JPS5946602A - Flat plate prism - Google Patents

Flat plate prism

Info

Publication number
JPS5946602A
JPS5946602A JP15693682A JP15693682A JPS5946602A JP S5946602 A JPS5946602 A JP S5946602A JP 15693682 A JP15693682 A JP 15693682A JP 15693682 A JP15693682 A JP 15693682A JP S5946602 A JPS5946602 A JP S5946602A
Authority
JP
Japan
Prior art keywords
lens
refractive index
input
output
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15693682A
Other languages
Japanese (ja)
Inventor
Yoshio Yamazaki
山崎 淑夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP15693682A priority Critical patent/JPS5946602A/en
Publication of JPS5946602A publication Critical patent/JPS5946602A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29373Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion utilising a bulk dispersive element, e.g. prism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To attain simplification in positioning and a reduction in thickness and size and to enable the control of dividing characteristics according to diffusion conditions by forming prisms in a transparent substrate by an ion diffusion method and forming and averaging refractive index distributions. CONSTITUTION:In figure, 12 is a flat plate microprism, 11, 13 are flat plate microlenses by a refractive index distribution, having respectively functions as a lens for input and a lens for output. 10 is an optical fiber for input and 14, 15, 16 are optical fibers for output. The focal length (f) of the lens 11 and the thickness of the substrate are beforehand made coincident in order to bring the end face of the fiber on a transmission side into tight contact with the lens 11 taking charge of the function as a lens for input. The same holds true for the lens 13 for output. An embodiment of the production method consists of masking the side face of an isotropic glass block 20 with an Au-Cr film or Ti film 21, putting a molten salt 23 of the metallic ions to be diffused in a vessel 22 of ceramics, etc., heating the same up to the molten state, dipping said glass block therein and performing a diffusion treatment until the intended profile of the refractive index is obtd.

Description

【発明の詳細な説明】 本発明は透明基板中に形成された分布屈折率による光の
分散機能を有する平板形プリズムに関する。さらに詳し
くは透明基板が合成樹脂又は、無機ガラスから成り、主
として拡散法により透明基板中に屈折率分布を形成した
ことを特徴とする平板形プリズムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flat prism having a light dispersion function using a distributed refractive index formed in a transparent substrate. More specifically, the present invention relates to a flat prism characterized in that the transparent substrate is made of synthetic resin or inorganic glass, and a refractive index distribution is formed in the transparent substrate mainly by a diffusion method.

プリズムは光線束を反射させて方向を変える機能用と分
散を利用して光を単色光に分解する分光用とがあるが、
光学的平面を2つ以上もつ透明体で、少なくとも1組の
面は近似的にも平行でないものである。従って一般的な
形状としては三角柱のものが多く、光学的な基礎部品と
して重要なものである。
There are two types of prisms; one is for the function of reflecting a beam of light to change its direction, and the other is for spectroscopy, which uses dispersion to separate light into monochromatic light.
A transparent body with two or more optical planes, at least one set of which is not even approximately parallel. Therefore, most common shapes are triangular prisms, which are important as basic optical components.

本発明は、近年の光通信用光デバイスの薄形、小形の要
求に応えるものとして、従来の三角柱的プリズムに対し
て屈折率分布を有する透明基板によるマイクロ平板プリ
ズムを提供しようとするものである。
The present invention aims to provide a micro flat prism with a transparent substrate having a refractive index distribution, in contrast to conventional triangular prisms, in response to the recent demands for thinner and smaller optical devices for optical communications. .

光伝送方式の一つに波長分割多重伝送方式がある。この
伝送方式は異なる複数個の波長の光を多重化し、伝送後
、光分波器によって各波長の光を分離し、それぞれ光受
信する方式である。
One of the optical transmission systems is the wavelength division multiplexing transmission system. This transmission method multiplexes light of a plurality of different wavelengths, and after transmission, separates the light of each wavelength using an optical demultiplexer, and receives each light.

この伝送方式で必要な光分波器は、従来既存の光学部品
(たとえばプリズムやレンズなど)を組合わせたものが
提案され研究されている。
The optical demultiplexer required for this transmission method has been proposed and researched by combining existing optical components (for example, prisms and lenses).

