetic field detection device 3 to be amplified by an amplifier 4. The amplifier 4 comprises a mask circuit and cuts the magnetic field due to the residual currents of the coils 1, 2. The control circuit 7 controls such that the output of the amplifier 4 becomes zero (a field of a detection conductor becomes zero), then a ratio of the currents of the driving circuits 5, 6 is obtained by a current ratio detector 8 so that the value is converted to a distant to the detection conductor by a linearizer 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高感度の金属探知装置
であり、不可視部分にある導電体を検出でき、探知導体
の有無だけでなく距離やサイズまで測定できる。ゼロ調
整が不要でしかも高感度であるので工業用の近接スイッ
チや非接触距離センサー、車両検出器、膜厚計、3次元
非接触位置検出器としての利用も可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a highly sensitive metal detector, which can detect a conductor in an invisible portion and can measure not only the presence or absence of a detector conductor but also the distance and size. Since it does not require zero adjustment and has high sensitivity, it can be used as an industrial proximity switch, a non-contact distance sensor, a vehicle detector, a film thickness meter, and a three-dimensional non-contact position detector.

【0002】[0002]

【従来の技術】金属を探知する方法として磁界の変化、
電磁波、超音波、X線などを利用したものがありそれぞ
れ特徴がある。電磁波を利用したものはレーダ方式と誘
導電流や透磁率の変化による検出コイルの等価インピー
ダンスの変化を利用したものがあった。レーダ方式は装
置のコストが高く、埋設物を探知する場合は地質や含水
量によって影響を受ける欠点があった。
2. Description of the Related Art As a method for detecting metal, a change in magnetic field,
Some of them utilize electromagnetic waves, ultrasonic waves, X-rays, etc., and each has its own characteristics. The one using the electromagnetic wave is the one using the radar system and the one using the change of the equivalent impedance of the detection coil due to the change of the induced current and the magnetic permeability. The radar system has a drawback in that the cost of the device is high and that when detecting a buried object, it is affected by geology and water content.

【0003】探知導体によって誘導電流や透磁率が変化
することを利用して探知導体を検出する方法は、検出用
の信号周波数を下げると比較的地質の影響を受けない特
徴があり地中の埋設物などの検出に有利である。検出コ
イルの等価インピーダンスの変化を利用する方法は2個
のコイルを差動に接続したり、ブリッジ回路によって感
度を上げる方法が一般的であり、感度と指向性が充分で
はなくしかも探知導体までの距離を求めることは不可能
であった。
The method of detecting a detecting conductor by utilizing the fact that the induced current and the magnetic permeability change depending on the detecting conductor has a characteristic that it is relatively unaffected by the geology when the signal frequency for detection is lowered, and it is buried in the ground. It is advantageous for detecting objects. The method of utilizing the change in the equivalent impedance of the detection coil is generally to connect two coils differentially or to increase the sensitivity by a bridge circuit, and the sensitivity and directivity are not sufficient, and even the detection conductor It was impossible to find the distance.

【0004】導体の距離を測定する方法として特許出願
公告昭49−9388にあるように探知導体に導線を接
続し、この導線に直接電流を流し、この電流による磁界
強度の距離に対する減衰の割合によって導体の距離を測
定する方法などがあるが、測定に影響を与えずしかも非
接触で探知導体に電流を流す具体的な方法がなく、直接
に電流を流したとしても、探知導体の形状で値が変わっ
たり探知距離が大きくなると、距離に対する磁界の差を
検出することが困難で誤差が大きくなった。
As a method for measuring the distance of a conductor, as disclosed in Japanese Patent Application Publication No. Sho 49-9388, a conductor is connected to a detecting conductor, and an electric current is directly applied to the conductor. There are methods such as measuring the distance of the conductor, but there is no specific method to flow the current to the detection conductor in a non-contact manner without affecting the measurement.Even if the current is directly passed, the value depends on the shape of the detection conductor. When the distance was changed or the detection distance was increased, it was difficult to detect the difference in the magnetic field with respect to the distance, and the error was increased.

【0005】また、従来の方法は基本的に検出コイルな
どの定数の変化によって出力が変化するため、無理に感
度を上げた場合は常にゼロ調整を必要としたり、特殊な
温度補正回路が必要で、工業用とするにも多くの問題が
あった。さらに、検出器の感度を上げると外来ノイズの
影響を受けやすく、道路の埋設物や住宅のコンクリート
の中にある鉄筋などを検出する場合、地中線や屋内配線
などの電線から漏えいする商用周波数またはこの高調波
による磁界や電界も同時に受信して誤動作する欠点があ
ったり、コイルを動かした場合、地磁気を感じて誤動作
する場合もあった。
Further, in the conventional method, the output basically changes due to the change of the constant of the detection coil and the like, so that when the sensitivity is forcibly increased, zero adjustment is always required or a special temperature correction circuit is required. However, there were many problems even for industrial use. Furthermore, increasing the sensitivity of the detector makes it more susceptible to external noise, and when detecting reinforcing bars in road buried objects or concrete in houses, commercial frequencies leaking from electric wires such as underground wires and indoor wiring. In addition, there is a defect that a magnetic field or an electric field due to this harmonic is also received at the same time to cause a malfunction, or when the coil is moved, the magnetic field may be felt to cause a malfunction.

【0006】[0006]

【発明が解決しようとする課題】このように、従来の検
知方法は励磁コイルや検出コイルの定数の変動によるゼ
ロ点ドリフトが、検出感度を上げる場合の大きなな障害
になっていた。さらに、電力ケーブルなどの交流電流に
よる磁界の影響を受けたり、検出コイルを動かすと地磁
気の影響を受けて誤動作する欠点もあり、この問題を解
決することが高感度で誤動作しにくい金属探知機を得る
ための課題であった。
As described above, in the conventional detection method, the zero point drift due to the fluctuation of the constants of the exciting coil and the detecting coil has been a major obstacle in increasing the detection sensitivity. In addition, there is a drawback that it will be affected by the magnetic field due to alternating current such as power cables, and if it moves the detection coil, it will malfunction due to the influence of the earth's magnetism. Solving this problem is a sensitive metal detector with high sensitivity. It was a challenge to obtain.

【0007】これらの欠点を解決するために、励磁コイ
ルで探知導体に誘導電流を流し、励磁コイルの時定数と
探知導体の時定数の違いを利用して、探知導体から返送
される信号だけを選択的に検出し、原理的に励磁コイル
や検出コイルの定数変化がドリフトに影響しない方式を
すでに本出願人は提案している。しかし、この方法によ
る検出信号の大きさは、導体の材質が等しいときでも探
知導体の大きさと距離の二つのパラメータで変化し、距
離と大きさを独立して求めることは不可能であった。
In order to solve these drawbacks, an exciting coil is used to apply an induced current to the detection conductor, and by utilizing the difference between the time constant of the excitation coil and the time constant of the detection conductor, only the signal returned from the detection conductor is detected. The present applicant has already proposed a method of selectively detecting, and in principle, a constant change of the exciting coil or the detecting coil does not affect the drift. However, the magnitude of the detection signal by this method changes with two parameters of the size and distance of the detecting conductor even when the materials of the conductors are the same, and it is impossible to independently obtain the distance and the magnitude.

【0008】本発明は探知導体までの距離を測定し、そ
の距離と探知導体からの返送信号強度の関係から探知導
体のサイズまで推定しようとするものである。さらに、
探知機の出力を導体の有無だけでなく、距離を出力する
方法によってゼロ調整を不要にし、さらに検出希望範囲
以外から返送される信号を抑制して導体が複数あった場
合の測定誤差も低減しようとするものである。
The present invention is intended to measure the distance to the detection conductor and to estimate the size of the detection conductor from the relationship between the distance and the intensity of the signal returned from the detection conductor. further,
Not only does the detector output the presence / absence of a conductor, but also the method of outputting the distance eliminates the need for zero adjustment, and suppresses signals returned from areas other than the desired detection range to reduce measurement errors when there are multiple conductors. It is what

【0009】[0009]

【問題を解決するための手段】このような問題を解決す
るために、主の励磁コイルの外にサイズや位置の異なる
補助コイルを用意し、この補助コイルの磁界との相互作
用によって特定の距離にある探知導体に加わる磁界をキ
ヤンセルする条件か、両者のコイルによる磁界が等しく
なる条件を求め、この条件から探知導体の距離を知ろう
とするものである。このキャンセルする条件はフイード
バックによって行うと検出器のゼロ点のずれる問題も解
決し、外部の同相雑音も抑制でき、多くの問題が同時に
解決する。しかも、同一の原理により不要な範囲からの
返送信号をキャンセルすることも可能となる。
[Means for Solving the Problem] In order to solve such a problem, an auxiliary coil having a different size or position is provided outside the main exciting coil, and a specific distance is obtained by the interaction with the magnetic field of the auxiliary coil. The condition for canceling the magnetic field applied to the detecting conductor in (1) or the condition for equalizing the magnetic fields by both coils is obtained, and the distance of the detecting conductor is known from this condition. If this canceling condition is performed by feedback, the problem of the zero point shift of the detector can be solved, external common-mode noise can be suppressed, and many problems can be solved at the same time. Moreover, it is possible to cancel the return signal from an unnecessary range by the same principle.

【0010】[0010]

【作用】励磁コイルに励磁電流を流してパルス磁界を発
生させると、この磁界の中にある探知導体にも誘導によ
って電流が流れる。励磁コイルに電流が流れている期間
は探知導体にも励磁コイルに流れた電流にほぼ比例した
誘導電流と呼ばれる電流が流れる。励磁コイルに流れて
いる電流を急速に遮断すると、探知導体に流れていた電
流は探知導体に流れた電流ループの等価インダクタンス
をLe、等価抵抗をReとするとTe=Le/Reとな
る時定数Teで減衰する。
When the exciting current is passed through the exciting coil to generate the pulse magnetic field, the current also flows through the detecting conductor in the magnetic field by induction. During a period in which a current flows in the exciting coil, a current called an induced current that is substantially proportional to the current flowing in the exciting coil also flows in the detection conductor. When the current flowing in the exciting coil is rapidly cut off, the current flowing in the detecting conductor becomes Te = Le / Re, where the equivalent inductance of the current loop flowing in the detecting conductor is Le and the equivalent resistance is Re. Decays at.