第1図は従来のプリズム光分波器の一例を示す図である
。(1)は入力用光ファイバ、(2)は入力用レンズ、
(3)はプリズム、(4)は出力用レンズ、(5)、(
6)、(7)は出力用光ファイバである。
FIG. 1 is a diagram showing an example of a conventional prism optical demultiplexer. (1) is an input optical fiber, (2) is an input lens,
(3) is a prism, (4) is an output lens, (5), (
6) and (7) are output optical fibers.

3チャンネル(波長λ1、λ2、λ3)の多重化の例を
述べる。入力用光ファイバ(1)の端面は入力用レンズ
(2)の焦点の位置fに配置される。送信側から入力用
ファイバ(1)に送られて来た波長λ1、λ2、λ3の
光は入力用光ファイバ(1)から出射されて入力用レン
ズ(2)で平行光になりプリズム(3)に入る。
An example of multiplexing three channels (wavelengths λ1, λ2, λ3) will be described. The end face of the input optical fiber (1) is placed at the focal point f of the input lens (2). Lights with wavelengths λ1, λ2, and λ3 sent from the transmitting side to the input fiber (1) are output from the input optical fiber (1), and are converted into parallel light by the input lens (2), which then passes through the prism (3). to go into.

プリズム(3)からの出射光は、プリズムの分散のため
出力用レンズ(4)を通過後、波長λ1とλ2、λ3の
光が出力用レンズ(4)の焦点面f上の異なる位置に集
光される。波長λ1とλ2、λ3の光の集光位置に光フ
ァイバ(5)、(6)、(7)を配置することにより光
分波が行なわれる。
The light emitted from the prism (3) passes through the output lens (4) due to the dispersion of the prism, and the lights with wavelengths λ1, λ2, and λ3 are focused at different positions on the focal plane f of the output lens (4). be illuminated. Optical demultiplexing is performed by arranging optical fibers (5), (6), and (7) at positions where the lights of wavelengths λ1, λ2, and λ3 are focused.

以上説明したような光分波器は個別光学部品の組合わせ
であるため、位置出し精度の難しさ、光学糸の振動に対
する安定性の欠除、また小形、薄形化が困難であること
などの欠点がある。
Since the optical demultiplexer as explained above is a combination of individual optical components, there are problems such as difficulty in positioning accuracy, lack of stability against vibration of the optical thread, and difficulty in making it smaller and thinner. There are drawbacks.

本発明はこれらの欠点を除去するため、プリズムを透明
基板中に屈折率分布を形成して平板化して位置合せの簡
易化と薄形化、小形化を図ると同時に、必要に応じて光
ファイバ端面部に平板マイクロレンズを配置して密着さ
せ、機械的振動に対する安定性も確保できるようにした
In order to eliminate these drawbacks, the present invention forms a refractive index distribution in a transparent substrate and flattens the prism to simplify alignment, make it thinner and smaller, and at the same time, optical fibers can be attached as needed. A flat microlens was placed on the end face and brought into close contact with the end face to ensure stability against mechanical vibrations.

以下図面により説明する。第2図は本発明の一実施例の
断面図である。(12)が平板マイクロプリズム、(1
1)、(13)は屈折率分布による平板マイクロレンズ
で、それぞれ入力用レンズ、出力用レンズの機能をもつ
。(10)は入力用光ファイバ、(14)、(15)、
 (16)は出力用光ファイバである。動体機能は、第
1図の説明で述べたと同様になる。送信側の入力用ファ
イバ(10)の端面と入力用レンズの機能を分担する平
板マイクロレンズ(11)とを密着させるため、あらか
じめ平板マイクロレンズ(11)の焦点距離fと基板厚
みを一致させておくことが必要である。出力用レンズの
機能を分担する(13)の平板マイクロレンズについて
も同様である。
This will be explained below with reference to the drawings. FIG. 2 is a sectional view of one embodiment of the present invention. (12) is a flat plate microprism, (1
1) and (13) are flat plate microlenses with refractive index distribution, which function as input lenses and output lenses, respectively. (10) is an input optical fiber, (14), (15),
(16) is an output optical fiber. The moving body function is the same as described in the explanation of FIG. In order to bring the end face of the input fiber (10) on the transmitting side into close contact with the flat plate microlens (11) that shares the function of the input lens, the focal length f of the flat plate microlens (11) and the substrate thickness are made to match in advance. It is necessary to keep The same applies to the flat microlens (13) which shares the function of the output lens.

なお、(11)、(13)の平板マイクロレンズの代り
に、ロッド状のいわゆるセルフォックレンズを用いるこ
とも可能である。
Note that instead of the flat microlenses (11) and (13), it is also possible to use a rod-shaped so-called selfoc lens.

以上平板プリズムを用いた光デバイスの応用例の一部を
説明したが、次にその製造方法について述べる。
Some application examples of optical devices using flat prisms have been described above, and now a method for manufacturing them will be described.

第3図(a)は本発明に係わる平板プリズムの製造方法
の一実施例である。
FIG. 3(a) shows an embodiment of the method for manufacturing a flat prism according to the present invention.

等方性ガラスブロック(20)の側面をAu−Cr膜や
Ti膜(21)でマスキングし、セラミック等の容器(
22)に拡散すべき金属イオンの溶融塩(23)を入れ
、溶融状態まで昇温して該ガラスブロックを浸漬して目
的とする屈折率分布プロフィールが得られるまで拡散処
理をする。
The side surfaces of the isotropic glass block (20) are masked with an Au-Cr film or a Ti film (21), and a ceramic container (
A molten salt (23) of metal ions to be diffused is placed in 22), the temperature is raised to a molten state, and the glass block is immersed for diffusion treatment until the desired refractive index distribution profile is obtained.

具体的な例としては、ガラスブロックにソーダ系のBK
−7を用い、拡散溶融塩として硫酸タリウム、ガラスブ
ロックの四周囲側面のマスクにAu−Cr膜を用い55
0℃で160時間程度自然拡散させると、2〜3mmの
深さで屈折率分布を持ったガラスブロックが得られる。
A specific example is soda-based BK on a glass block.
-7, thallium sulfate was used as the diffusion molten salt, and Au-Cr films were used as masks on the four peripheral sides of the glass block.55
When naturally diffused at 0° C. for about 160 hours, a glass block with a refractive index distribution at a depth of 2 to 3 mm can be obtained.

拡散処理後側面のAu−Crマスクを塩酸で溶解し、第
3図(b)のようにスライスカット、研磨すると目的と
する平板マイクロプリズムが完成する。
After the diffusion treatment, the Au--Cr mask on the side surface is dissolved with hydrochloric acid, and sliced and polished as shown in FIG. 3(b) to complete the intended flat plate microprism.

第4図は本発明に係わる平板プリズムの他の製造方法の
実施例である。(a)はガラスブロックの側面に施すマ
スクのパターンを示したもので、TiやAu−Cr等の
金属蒸着膜(25)に連続的に間隔が変化したスリット
(26)を設けたものである。
FIG. 4 shows an embodiment of another method for manufacturing a flat prism according to the present invention. (a) shows a mask pattern applied to the side surface of a glass block, in which slits (26) with continuously varying intervals are provided in a metal vapor-deposited film (25) of Ti, Au-Cr, etc. .

前述したと同じ硫酸タリウムの溶融塩中に浸漬し、56
0℃、150時間程度自然拡散させるとマスクのスリッ
ト部から拡散したTlイオンが(b)図のように濃度分
布し、対応した屈折率分布プロフィールが完成する。第
4図の製法によると比較的大きな平板プリズムを作成す
ることができる。
Immersed in the same molten salt of thallium sulfate as described above,
After natural diffusion at 0° C. for about 150 hours, the Tl ions diffused from the slit portion of the mask have a concentration distribution as shown in Figure (b), and a corresponding refractive index distribution profile is completed. According to the manufacturing method shown in FIG. 4, a relatively large flat prism can be manufactured.