【0011】したがって、励磁コイルの電流遮断時間を
Teに比べて充分に短い時間で遮断し、励磁コイルに残
留していたエネルギーが充分に減衰してから検出コイル
で受信すると探知導体に流れている電流によって発生し
た磁界だけを選択的に検出して探知導体の存在を検出す
ることが可能となる。
Therefore, when the current cutoff time of the exciting coil is cut off in a time sufficiently shorter than that of Te, and the energy remaining in the exciting coil is sufficiently attenuated and then received by the detecting coil, it flows into the detecting conductor. It becomes possible to selectively detect only the magnetic field generated by the current to detect the presence of the detecting conductor.

【0012】したがって、励磁中と励磁コイルにエネル
ギーが残留している期間は受信機の動作をスイッチ回路
で遮断するマスク回路によって信号を受けないようにす
ると、受信機に入る信号は探知導体からの弱い信号だけ
になり、高感度の受信機でも飽和することなく受信でき
る。この方法によって励磁電流の増加と受信機の感度を
上げることにより、従来のバランスタイプと比較して大
幅に感度を上げることが可能となる。
Therefore, when the mask circuit that cuts off the operation of the receiver by the switch circuit is set so as not to receive the signal during the excitation and the period when the energy remains in the exciting coil, the signal entering the receiver is transmitted from the detection conductor. Only weak signals can be received without saturation even with a highly sensitive receiver. By this method, by increasing the exciting current and increasing the sensitivity of the receiver, it is possible to significantly increase the sensitivity as compared with the conventional balanced type.

【0013】ここで、励磁コイルAと異なる形状あるい
は別の位置にコイルBを設け、このコイルBに励磁コイ
ルAに同期して電流を流し、その方向と量を調整して目
標とする探知導体の位置の相互的な磁界をゼロにするこ
とが可能となる。この磁界をゼロにする条件は励磁コイ
ルAのアンペア・ターンと励磁コイルBのアンペア・タ
ーンと位置によって決定されるのでこの条件から探知導
体の位置を決定することができる。
Here, a coil B is provided in a shape different from that of the exciting coil A or at a different position, and a current is passed through the coil B in synchronism with the exciting coil A, and its direction and amount are adjusted to make a target detecting conductor. It is possible to make the mutual magnetic field at the position of zero. Since the condition for making this magnetic field zero is determined by the ampere-turn of the exciting coil A and the ampere-turn and the position of the exciting coil B, the position of the detection conductor can be determined from this condition.

【0014】最も単純な例として、図1に示すように半
径a1、巻数N1のコイル1に電流I1を流し、このコ
イルの中心軸を原点として距離dに、中心軸を等しくし
て半径a2、巻数N2のコイル2を置き、反対向きの電
流I2を流した場合、原点から距離xにおける中心軸上
の磁界Hは数1の(1)式となる。この式で右辺の1項
目はコイル1による磁界H1であり二項目はコイル2に
よる磁界H2である。それぞれの磁界を図示すると図1
となる。中心軸で磁界Hがゼロになる原点からの距離X
0はkの値を数1の(2)式とすると磁束がゼロとなる
X0の値は数1の(3)式で求められる。
As a simplest example, as shown in FIG. 1, a current I1 is passed through a coil 1 having a radius a1 and a number of turns N1, and the center axis of this coil is set as an origin to a distance d, and the center axis is made equal to a radius a2. When the coil 2 having the number of turns N2 is placed and the current I2 in the opposite direction is passed, the magnetic field H on the central axis at the distance x from the origin is given by the equation (1) of the equation 1. In this equation, the first item on the right side is the magnetic field H1 by the coil 1 and the second item is the magnetic field H2 by the coil 2. Figure 1 shows each magnetic field
Becomes Distance X from the origin where the magnetic field H becomes zero on the central axis
As for 0, the value of X0 at which the magnetic flux becomes zero is obtained by the equation (3) of the equation 1 when the value of k is the equation (2) of the equation 1.

【0015】[0015]

【数1】 [Equation 1]

【0016】したがって、それぞれのコイルに流れる励
磁電流を調整してkの値を任意に化させ、検出導体から
の返送磁界がゼロになる条件を求めればkの値を数1の
(3)式に代入して距離X0を求めることができ、この
条件でコイル半径a1、a2と巻線比を固定すればそれ
ぞれの巻線に流す電流比を求めることもできる。
Therefore, if the exciting current flowing through each coil is adjusted to arbitrarily set the value of k and the condition for the return magnetic field from the detection conductor to become zero is obtained, the value of k is expressed by the equation (3) of Equation 1. To obtain the distance X0, and by fixing the coil radii a1 and a2 and the winding ratio under this condition, the current ratios flowing in the respective windings can also be obtained.

【0017】図1は半径a1を5cmと半径a2を10
cmのコイルを中心軸を等しく同一面に配置した場合の
中心軸上の原点からの距離と磁界、それぞれの磁界の差
(絶対値)の関係を示したものである。半径a1のコイ
ルを100アンペア・ターン、半径a2のコイルを35
5.6アンぺア・ターンで励磁した場合のシミュレーシ
ョンの結果である。直径の大きなコイルは直径の少ない
コイルと比較して、距離に対する磁界の減衰が少ない特
性を持ち、この結果、両者の磁界が等しくなって磁界強
度値の交差するポイントが発生する。図1では原点から
30cmの点となっている。本発明はそれぞれの励磁コ
イルのアンペア・ターンを制御して、探知導体の磁界が
ゼロになるようにすると探知導体からの返送信号もゼロ
になることを利用して、この条件から探知導体までの距
離を求めようとするものである。
FIG. 1 shows a radius a1 of 5 cm and a radius a2 of 10.
It shows the relationship between the distance from the origin on the central axis, the magnetic field, and the difference (absolute value) between the respective magnetic fields when the central axes of cm are arranged on the same plane. A coil with radius a1 is 100 ampere turns and a coil with radius a2 is 35 amps.
It is the result of the simulation when excited by 5.6 ampere turns. A coil having a large diameter has a characteristic that the magnetic field is less attenuated with respect to the distance than a coil having a small diameter, and as a result, the two magnetic fields become equal and a point where the magnetic field strength values intersect is generated. In FIG. 1, the point is 30 cm from the origin. The present invention utilizes the fact that when the ampere-turn of each exciting coil is controlled so that the magnetic field of the detecting conductor becomes zero, the return signal from the detecting conductor also becomes zero. It tries to find the distance.

【0018】この操作は手動操作でも行えるが、検出し
た磁界強度の出力でkの値を自動的に変化させ、検出器
の入力が常にゼロになるようにすると、フイードバック
作用で自動的に探知導体の平均磁界がゼロとなる条件に
kの値が設定される。このときのkの値から探知導体ま
での距離を求めることができる。探知距離X0は数1の
(3)式から求めることもできるが実験値によってkと
探知距離X0の関係を求め、回帰によってkからX0を
求めたり、メモリーを利用したテーブルデータから求め
ることもできる。
This operation can be performed manually, but if the value of k is automatically changed by the output of the detected magnetic field strength so that the input of the detector is always zero, the feedback conductor automatically detects it. The value of k is set under the condition that the average magnetic field of is zero. The distance to the detection conductor can be obtained from the value of k at this time. The detection distance X0 can be obtained from the equation (3) of Equation 1, but it is also possible to obtain the relationship between k and the detection distance X0 by an experimental value and obtain X0 from k by regression, or from table data using memory. .

【0019】この方法では、主コイルAと補助コイルB
に互いに逆方向のアンペア・ターンとなるような電流を
流すので、図1に示す合成磁界のように探知導体に加わ
る磁界は探知する距離付近で非常に少なくなり、検出感
度が低下する欠点がある。この欠点を除く方法として、
励磁時間T1で主コイルAに励磁電流を流し、マスク期
間T2を取り、受信期間T3で主コイルAの励磁による
探知導体からの返送信号を受信する、次の励磁期間T4
では補助コイルBに対して受信信号の極性が逆極性にな
るように励磁をする、再びマスク期間T5を取りT6で
補助コイルBの励磁による探知導体からの信号を受信す
る。ここでT3の信号とT6の信号を差動増幅し、同期
増幅器で増幅した出力がゼロとなるようにkの値を変化
させるようにフイード・バックすると、自動的に数1の
(3)式の条件にkが設定される。
In this method, the main coil A and the auxiliary coil B are
Since electric currents that flow in opposite directions to each other are applied to the detection conductor, the magnetic field applied to the detection conductor, such as the combined magnetic field shown in FIG. 1, is extremely small in the vicinity of the detection distance, and the detection sensitivity is lowered. . As a method to eliminate this drawback,
An exciting current is passed through the main coil A at the excitation time T1, a mask period T2 is taken, and a return signal from the detection conductor due to the excitation of the main coil A is received during the reception period T3.
Then, the auxiliary coil B is excited so that the polarity of the received signal is opposite to that of the auxiliary coil B. The mask period T5 is taken again and the signal from the detection conductor due to the excitation of the auxiliary coil B is received at T6. Here, when the signal of T3 and the signal of T6 are differentially amplified and fed back so as to change the value of k so that the output amplified by the synchronous amplifier becomes zero, the equation (3) of Formula 1 is automatically obtained. K is set as the condition.