なお、上記2つの実例の製造方法において、自然拡散で
行なった場合、150〜160時間という長時間にわた
るため、作業性を考慮して、拡散方向に電界を印加して
拡散処理時間を十分の一程度に短縮することも可能であ
る。
In addition, in the manufacturing methods of the above two examples, when natural diffusion is performed, it takes a long time of 150 to 160 hours, so in consideration of workability, an electric field is applied in the diffusion direction to shorten the diffusion process time by a tenth. It is also possible to shorten it to a certain degree.

上記述べた無機ガラスの他にインフタル酸ジアリルにベ
ンゾイル・パーオキサイドを数%加えた半重合状態の合
成樹脂にメタクリル酸メチルモノマを拡散重合させるよ
うな有機系透明基板も同様に本発明の範ちゅうに入るも
のである。
In addition to the above-mentioned inorganic glass, organic transparent substrates in which methyl methacrylate monomer is diffused and polymerized to a semi-polymerized synthetic resin made by adding several percent of benzoyl peroxide to diallyl inphthalate are also within the scope of the present invention. It is something that can be entered.

以上説明したように、本発明の透明基板中に形成された
分布屈折率による光の分散機能を有する平板プリズムは
、製作が簡単でしかも分岐特性のコントロールが拡散条
件によって可能である。また両端面が平行であるため、
例えば光ファイバーとの位置合せが容易であるほか、何
よりも小形化、薄形化が可能であるという利点がある。
As explained above, the flat prism of the present invention having a light dispersion function using a distributed refractive index formed in a transparent substrate is easy to manufacture, and the branching characteristics can be controlled by adjusting the diffusion conditions. Also, since both end surfaces are parallel,
For example, it is easy to align with optical fibers, and above all, it has the advantage of being able to be made smaller and thinner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光分波器の一例を示す図である。 第2図は本発明の一応用実施例を示す断面図である。 第3図は、本発明の平板プリズムの製造方法の一実施例
である。 第4図は、本発明の平板プリズムの他の製造方法の一実
施例である。
FIG. 1 is a diagram showing an example of a conventional optical demultiplexer. FIG. 2 is a sectional view showing an applied embodiment of the present invention. FIG. 3 shows an embodiment of the method for manufacturing a flat prism of the present invention. FIG. 4 shows an embodiment of another method of manufacturing a flat prism of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)透明基板中に形成された屈折率分布による、光の
分散機能を有する平板プリズム。
(1) A flat prism that has a light dispersion function using a refractive index distribution formed in a transparent substrate.
(2)透明基板が合成樹脂又は無機ガラスからなる特許
請求範囲第1項記載の平板プリズム。
(2) The flat prism according to claim 1, wherein the transparent substrate is made of synthetic resin or inorganic glass.
(3)透明基板中に形成された屈折率分布が、イオン拡
散法によることを特徴とする特許請求範囲第1項記載の
平板プリズム。
(3) The flat prism according to claim 1, wherein the refractive index distribution formed in the transparent substrate is formed by an ion diffusion method.
JP15693682A 1982-09-09 1982-09-09 Flat plate prism Pending JPS5946602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15693682A JPS5946602A (en) 1982-09-09 1982-09-09 Flat plate prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15693682A JPS5946602A (en) 1982-09-09 1982-09-09 Flat plate prism

Publications (1)

Publication Number Publication Date
JPS5946602A true JPS5946602A (en) 1984-03-16

Family

ID=15638583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15693682A Pending JPS5946602A (en) 1982-09-09 1982-09-09 Flat plate prism

Country Status (1)

Country Link
JP (1) JPS5946602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031812A1 (en) * 2002-10-02 2004-04-15 Nikon Corporation Optical element, spectroscope, and condenser
CN108572419A (en) * 2017-03-13 2018-09-25 迈络思科技有限公司 Long range active optical cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031812A1 (en) * 2002-10-02 2004-04-15 Nikon Corporation Optical element, spectroscope, and condenser
US7054056B2 (en) 2002-10-02 2006-05-30 Nikon Corporation Optical element, spectroscope and condenser
CN108572419A (en) * 2017-03-13 2018-09-25 迈络思科技有限公司 Long range active optical cable
CN108