【0020】この条件では、探知導体付近で励磁コイル
Aによる磁界と励磁コイルBによる磁界強度の絶対値が
等しくなり、相互の極性は同期増幅器の特性によって異
なり、通常は逆極性となる。しかも、時間的なずれによ
ってそれぞれの磁界は互いに打ち消すことがないので、
前記した両者のコイルを同時に励磁する場合と比較して
感度を大幅に上げることが可能となるだけでなく、磁界
検出器で検出した商用周波数などの同相ノイズやランダ
ムなノイズが同期増幅器の特性によって大幅に抑制され
る。
Under this condition, the absolute value of the magnetic field produced by the exciting coil A and the absolute value of the magnetic field produced by the exciting coil B are equal in the vicinity of the detection conductor, and the mutual polarities differ depending on the characteristics of the synchronous amplifier, and usually have opposite polarities. Moreover, since the respective magnetic fields do not cancel each other due to the time lag,
Not only can the sensitivity be significantly increased compared to the case where both coils are excited at the same time as described above, but common-mode noise such as commercial frequency detected by the magnetic field detector and random noise are also affected by the characteristics of the synchronous amplifier. Significantly suppressed.

【0021】二つのコイルを同一平面内に配置した場
合、探知距離が大きくなると非常に小さなアンペア・タ
ーン比の変化でも探知距離が大きく変化する特性があ
り、精度が低下する問題点があるが、それぞれのコイル
を同一平面内に置かず、コイルを中心軸上でdだけ離し
て配置すると、アンペア・ターンの比に対する距離の変
化のリニアリテイを上げて、探知精度を上げることが可
能となる。
When the two coils are arranged in the same plane, the detection distance has a characteristic that the detection distance greatly changes even with a very small change of the ampere-turn ratio when the detection distance becomes large. If the coils are not placed in the same plane but are spaced apart from each other by d on the central axis, the linearity of the change of the distance with respect to the ratio of ampere turns can be increased and the detection accuracy can be increased.

【0022】しかし、互いのコイルの配置方法によっ
て、アンペア・ターン比と距離の特性が大きく変化する
ので最適な配置を取る必要がある。この場合図2、図
3、図4のようなコイルの配置でも本発明を実施できる
が、探知距離が狭かったり、アンペア・ターンの比(N
1I2/N2I2)の変化に対する探知距離の特性が複
雑で、1つのアンペア・ターン比に対して二種類の探知
距離を持つ場合もあり、自動制御をするには不都合な特
性となる。
However, the characteristics of the ampere-turn ratio and the distance largely change depending on the method of arranging the coils with each other, so that it is necessary to take an optimum arrangement. In this case, the present invention can be implemented with the coil arrangements shown in FIGS. 2, 3, and 4, but the detection distance is narrow and the ampere-turn ratio (N
1I2 / N2I2) has a complicated detection distance characteristic and sometimes has two types of detection distance for one ampere-turn ratio, which is an inconvenient characteristic for automatic control.

【0023】このような問題の起きないコイルの配置方
法は、図5で示すように、サイズの大きい側のコイルを
探知方向に対して反対側に配置すると互いのコイルの距
離を離すほどアンペア・ターン比と探知距離のリニアリ
テイが増加してくる。この場合の距離に対する相互のコ
イルによる合成磁界は図6に示すようになり、同一のア
ンペア・ターン比でもコイル間隔dによって探知距離を
自由に調整できることを示す。したがって、コイルに流
す電流を変化する代わりにコイル距離dを変化させて探
知導体までの距離を測定することも可能となり、互いの
コイル径が等しい場合でも比較的に良い結果が得られ
る。
As shown in FIG. 5, when a coil having a large size is arranged on the opposite side with respect to the detection direction, a coil arranging method which does not cause such a problem is such that the distance between the coils is increased so as to increase the distance between the coils. The linearity of turn ratio and detection distance increases. FIG. 6 shows the combined magnetic field due to the mutual coils with respect to the distance in this case, which shows that the detection distance can be freely adjusted by the coil interval d even with the same ampere-turn ratio. Therefore, it is possible to measure the distance to the detection conductor by changing the coil distance d instead of changing the current flowing through the coil, and relatively good results can be obtained even when the coil diameters are the same.

【0024】主コイルの中心軸から外れた位置にある探
知目標以外の妨害導体の影響を除く目的で、主コイルA
と中心軸を等しくする補助コイルBを置き、磁界の検出
器DT1をこの中心軸方向を最大感度となるように取り
付ける。さらに主コイルAと補助コイルBの中心軸に直
交するように打ち消しコイルCを設け、この打ち消しコ
イルCにこれらのコイルの励磁電流と同期を取って打ち
消し用電流を流し、このコイルCとこのコイルの中心軸
方向に最大感度を持つ磁界検出器DT2を置きこの信号
を同様なマスク期間を持つ増幅器で増幅する。主コイル
と補助コイルそれぞれのタイミングを等しくしてコイル
Cに励磁電流を流し、磁界検出器DT2によって受信し
た信号が最低となるような条件で流すと主コイルAの中
心軸以外の方向にある妨害探知導体から返送される信号
の影響を除去でき、探知導体の周辺にある妨害導体から
の返送信号を検出器DT1に届かないようにして測定誤
差を防ぐことができる。
The main coil A is used for the purpose of eliminating the influence of interfering conductors other than the detection target, which are located off the central axis of the main coil.
And an auxiliary coil B for making the central axes equal, and the magnetic field detector DT1 is attached so that the central axis direction has the maximum sensitivity. Further, a canceling coil C is provided so as to be orthogonal to the central axes of the main coil A and the auxiliary coil B, and a canceling current is passed through the canceling coil C in synchronism with the exciting currents of these coils. A magnetic field detector DT2 having the maximum sensitivity is placed in the direction of the central axis of the signal and this signal is amplified by an amplifier having a similar mask period. When the main coil and the auxiliary coil are made to have the same timing and an exciting current is passed through the coil C under the condition that the signal received by the magnetic field detector DT2 is minimized, interference occurs in directions other than the central axis of the main coil A. The influence of the signal returned from the detection conductor can be eliminated, and the measurement error can be prevented by preventing the returned signal from the disturbing conductor around the detection conductor from reaching the detector DT1.

【0025】この方法ではコイルの指向性によって打ち
消しコイルと同一面にある妨害導体の影響を打ち消すこ
とは不可能であるが、打ち消しコイルと磁界検出器DT
2を主コイルの軸を中心として回転させて最良の条件を
得るか、さらに中心を等しくして打ち消しコイルCの面
と直交する面に打ち消しコイルDと磁界検出器DT3を
付加し、同一原理で全方位に対しても打ち消し効果を得
ることもできる。それぞれの打ち消しコイルから発生す
る磁界は主コイルAの中心軸上では常にゼロであり距離
測定の誤差に影響しない。この2個の打ち消しコイルは
方向によって切り替えるかそれぞれのコイルに流れる電
流の割合を変えて合成した磁界で打ち消し効果を得るこ
とができ、打ち消しコイルと磁界検出器の数を増やすと
複数の妨害導電体の影響も取り除くことができる。
In this method, it is impossible to cancel the influence of the interfering conductor on the same plane as the canceling coil due to the directivity of the coil, but the canceling coil and the magnetic field detector DT.
2 is rotated about the axis of the main coil to obtain the best condition, or the centers are made equal to each other, and the canceling coil D and the magnetic field detector DT3 are added to the surface orthogonal to the surface of the canceling coil C. It is also possible to obtain a cancellation effect in all directions. The magnetic field generated from each cancellation coil is always zero on the central axis of the main coil A and does not affect the error in distance measurement. These two canceling coils can be switched depending on the direction, or the ratio of the currents flowing through the respective coils can be changed to obtain a canceling effect with the combined magnetic field. If the number of canceling coils and magnetic field detectors is increased, a plurality of disturbing conductors can be obtained. The effect of can be removed.

【0026】さらに、主コイルの中心軸上でこのコイル
の背面にある妨害導体の影響を取り除くには、主コイル
の面と平行で探知導体に近い位置に打ち消しコイルとを
設け、このコイルの電流を調整する方法によって主コイ
ル後方の妨害導体の影響を取り除くことも可能である
が、この面の打ち消しコイルで発生する磁界は主コイル
と中心軸を等しくする成分を含み、探知距離に影響を与
え、この補正が必要となり、固定した位置にある妨害導
体の影響を取り除く場合に有効となる。
Further, in order to remove the influence of the disturbing conductor on the back surface of the main coil on the central axis of the main coil, a canceling coil is provided in a position parallel to the surface of the main coil and close to the detecting conductor, and the current of this coil is increased. It is possible to remove the influence of the disturbing conductor behind the main coil by adjusting the, but the magnetic field generated by the canceling coil on this surface contains a component that makes the center axis equal to the main coil and affects the detection distance. , This correction is necessary, and it is effective when removing the influence of the disturbing conductor in a fixed position.

【0027】[0027]

【実施例】実施例について図面を参照して説明すると、
図7において、1の励磁コイルAと2の励磁コイルBを
中心軸を等しくして距離dの距離に置き、7の駆動電流
制御回路によって電流値を制御される5の駆動回路A、
6の駆動回路Bによってそれぞれの励磁コイルを駆動す
る。この駆動電流はパルス状波形で駆動し、請求項1を
実施する場合は互いに極性の異なる磁界を発生する電流
で同時に駆動し、請求項2による場合は増幅器の出力が
それぞれ逆極性になるような磁界を発生する極性で励磁
コイルを交互に駆動する。
EXAMPLES Examples will be described with reference to the drawings.
In FIG. 7, one excitation coil A and two excitation coils B are placed at a distance d with their central axes equal, and a drive current control circuit 7 controls the current value of the drive circuit A 5.
Driving circuit B 6 drives each exciting coil. The drive current is driven in a pulsed waveform, and when the invention is carried out, the currents which generate magnetic fields having mutually different polarities are simultaneously driven, and when the invention is carried out, the outputs of the amplifiers have opposite polarities. The exciting coils are alternately driven with a polarity that generates a magnetic field.

【0028】増幅器4は励磁コイルの励磁中と励磁コイ
ルに電流が残留している場合にマスク回路によって信号
を通さない機能の付いた増幅器であり、磁界検出器3の
出力を増幅し、励磁コイルとの結合によって探知導体に
流れた誘導電流による磁界を検出する。この増幅器は請
求項1の場合は入力信号をマスクされていない期間だけ
増幅し、請求項2の場合は励磁コイルAの誘導による信
号を正とすると、励磁コイルBの誘導による信号を負と
して差動増幅する。このとき、差動増幅する前にハイパ
スフイルタを入れ、繰り返し周波数以下の成分を取り除
き低域の雑音を防ぐこともできる。もちろん、これらの
機能は磁界検出器の出力をA−D変換器によってデジタ
ルデータに変換し、これをデジタル処理でそれぞれの信
号の差を取っても良い。
The amplifier 4 is an amplifier having a function of blocking a signal by a mask circuit during the excitation of the exciting coil and when a current remains in the exciting coil. The amplifier 4 amplifies the output of the magnetic field detector 3 and The magnetic field due to the induced current flowing in the detection conductor due to the coupling with is detected. This amplifier amplifies the input signal only in the unmasked period in the case of claim 1, and in the case of claim 2, assuming that the signal induced by the exciting coil A is positive, the signal induced by the exciting coil B is negative and the difference is obtained. Dynamic amplification. At this time, a high-pass filter may be inserted before differential amplification to remove components below the repetition frequency and prevent low-frequency noise. Of course, for these functions, the output of the magnetic field detector may be converted into digital data by the AD converter, and the difference between the respective signals may be obtained by digital processing.

【0029】磁界検出器3はコイルによる検出器が簡単
であり励磁コイルの一方と共用することもできるが、ホ
ール素子や磁気抵抗素子、直交フラックスゲートセン
サ、SQUIDなどの磁気検出素子を利用しても同様な
成果を得ることができる。この検出素子の感度は励磁コ
イルの中心軸方向の磁界に対して最大の感度を持つよう
に配置する。磁界検出器3が磁界の極性に対して絶対値
を出力し、その方向を検出できない場合は検出素子に直
流または交流の磁気的なバイアスをかけるなどの方法
で、その極性も検出することが必要である。
The magnetic field detector 3 has a simple coil detector and can be shared with one of the exciting coils. However, a magnetic detecting element such as a Hall element, a magnetoresistive element, a quadrature fluxgate sensor or an SQUID is used. Can achieve similar results. The sensitivity of this detecting element is arranged so as to have the maximum sensitivity to the magnetic field in the central axis direction of the exciting coil. The magnetic field detector 3 outputs an absolute value with respect to the polarity of the magnetic field, and when the direction cannot be detected, it is necessary to detect the polarity by applying a DC or AC magnetic bias to the detection element. Is.

【0030】駆動電流制御回路4と駆動電流制御回路5
は増幅器4の出力がゼロになるように手動あるいは自動
的に制御する。自動制御の場合はこの動作がフイード・
バック動作となるように制御すると、安定で取り扱いの
容易な金属探知機を実現することが可能となる。この場
合、どちらか一方の駆動電流値は固定として、他方の励
磁電流を可変とすることもでき、それぞれのコイルのア
ンペア・ターンの比率を制御し、探知導体の平均磁界が
ゼロまたは同一になるようにそれぞれのコイルのアンペ
ア・ターンを制御する。励磁コイルの駆動電流値は、遮
断する直前の電流が制御できれば良く、励磁コイルに加
える電圧やパルス幅を制御しても同一の目的を達成でき
る。このとき、励磁コイルから探知導体までの距離は数
1の(3)式または、実験値によって求められる。
Drive current control circuit 4 and drive current control circuit 5
Controls manually or automatically so that the output of the amplifier 4 becomes zero. In the case of automatic control, this operation is
Controlling to perform the back operation makes it possible to realize a stable and easy-to-handle metal detector. In this case, one of the driving current values can be fixed and the other exciting current can be made variable, and the ratio of the ampere-turn of each coil is controlled so that the average magnetic field of the detection conductor becomes zero or the same. To control the ampere turn of each coil. The drive current value of the exciting coil only needs to be able to control the current immediately before it is cut off, and the same purpose can be achieved by controlling the voltage applied to the exciting coil and the pulse width. At this time, the distance from the exciting coil to the detecting conductor can be obtained by the equation (3) of Equation 1 or an experimental value.

【0031】数1の(2)式に示すkの値は、コイルの
直径と巻回数を固定すると、それぞれのコイルに流れる
電流比I1/I2で決定される。電流比検出器7はそれ
ぞれの駆動コイルに流れた電流値の比I1/I2を検出
する回路である。具体的な例として、それぞれの駆動コ
イルに流れる電流を抵抗などの電流検出器で検出して電
圧に変換し、このピーク値をサンプル・ホールドして、
乗割算器に加え、それそれの比の出力を得る。乗割算器
は、演算増幅器の出力から入力に掛け算器でフイードバ
ックするとともに掛け算器の他方の入力に信号を加え、
さらに他方の入力信号は直列抵抗を通じて演算増幅器に
加える方法などがある。もちろん、それぞれの電流を検
出した値をA−Dコンバータに加えてデジタル値に変換
し、マイクロ・プロセッサーによって演算しても良い。
また、駆動コイルの電流をコイルに加える電圧によって
制御する場合は、電流値を検出する代わりに、この電圧
比によって距離を求めることも可能であるし、数1
(2)式の分母を固定すれば単純な増幅器で置き換える
ことができ、電流比検出器を簡略化できる。図5に示す
コイルの配置は、外側の直径の大きなコイルの電流値を
固定し、分子に相当する内側コイルの励磁電流を変化さ
せるだけで広い幅の距離の探知が可能となる。
The value of k shown in the equation (2) of the equation 1 is determined by the current ratio I1 / I2 flowing in each coil when the diameter of the coil and the number of turns are fixed. The current ratio detector 7 is a circuit that detects the ratio I1 / I2 of the current values flowing in the respective drive coils. As a specific example, the current flowing in each drive coil is detected by a current detector such as a resistor and converted into a voltage, and this peak value is sampled and held,
In addition to the multiplier / divider, the output of each ratio is obtained. The multiplier / divider feeds back from the output of the operational amplifier to the input by the multiplier and adds a signal to the other input of the multiplier,
Further, there is a method of adding the other input signal to the operational amplifier through a series resistor. Of course, the values obtained by detecting the respective currents may be added to the AD converter, converted into digital values, and calculated by the microprocessor.
Further, when controlling the current of the drive coil by the voltage applied to the coil, it is possible to obtain the distance by this voltage ratio instead of detecting the current value.
If the denominator of equation (2) is fixed, it can be replaced with a simple amplifier, and the current ratio detector can be simplified. The arrangement of the coils shown in FIG. 5 makes it possible to detect a wide distance by merely fixing the current value of the coil having a large outer diameter and changing the exciting current of the inner coil corresponding to the numerator.

【0032】リニアライザ9は数1の(3)式または、
実験値から互いの駆動コイルの電流比を距離に換算する
回路である。信号の処理にマイクロ・プロセッサを使用
した場合はマイクロプロセッサによって数1の(3)式
を演算してこの結果を表示器9によって表示するか、電
流比と探知距離の関係をテーブルデータとして参照し、
この結果から距離を表示しても良い。また、指針による
メーターを表示装置として使用する場合、メータの目盛
りを非直線特性にしてリニアライザを省略することもで
きる。
The linearizer 9 uses the equation (3) of the equation 1 or
It is a circuit that converts the current ratio of each drive coil into a distance from the experimental value. When a microprocessor is used for signal processing, the microprocessor calculates the equation (3) and displays the result on the display 9, or refers to the relation between the current ratio and the detection distance as table data. ,
The distance may be displayed from this result. Further, when the meter using the pointer is used as the display device, the linearizer can be omitted by making the scale of the meter a non-linear characteristic.

【0033】水晶発振器11、分周器12、タイミング
発生器13は正確なクロック信号を分周し、励磁信号や
増幅器のマスク信号の正確なタイミングを決定したり、
同期増幅器ではこの同期信号も同時に得る。
The crystal oscillator 11, the frequency divider 12, and the timing generator 13 frequency-divide the accurate clock signal to determine the accurate timing of the excitation signal and the mask signal of the amplifier.
This synchronous signal is also obtained at the synchronous amplifier.

【0034】金属探知機としての利用ではなく、金属な
ど導体の位置検出器として利用する場合、相互の励磁コ
イルの磁界によって受信機の出力がゼロとなる位置に目
標物体を置き、受信機の出力電圧とその極性から目標物
体の位置のずれと方向を出力することができる。この場
合、励磁コイルと磁界検出器の組み合わせを互いに直交
して配置し、互いの出力を合成して目標物体の3次元の
位置のずれと方向を出力でき、非接触の3次元位置検出
器として利用することが可能となる。
When used not as a metal detector but as a position detector for conductors such as metals, the target object is placed at a position where the output of the receiver becomes zero due to the mutual magnetic fields of the exciting coils, and the output of the receiver is set. The position deviation and direction of the target object can be output from the voltage and its polarity. In this case, the combination of the exciting coil and the magnetic field detector is arranged orthogonally to each other, and the outputs of them can be combined to output the displacement and the direction of the three-dimensional position of the target object, thus providing a non-contact three-dimensional position detector. It becomes possible to use.

【0035】さらに探知器の周辺にある妨害導体の影響
を除く場合は、励磁コイル1の中心軸に直交するように
打ち消しコイルCを設け、この打ち消しコイルCにこれ
らのコイルの励磁電流と同期を取って打ち消し用電流を
流し、このコイルCと中心軸方向に最大感度を持つ磁界
検出器DT2を置く。主コイルと補助コイルそれぞれの
タイミングを等しくしてコイルCに励磁電流を流し、磁
界検出器DT2によって受信した信号が最低となるよう
な条件で打ち消しコイルに電流を流すと主コイルAの中
心軸以外の方向にある妨害探知導体からの返送信号の影
響を除去でき、探知導体の周辺にある妨害導体による測
定誤差を防ぐことができる。
Further, in order to remove the influence of the disturbing conductors around the detector, a canceling coil C is provided so as to be orthogonal to the central axis of the exciting coil 1, and the canceling coil C is synchronized with the exciting currents of these coils. Then, a current for canceling is passed, and the coil C and the magnetic field detector DT2 having the maximum sensitivity are placed in the central axis direction. When the excitation current is passed through the coil C with the timings of the main coil and the auxiliary coil being equalized, and the current is passed through the canceling coil under the condition that the signal received by the magnetic field detector DT2 becomes the minimum, the other than the central axis of the main coil A It is possible to eliminate the influence of the return signal from the interference detection conductor in the direction of, and to prevent the measurement error due to the interference conductor around the detection conductor.

【0036】この方法ではコイルの指向性によって打ち
消しコイルと同一面にある妨害導体の影響を打ち消すこ
とは不可能であるが、打ち消しコイルと磁界検出器DT
2を主コイルの軸を中心として回転させて最良の条件を
得るか、さらに中心を等しくして打ち消しコイルCの面
と直交する面に打ち消しコイルDと磁界検出器DT3を
付加し、同一原理で全方位に対しても打ち消し効果を得
ることもでき、この打ち消しコイルから発生する磁界は
主コイルAの中心軸上では常にゼロであり距離測定の誤
差に影響しない。この2個の打ち消しコイルは方向によ
って切り替えるかそれぞれのコイルに流れる電流の割合
を変えて合成した磁界で打ち消し効果を得ることがで
き、打ち消しコイルと磁界検出器の数を増やすと複数の
妨害導電体の影響も取り除くことができる。
In this method, it is impossible to cancel the influence of the disturbing conductor on the same plane as the canceling coil due to the directivity of the coil, but the canceling coil and the magnetic field detector DT.
2 is rotated about the axis of the main coil to obtain the best condition, or the centers are made equal to each other, and the canceling coil D and the magnetic field detector DT3 are added to the surface orthogonal to the surface of the canceling coil C. It is also possible to obtain a canceling effect in all directions, and the magnetic field generated from this canceling coil is always zero on the central axis of the main coil A and does not affect the error in distance measurement. These two canceling coils can be switched depending on the direction, or the ratio of the currents flowing through the respective coils can be changed to obtain a canceling effect with the combined magnetic field. If the number of canceling coils and magnetic field detectors is increased, a plurality of disturbing conductors can be obtained. The effect of can be removed.

【0037】さらに、主コイルの中心軸上でこのコイル
の背面にある妨害導体の影響を取り除くには、主コイル
の面と平行で探知導体に近い位置に打ち消しコイルを設
け、このコイルの電流を調整する方法によって主コイル
後方の妨害導体の影響を取り除くことも可能であるが、
この面の打ち消しコイルで発生する磁界は主コイルと中
心軸を等しくする成分を含み、探知距離に影響を与えて
この補正が必要となり、固定した位置にある妨害導体の
影響を取り除く場合に有効となる。
Further, in order to remove the influence of the disturbing conductor on the back surface of the main coil on the central axis of the main coil, a canceling coil is provided at a position parallel to the surface of the main coil and close to the detecting conductor, and the current of this coil is changed. Although it is possible to remove the influence of the disturbing conductor behind the main coil by the adjustment method,
The magnetic field generated by the canceling coil on this surface contains a component that makes the center axis equal to that of the main coil, and this correction is necessary because it affects the detection distance.This is effective when removing the effect of the disturbing conductor at a fixed position. Become.

【0038】打ち消しコイルによって、コイルを通る磁
束をゼロにしてその近傍にある妨害導体の影響をなくす
最も簡単な方法は、打ち消しコイルを磁界検出器と共用
して回路を簡単にする方法がある。励磁パルスに充分に
応答する周波数特性を持つ演算増幅器を用意し、この入
力と出力間に、打ち消しコイルを入れ、入力と共通端子
間にコイル電流を検出する直列抵抗を挿入する。この方
法では、コイルを流れる電流を常にゼロにするように演
算増幅器が動作するのでコイルを通る磁束も常にゼロと
なる。演算増幅器の応答が悪い場合は励磁パルスと同期
を取り、スイッチで打ち消しコイルを解放または短絡を
するとさらに確実な効果が得られる。
The simplest way to eliminate the influence of disturbing conductors in the vicinity of the magnetic flux passing through the coil by the canceling coil is to simplify the circuit by sharing the canceling coil with the magnetic field detector. Prepare an operational amplifier with a frequency characteristic that responds sufficiently to the excitation pulse, insert a cancellation coil between this input and output, and insert a series resistor that detects the coil current between the input and the common terminal. In this method, the operational amplifier operates so that the current flowing through the coil is always zero, so that the magnetic flux passing through the coil is always zero. If the response of the operational amplifier is poor, it can be synchronized with the excitation pulse, and a more reliable effect can be obtained by canceling with a switch and releasing or short-circuiting the coil.

【0039】図1の実施例は増幅器4としてアナログ増
幅器を利用した例であるが、この部分をデジタル処理す
る目的で、受信信号をA−D変換器によってデジタルデ
ータに変換し、T3の受信信号とT6の受信信号をデジ
タル的に減算してこの結果を平均化して出力としても同
一目的を達成できる。この場合のフィードバックもデジ
タル処理が可能であり、DSPを利用したりマイクロプ
ロセッサを利用してデジタル処理をしても基本的な原理
は共通で、本発明の権利の及ぶところである。
The embodiment of FIG. 1 is an example in which an analog amplifier is used as the amplifier 4, but for the purpose of digitally processing this portion, the received signal is converted into digital data by an AD converter, and the received signal of T3 is received. The same purpose can be achieved by digitally subtracting the received signals at T6 and T6 and averaging the results, and outputting the results. The feedback in this case can also be digitally processed, and the basic principle is common even if the DSP or the microprocessor is used to perform the digital processing, and the rights of the present invention are covered.

【0040】実施例では、励磁コイルを円形のコイルと
して互いに中心線を等しく配置したが、矩形や多角形、
鞍形コイルなどの円形以外の形状の励磁コイルを使用し
て、コイルの配置を別にしたり、励磁コイルの数を増や
して希望の磁束分布を得ることも可能である。この場合
の距離に対する磁界は数1の(1)式が適用できなくな
るが実験値や、有限要素法、またはルジェンドル関数の
利用でそれぞれの磁界分布を得ることができ、同様の目
的を得ることができる、これらの方法で得られる磁界分
布はコイルの中心軸だけでなく、すべての点の磁界分布
を求めることが可能であり、異なる配置と角度の多数の
励磁コイルを組み合わせ、これに相当する磁気検出器を
複数個設け、それぞれに同様な受信機を接続して受信レ
ベルと位相を検出して、この条件から探知導体の3次元
的な位置を計算することも可能となる。
In the embodiment, the exciting coils are circular coils and the center lines thereof are arranged at the same position, but rectangular or polygonal,
It is also possible to use an exciting coil having a shape other than a circular shape, such as a saddle-shaped coil, to arrange the coils differently or to increase the number of exciting coils to obtain a desired magnetic flux distribution. In this case, for the magnetic field with respect to the distance, the formula (1) of Formula 1 cannot be applied, but each magnetic field distribution can be obtained by using the experimental value, the finite element method, or the Legendre function, and the same purpose can be obtained. It is possible to obtain the magnetic field distribution obtained by these methods, not only the central axis of the coil, but also the magnetic field distribution at all points. It is also possible to provide a plurality of detectors, connect similar receivers to each, detect the reception level and phase, and calculate the three-dimensional position of the detection conductor from this condition.

【0041】また、磁気検出器としてコイルを用いる場
合は、励磁コイルを受信コイルとして共用することも可
能である。受信コイルを別に設ける場合は損失の少ない
鉄芯やフェライトコアを使用すると指向性が鋭く、感度
の高い検出器を得ることができる。この場合はコアによ
る磁束分布の乱れを考慮する必要がある。
When a coil is used as the magnetic detector, the exciting coil can also be used as the receiving coil. When a receiving coil is separately provided, an iron core or a ferrite core with less loss can be used to obtain a detector with sharp directivity and high sensitivity. In this case, it is necessary to consider the disturbance of the magnetic flux distribution due to the core.

【0042】コイル配置の特殊な例では、磁気検出器を
中心として形状の等しい二つの励磁コイルをそれぞれの
コイルを結ぶ線と直交またはこの直交線に向かって対称
に傾けた方向に磁界を発生するように配置し、それぞれ
の励磁コイルに受信機の出力が互いに逆極性になる極性
で同時または交互に励磁コイルにパルス電流を流すと、
受信機の出力が最低になったとき、それぞれのコイルか
ら等距離の点に探知導体があることを示す。この場合、
距離は特定できないが、埋蔵物の探査では磁気検出器の
直下に探知導体がそれぞれのコイルに対して対称に配置
されていることを示し、水道管のような細長いパイプの
平面位置と布設方向を正確に知る場合に便利である。
In a special example of the coil arrangement, a magnetic field is generated in a direction orthogonal to a line connecting the two exciting coils having the same shape with the magnetic detector as the center, or a direction symmetrical to the line connecting the two exciting coils. When the pulse currents are applied to the exciting coils simultaneously or alternately with polarities in which the receiver outputs have opposite polarities to each other,
When the output of the receiver is at its lowest, it indicates that there is a sensing conductor at a point equidistant from each coil. in this case,
Although the distance cannot be specified, in the exploration of the buried objects, it is shown that the detecting conductors are arranged symmetrically with respect to each coil immediately below the magnetic detector, and the plane position and the laying direction of an elongated pipe such as a water pipe are shown. This is useful when you want to know exactly.

【0043】さらに、コイルを取り付ける平面位置を地
面に対して傾けて配置し、異なる複数の点で受信機出力
の最低になる角度と位置を探索し、それぞれのコイルを
結んだ線の中心点から直交する線の交点から探知導体の
位置も知ることができる。この場合も他の場合と同様に
して、磁気検出器を省略し、それぞれの励磁コイルを受
信コイルとして共用しても同じ効果が得られる。
Further, the plane position where the coils are attached is inclined with respect to the ground, and the angle and position where the receiver output becomes the minimum are searched for at a plurality of different points, and from the center point of the line connecting the respective coils. The position of the detection conductor can also be known from the intersection of the orthogonal lines. In this case as well, similar to the other cases, the same effect can be obtained by omitting the magnetic detector and sharing each exciting coil as a receiving coil.

【0044】互いに同期を取った励磁信号を加える複数
の励磁コイルやアレイ状に並べた多数の受信コイルによ
って二次元的に検出し、この出力をそのまま、または隣
接する探知機出力の差分を表示し、探知導体のイメージ
をよりリアルに表示することも可能となる。コイルを切
り替える代わりに微小な検出コイルを利用し、このコイ
ルを物理的に走査して、探知導体の二次元的または三次
元で探知導体の分布を表示することも可能となり、非破
壊の検査装置としての利用も可能である。
Two-dimensional detection is performed by a plurality of exciting coils that apply exciting signals synchronized with each other and a large number of receiving coils arranged in an array, and this output is displayed as it is or the difference between the outputs of adjacent detectors is displayed. It is also possible to display the image of the detection conductor more realistically. It is also possible to use a minute detection coil instead of switching the coil, and physically scan this coil to display the distribution of the detection conductors in two-dimensional or three-dimensional manner, which is a non-destructive inspection device. Can also be used as.

【0045】エッチング処理などで微小な渦巻状の励磁
コイルを作り、さらにそれを取り巻く補助コイルによっ
て励磁し、どちらか一方のコイルを磁界検出用コイルと
共用する方法で微小な距離にある金属を検出でき、塗料
などのマイクロメータ単位の膜厚を測定することも可能
となる。この場合、膜の下地金属が磁性体、非磁性体を
問わず導体であれば同一条件で測定できる大きな特徴が
得られる。これは従来の磁性体と非磁性体を区別して測
定していた膜厚計の欠点を除くものである。
A minute spiral excitation coil is formed by etching or the like, and is excited by an auxiliary coil surrounding it, and one of the coils is also used as a magnetic field detection coil to detect metal at a minute distance. It is also possible to measure the film thickness of the paint or the like in micrometer units. In this case, if the base metal of the film is a conductor regardless of whether it is a magnetic substance or a non-magnetic substance, a great feature that the measurement can be performed under the same conditions is obtained. This eliminates the drawback of the conventional film thickness meter, which measures the magnetic substance and the non-magnetic substance separately.

【0046】この探知装置を一部変更し、補助コイルの
励磁を停止し、このコイルを安定化のための負帰還用コ
イルにすると、すでに出願済みの安定な金属探知機に変
更できる。この場合は、同一距離であれば探知導体の大
きさによって返送磁界の強度が異なる。したがって、こ
のような方法で得た返送磁界の強度と探知距離の関係か
ら実験的に探知導体の大きさも推定可能である。
By partially changing this detecting device, stopping the excitation of the auxiliary coil, and using this coil as a negative feedback coil for stabilization, it is possible to change to the stable metal detector already applied for. In this case, the strength of the return magnetic field differs depending on the size of the detection conductor if the distance is the same. Therefore, the size of the detection conductor can be experimentally estimated from the relationship between the intensity of the return magnetic field and the detection distance obtained by such a method.

【0047】[0047]

【発明の効果】この発明の効果で最大の特徴は、探知導
体の有無だけでなく探知導体までの距離を測定できるこ
とにある。しかも、従来の探知機ではゼロドリフトがあ
って、この調整のやり方で感度が異なり、検出に個人差
が出るなどの欠点があったり、ゼロドリフトを補正する
ためにフイードバックを多くすると感度が低下するなど
の問題もあった。本発明では、複数のコイルによる磁界
の相殺点または同一点になるようにそれぞれのコイルに
流れる電流を自動調整するようにフイードバックすると
原理的にこのフイードバックによって感度が低下せずに
ドリフトやノイズも低減できる。
The greatest feature of the effect of the present invention is that not only the presence or absence of the detection conductor but also the distance to the detection conductor can be measured. Moreover, the conventional detector has zero drift, and the sensitivity varies depending on this adjustment method, and there are drawbacks such as individual differences in detection, and the sensitivity decreases if feedback is increased to correct zero drift. There was also a problem such as. In the present invention, if feedback is performed so that the currents flowing through the coils are automatically adjusted so that the magnetic fields of the plurality of coils may be offset or at the same point, in principle, the feedback does not lower the sensitivity and also reduces drift and noise. it can.

【0048】この探知機を利用する場合、探知導体まで
の距離を出力できるので、従来の探知機に必要であった
ゼロ点のずれの調整は不要となり、取り扱いが便利であ
る。したがって、従来得られなかった極めて高感度で外
部雑音の影響を受けない、取り扱いが容易で距離測定の
可能な金属探知機が実現可能である。
When this detector is used, the distance to the detection conductor can be output, so that the adjustment of the zero point shift, which is required in the conventional detector, is not necessary and the handling is convenient. Therefore, it is possible to realize a metal detector which is extremely high in sensitivity, is not affected by external noise, is easy to handle, and is capable of measuring distance, which has never been obtained.

【0049】地下の埋設物の探知では、通電中の電力ケ
ーブルを保護する鉄管を、直径数センチの小型励磁コイ
ルによって30cm離れた距離で正確に探知できる。こ
の探知機の感度は励磁コイル直径の自乗と励磁電流に比
例するので、大型の励磁コイルを利用すると、3m以上
の探知と距離の測定も可能となる。さらに探知距離の増
加によって問題となる妨害導体の影響を低減し、励磁コ
イルの中心軸上にある探知導体を選択的に検出可能とな
り、多くの応用が可能となる。
In the detection of an underground buried object, an iron pipe for protecting a power cable being energized can be accurately detected at a distance of 30 cm by a small exciting coil having a diameter of several centimeters. Since the sensitivity of this detector is proportional to the square of the exciting coil diameter and the exciting current, it is possible to detect a distance of 3 m or more and measure the distance by using a large exciting coil. Further, the influence of the disturbing conductor, which is a problem, can be reduced by increasing the detecting distance, and the detecting conductor on the center axis of the exciting coil can be selectively detected, which enables many applications.

【0050】金属探知機以外の用途として、エッチング
処理などで微小な渦巻き型コイルとその外周を囲む励磁
コイルを作り、マイクロメータ単位の距離を絶縁物を通
して測定し、膜厚計として利用することも可能となる。
この膜厚計は従来の膜厚計と異なり、下地の金属材料の
影響を受けない大きな特徴が得られる。また、近接スイ
ッチとして利用した場合は、対称物の材質や形状の影響
の受け難い正確な動作が可能であり、対称物の目標から
のずれの方向も知ることもできる。例えば、最大直径5
cmの励磁コイルを使用して、このコイル直径より十分
に大きい鉄板の検出では、20cmの距離で1mm以下
の再現性を得ることが容易であり、受信機の出力極性と
値からずれた方向と値も検出できる。
As an application other than the metal detector, a minute spiral coil and an exciting coil surrounding the outer periphery of the coil may be formed by etching or the like, and a distance in micrometer units may be measured through an insulator to be used as a film thickness meter. It will be possible.
Unlike the conventional film thickness meter, this film thickness meter has a great feature that it is not affected by the underlying metal material. Further, when used as a proximity switch, it is possible to perform an accurate operation that is hardly affected by the material and shape of the symmetrical object, and it is also possible to know the direction of deviation from the target of the symmetrical object. For example, maximum diameter 5
It is easy to obtain a reproducibility of 1 mm or less at a distance of 20 cm in the detection of an iron plate that is sufficiently larger than this coil diameter by using an excitation coil of cm. The value can also be detected.

【0051】また、立方体のそれぞれの面に同一形状の
相対する励磁コイル対と磁気検出器の組み合わせを直交
するように配置し、この立方体の中心に導電体を取り付
け、この導電体のx、yあるいはx、y、z方向の位置
を測定する方法で2次元や3次元の非接触位置検出器と
して利用もでき、接点なしのジョイステックやマウスに
代わる小型のコンピュータ用ポインティング・デバイス
としての利用も可能である。この場合、磁気検出器は励
磁コイル対の一方を磁気検出器として共用し、検出器を
簡略化すると都合が良い。
Further, a combination of opposing exciting coil pairs of the same shape and a magnetic detector are arranged on each surface of the cube so as to be orthogonal to each other, and a conductor is attached to the center of the cube, and x, y of the conductor are attached. Alternatively, it can be used as a two-dimensional or three-dimensional non-contact position detector by measuring the position in the x, y, and z directions, and can also be used as a pointing device for a small computer that replaces a joystick or a mouse without contacts. It is possible. In this case, it is convenient for the magnetic detector to share one of the exciting coil pairs as the magnetic detector and simplify the detector.

【図面の簡単な説明】[Brief description of drawings]

【図1】同一平面に配置した二つのコイルの距離に対す
る磁界とその合成値を示す。
FIG. 1 shows a magnetic field and a composite value thereof with respect to a distance between two coils arranged on the same plane.

【図2】コイルの配置図と探知距離対アンペア回数比[Fig.2] Coil layout and detection distance vs. ampere frequency ratio

【図3】コイルの配置図と探知距離対アンペア回数比[Fig. 3] Coil layout and detection distance to ampere frequency ratio

【図4】コイルの配置図と探知距離対アンペア回数比[Fig. 4] Coil layout and detection distance to ampere frequency ratio

【図5】コイルの配置図と探知距離対アンペア回数比FIG. 5: Coil layout and detection distance vs. ampere frequency ratio

【図6】コイルの配置図とコイル間隔を変えた場合の距
離に対する合成磁界
FIG. 6 is a layout diagram of coils and a composite magnetic field with respect to distance when the coil spacing is changed.

【図7】本発明を説明するブロック図FIG. 7 is a block diagram illustrating the present invention.

【符号の説明】[Explanation of symbols]

図7 1.励磁コイルA 2.励磁コイルB 3.磁界検出器 4.初段増幅器(マスク付き受信機) 5.駆動回路A 6.駆動回路B 7.駆動電流制御回路 8.電流比検出器 9.リニアライザ 10.表示器 11.水晶発振器 12.分周器 13.タイミング発生回路 Figure 7 1. Excitation coil A 2. Excitation coil B 3. Magnetic field detector 4. First stage amplifier (receiver with mask) 5. Drive circuit A 6. Drive circuit B 7. Drive current control circuit 8. Current ratio detector 9. Linearizer 10. Display 11. Crystal oscillator 12. Frequency divider 13. Timing generator circuit

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アンペア・回数とその方向、形状、位置
の異なる複数の励磁コイルにパルス電流を流してパルス
状の磁界を発生し、このパルス磁界によって探知する探
知導体との相互インダクタンスを介して探知導体に誘導
電流を流し、この誘導電流による磁界を受信コイルまた
は感磁性素子によって受信する金属探知装置において、
励磁コイルに励磁用のパルス電流を加え、このパルス電
流の減衰時間を探知導体の等価時定数よりも速い立ち下
がり時間で励磁電流を遮断する励磁回路と、励磁コイル
に残留するエネルギーが十分に減衰するまで受信を停止
するマスク期間を設け、励磁電流の影響のない期間だけ
検出コイルの電圧または感磁性素子によって磁界を検出
するスイッチ機能を持つ受信回路によって受信し、探知
導体に流れた誘導電流による信号だけを選択的に受信す
るようにした金属探知装置において、それぞれの励磁コ
イルに発生する磁界の相互作用によって探知導体に加わ
る磁界がゼロになって受信信号が最小になる条件を求
め、この条件から探知導体の検出と位置を測定する金属
探知方法。
1. A pulsed magnetic field is generated by passing a pulsed current through a plurality of exciting coils having different amperes / times and their directions, shapes, and positions, and the pulsed magnetic field is used to detect mutual inductance through a mutual inductance with a detecting conductor. In a metal detection device in which an induction current is passed through a detection conductor and a magnetic field due to this induction current is received by a receiving coil or a magnetic sensitive element,
A pulse current for excitation is applied to the excitation coil, and the decay time of this pulse current is cut off at a fall time faster than the equivalent time constant of the detection conductor.The excitation circuit cuts off the energy remaining in the excitation coil. The masking period is set to stop the reception until the signal is received by the receiving circuit that has the switch function to detect the magnetic field by the voltage of the detection coil or the magnetic sensitive element only during the period when there is no influence of the exciting current. In a metal detection device that selectively receives only signals, find the condition that the magnetic field applied to the detection conductor becomes zero due to the interaction of the magnetic fields generated in each exciting coil, and the received signal becomes the minimum. A metal detection method for detecting and detecting the position of a conductor.
【請求項2】 アンペア・回数とその方向、形状、位置
の異なる複数の励磁コイルにパルス電流を流してパルス
状の磁界を発生し、このパルス磁界によって探知する探
知導体との相互インダクタンスを介して探知導体に誘導
電流を流し、この誘導電流による磁界を受信コイルまた
は感磁性素子によって受信する金属探知装置において、
励磁コイルに励磁用のパルス電流を加え、このパルス電
流の減衰時間を探知導体の等価時定数よりも速い立ち下
がり時間で励磁電流を遮断する励磁回路と、励磁コイル
に残留するエネルギーが十分に減衰するまで受信を停止
するマスク期間を設け、励磁電流の影響のない期間だけ
検出コイルの電圧または感磁性素子によって磁界を検出
するスイッチ機能を持つ受信回路によって受信し、励磁
パルスに同期した同期増幅器によって探知導体を検出す
る金属探知方法において、このタイミングをT1の励磁
Aで一方の励磁コイルAを励磁し、T2のマスク、T3
の受信期間を持ち、T4の励磁Bでは他方の励磁コイル
Bを励磁し、T5のマスク、T6の受信とした6種類の
タイミングを持つシーケンスによって動作させ、T3の
受信信号とT6の受信信号をアナログまたはデジタル的
に差動増幅して出力とし、この出力がゼロになるように
励磁Aと励磁Bによる磁界の強さと方向を調整し、それ
ぞれの磁界の強さと励磁コイルの位置と形状から相互の
励磁コイルの励磁による磁界強度が同一または打ち消す
条件を求め、この条件から探知導体の検出と位置を測定
する金属探知方法。
2. A pulsed magnetic field is generated by passing a pulsed current through a plurality of exciting coils having different amperes / times and directions, shapes, and positions, and a mutual inductance with a detection conductor to be detected by the pulsed magnetic field is used. In a metal detection device in which an induction current is passed through a detection conductor and a magnetic field due to this induction current is received by a receiving coil or a magnetic sensitive element,
A pulse current for excitation is applied to the excitation coil, and the decay time of this pulse current is cut off at a fall time faster than the equivalent time constant of the detection conductor.The excitation circuit cuts off the energy remaining in the excitation coil. A masking period is set to stop the reception until the signal is received by the receiving circuit that has a switch function that detects the magnetic field by the voltage of the detection coil or the magnetic sensitive element only during the period when there is no influence of the excitation current, and by the synchronous amplifier synchronized with the excitation pulse. In the metal detection method for detecting the detection conductor, at this timing, one excitation coil A is excited by the excitation A of T1 and the mask of T2, T3
Has a reception period of T4, the other excitation coil B is excited by the excitation B of T4, and it is operated by the sequence having six kinds of timings, that is, the mask of T5 and the reception of T6, and the reception signal of T3 and the reception signal of T6 are Analog or digital differential amplification is performed to produce an output, and the strength and direction of the magnetic field due to excitation A and excitation B are adjusted so that this output becomes zero. Mutual strength is determined from the respective magnetic field strength and the position and shape of the excitation coil. The metal detection method that finds the condition that the magnetic field strength due to the excitation of the excitation coil is the same or cancels, and detects the detection conductor and measures the position from this condition.
【請求項3】 励磁コイルにパルス電流を流してパルス
状の磁界を発生し、このパルス磁界によって探知する探
知導体との相互インダクタンスを介して探知導体に誘導
電流を流し、この誘導電流による磁界を受信コイルまた
は感磁性素子によって受信する金属探知装置において、
励磁コイルにパルス電流を加え、このパルス電流の減衰
時間を探知導体の等価時定数よりも速い立ち下がり時間
で励磁電流を遮断する励磁回路と、励磁コイルに残留す
るエネルギーが十分に減衰するまで受信を停止するマス
ク期間を設け、励磁電流の影響のない期間だけ検出コイ
ルの電圧または感磁性素子によって磁界を検出するスイ
ッチ機能を持つ受信回路によって受信し、探知導体に流
れた誘導電流による信号だけを選択的に受信するように
した金属探知装置において、励磁コイルの背面に背面反
射防止用コイルをもうけ、さらに、背面の導体の近傍に
配置した磁界検出器によって磁界を検出しこの磁界がゼ
ロになるように、反射防止用コイルによる電流を制御し
た値で励磁し、励磁コイルの背面にある導体を検出不能
として励磁コイル前方の探知導体だけを検出する金属探
知装置。
3. A pulsed magnetic field is generated by passing a pulsed current through an exciting coil, and an induced current is caused to flow through the sensing conductor through mutual inductance with the sensing conductor to be sensed by the pulsed magnetic field. In the metal detection device that receives by the receiving coil or the magnetic sensitive element,
A pulse current is applied to the exciting coil, and the decay time of this pulse current is cut off at a fall time faster than the equivalent time constant of the detecting conductor.An exciting circuit is received until the energy remaining in the exciting coil is sufficiently attenuated. There is a mask period to stop the signal, and only the signal due to the induced current that flows in the sensing conductor is received by the receiving circuit that has the switch function to detect the magnetic field by the voltage of the detection coil or the magnetic sensitive element only during the period when there is no influence of the exciting current. In a metal detector that selectively receives signals, a backside antireflection coil is provided on the back side of the exciting coil, and a magnetic field detector placed near the backside conductor detects the magnetic field, and this magnetic field becomes zero. As described above, the current generated by the antireflection coil is excited by a controlled value, and the conductor on the back side of the excitation coil is made undetectable, so that the excitation coil Metal detection device to detect only square of the detection conductor.
【請求項4】 励磁コイルにパルス電流を流してパルス
状の磁界を発生し、このパルス磁界によって探知する探
知導体との相互インダクタンスを介して探知導体に誘導
電流を流し、この誘導電流による磁界を受信コイルまた
は感磁性素子によって受信する金属探知装置において、
励磁用コイルにパルス電流を加え、このパルス電流の減
衰時間を探知導体の等価時定数よりも速い立ち下がり時
間で励磁電流を遮断する励磁回路と、励磁コイルに残留
するエネルギーが十分に減衰するまで受信を停止するマ
スク期間を設け、励磁電流の影響のない期間だけ検出コ
イルの電圧または感磁性素子によって磁界を検出するス
イッチ機能を持つ受信回路によって受信し、探知導体に
流れた誘導電流による信号だけを選択的に受信するよう
にした金属探知装置において、励磁コイルから発生する
磁界と直交する磁界を発生する打ち消しコイルを設け、
この打ち消しコイルの磁界によって、励磁コイルの中心
軸前方以外の導体に加わる励磁磁界を互いにキャンセル
し、目標以外の導体を検出不能とした金属探知装置。
4. A pulsed magnetic field is generated by passing a pulsed current through an exciting coil, and an induced current is caused to flow through the detecting conductor through mutual inductance with the detecting conductor to be detected by the pulsed magnetic field, and a magnetic field generated by the induced current is generated. In the metal detection device that receives by the receiving coil or the magnetic sensitive element,
A pulse current is applied to the excitation coil, and the decay time of this pulse current is cut off at a fall time that is faster than the equivalent time constant of the sensing conductor, and until the energy remaining in the excitation coil is sufficiently attenuated. Only a signal due to the induced current that flows in the sensing conductor is received by the receiving circuit that has a masking period to stop the reception and has a switch function that detects the magnetic field by the voltage of the detection coil or the magnetic sensitive element only during the period when there is no influence of the exciting current. In the metal detection device adapted to selectively receive, a canceling coil that generates a magnetic field orthogonal to the magnetic field generated from the exciting coil is provided,
A metal detection device in which the magnetic fields of the canceling coils cancel the exciting magnetic fields applied to the conductors other than the front of the central axis of the exciting coil, and the conductors other than the target cannot be detected.
【請求項5】 請求項1または請求項2の金属探知方法
において、サイズの異なる二つの励磁コイルを中心軸を
等しく配置し、サイズの大きい励磁コイルの面をサイズ
の小さい励磁コイルの面に対して探知方向の反対側に配
置して探知距離の増大とそれぞれのコイルのアンペ・ア
ターン比に対する探知距離特性のリニアリテイを上げた
金属探知装置。
5. The metal detecting method according to claim 1 or 2, wherein two exciting coils of different sizes are arranged with their center axes being equal to each other, and a surface of the large exciting coil is arranged with respect to a surface of the small exciting coil. A metal detector that is placed on the opposite side of the detection direction to increase the detection distance and increase the linearity of the detection distance characteristics with respect to the ampere-turn ratio of each coil.
【請求項6】 磁気検出器を中心として形状の等しい二
つの励磁コイルをコイルを結ぶ線の中点から直交する線
と平行またはこの線に向かって対称に傾けた方向に磁界
を発生するように配置し、それぞれの励磁コイルに等し
い電流値で、受信機の出力が互いに逆極性になる極性で
同時または交互にパルス電流を流してパルス状の磁界を
発生し、このパルス磁界によって探知導体との相互イン
ダクタンスを介して探知導体に誘導電流を流し、励磁パ
ルス電流の減衰時間を探知導体の等価時定数よりも速い
立ち下がり時間で励磁電流を遮断する励磁回路と、励磁
コイルに残留するエネルギーが十分に減衰するまで受信
を停止するマスク期間を設け、励磁電流の影響のない期
間だけ検出コイルの電圧または感磁性素子によって磁界
を検出するスイッチ機能を持つ受信回路によって受信
し、この受信信号のそれぞれのコイルの励磁による返送
信号が同一あるいは等しい点を探索し、二つの励磁コイ
ルを結ぶ線の中心に直交する位置の延長上に探知導体が
あることを知る金属探知装置および、異なる位置と角度
で同様条件を求め、それぞれの位置と角度でコイルを結
ぶ線の中心から直交する線を求め、その線の交点から探
知導体の位置を測定する金属探知装置。また、同様装置
で磁気検出器を省略し、それぞれの励磁コイルを磁気検
出器として共用した金属探知装置。
6. A magnetic field is generated in a direction parallel to or orthogonal to a line orthogonal to a midpoint of a line connecting the two exciting coils having the same shape centering on the magnetic detector and connecting the coils. The pulsed magnetic field is generated by simultaneously or alternately applying pulse currents with the same current value to each exciting coil and with the outputs of the receiver having opposite polarities. There is sufficient energy remaining in the exciting circuit and the exciting circuit that cuts off the exciting current at the fall time faster than the equivalent time constant of the detecting conductor by passing the induced current through the mutual inductance through the detecting conductor. A switch that detects the magnetic field by the voltage of the detection coil or the magnetic sensitive element only during the period when there is no influence of the exciting current, by providing the mask period to stop the reception until it attenuates. The signal is received by a receiving circuit having a function, a search is made for a point at which the return signal due to the excitation of each coil of this received signal is the same or equal, and the detection conductor is placed on the extension of the position orthogonal to the center of the line connecting the two exciting coils A metal detection device that knows that there is something, and the same condition is obtained at different positions and angles, a line orthogonal to the center of the line connecting the coils at each position and angle is obtained, and the position of the detection conductor is measured from the intersection of the lines. Metal detector. Also, in the same device, the magnetic detector is omitted, and each exciting coil is also used as a magnetic detector.
【請求項7】 アンペア・回数とその方向、形状、位置
の異なる複数の励磁コイルを配置し、それぞれの励磁コ
イルに同時または交互にパルス電流を流してパルス状の
磁界を発生し、このパルス磁界によって感知する目標導
体との相互インダクタンスを介して目標導体に誘導電流
を流し、励磁パルス電流の減衰時間を感知導体の等価時
定数よりも速い立ち下がり時間で励磁電流を遮断する励
磁回路と、励磁コイルに残留するエネルギーが十分に減
衰するまで受信を停止するマスク期間を設け、励磁電流
の影響のない期間だけ検出コイルの電圧または感磁性素
子よって磁界を検出するスイッチ機能を持つ受信回路に
よって受信し、この受信信号の極性と強度により目標導
体の位置と移動した方向を出力する位置検出装置。およ
び、互いに直交するx、yまたはx、y、z方向の磁界
を発生する励磁コイルと返送磁界検出器を配置し、この
検出器の出力と極性から目標導体の2次元または3次元
位置を出力する位置検出装置。
7. A plurality of exciting coils having different amperages and their directions, shapes, and positions are arranged, and a pulsed magnetic field is generated by simultaneously or alternately applying a pulse current to each exciting coil, and the pulsed magnetic field is generated. An exciting circuit that cuts off the exciting current at a fall time faster than the equivalent time constant of the sensing conductor by passing an induced current through the target conductor through mutual inductance with the sensing conductor A masking period is provided to stop the reception until the energy remaining in the coil is sufficiently attenuated, and the voltage is detected by the receiving circuit that has a switch function that detects the magnetic field by the voltage of the detection coil or the magnetic sensitive element only during the period when there is no influence of the exciting current. A position detection device that outputs the position of the target conductor and the moving direction according to the polarity and strength of the received signal. Also, an exciting coil for generating magnetic fields in the x, y or x, y, z directions orthogonal to each other and a return magnetic field detector are arranged, and the two-dimensional or three-dimensional position of the target conductor is output from the output and polarity of this detector. Position detection device.
【請求項8】 請求項1〜6の方法によって探知導体の
距離を測定し、さらに回路の一部を切り替え、互いの磁
界によって受信信号がキャンセルしない状態にして探知
導体から返送される磁界強度を測定し、探知距離と返送
磁界の関係から探知導体の大きさを知る金属探知方法。
8. The method according to claim 1, wherein the distance between the detection conductors is measured, a part of the circuit is switched, and the magnetic field strengths returned from the detection conductors are set so that the received signals are not canceled by the mutual magnetic fields. A metal detection method in which the size of a detection conductor is measured and measured from the relationship between the detection distance and the return magnetic field.
JP25131894A 1994-09-20 1994-09-20 Metal detection method Expired - Fee Related JP3035724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25131894A JP3035724B2 (en) 1994-09-20 1994-09-20 Metal detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25131894A JP3035724B2 (en) 1994-09-20 1994-09-20 Metal detection method

Publications (2)

Publication Number Publication Date
JPH0894306A true JPH0894306A (en) 1996-04-12
JP3035724B2 JP3035724B2 (en) 2000-04-24

Family

ID=17221034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25131894A Expired - Fee Related JP3035724B2 (en) 1994-09-20 1994-09-20 Metal detection method

Country Status (1)

Country Link
JP (1) JP3035724B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355575B1 (en) * 1999-08-12 2002-10-12 복 순 김 A gate type metal detctor
JP2007132923A (en) * 2005-10-11 2007-05-31 Osaka Univ Nondestructive inspection device, and design method for coil of nondestructive inspection device
CN107797137A (en) * 2017-10-30 2018-03-13 中国工程物理研究院流体物理研究所 A kind of linear induction electronics accelerator test platform and twin coil detecting structure
CN109358368A (en) * 2018-11-22 2019-02-19 漳州市玉山电子制造有限公司 A kind of complementary detection method and device of metal detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355575B1 (en) * 1999-08-12 2002-10-12 복 순 김 A gate type metal detctor
JP2007132923A (en) * 2005-10-11 2007-05-31 Osaka Univ Nondestructive inspection device, and design method for coil of nondestructive inspection device
CN107797137A (en) * 2017-10-30 2018-03-13 中国工程物理研究院流体物理研究所 A kind of linear induction electronics accelerator test platform and twin coil detecting structure
CN107797137B (en) * 2017-10-30 2023-11-28 中国工程物理研究院流体物理研究所 Linear induction electron accelerator test platform and double-coil detection structure
CN109358368A (en) * 2018-11-22 2019-02-19 漳州市玉山电子制造有限公司 A kind of complementary detection method and device of metal detection

Also Published As

Publication number Publication date
JP3035724B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
RU2583346C2 (en) Detection of concealed metallic or magnetic object
EP0122899B1 (en) Apparatus and method employing extraneous field compensation for locating current-carrying objects
US6407550B1 (en) Line locator with accurate horizontal displacement detection
US20130300401A1 (en) Sensor Apparatus, in Particular Metal Sensor, with a Field-Compensated Magnetic Field Sensor
EP3339913B1 (en) Underground utility surveying
US3471772A (en) Instrument for measuring the range and approximate size of buried or hidden metal objects
GB2041531A (en) Detecting inaccessible objects
CN102870011B (en) Metal or the detection of magnetic
JPH04340491A (en) Locating apparatus for buried substance
US9638823B2 (en) Metal sensor
US20130249539A1 (en) Detection of a Metal or Magnetic Object
JP3035724B2 (en) Metal detection method
JP3072304B2 (en) Metal detection method
JP3063027B2 (en) Position detection method
EP0366221A2 (en) Buried metal detector
JP2865599B2 (en) Exploration methods for buried objects
US10712468B2 (en) Device and method for detecting an article
CN113093290A (en) Method for detecting weak secondary field signal under same-frequency strong magnetic interference background
JP3942580B2 (en) Metal detector and metal detection method
CN115857026B (en) Detection method
RU2166735C1 (en) Device for remote determination of coordinates and attitude of object (versions)
US6498478B2 (en) Azimuth measuring method, azimuth measuring apparatus, position measuring method, and position measuring apparatus
CN116224448A (en) Electromagnetic induction detection method and system
JPH095447A (en) Underground electromagnetic probing device
JPH04313097A (en) Measuring device for position of buried cable and measuring method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees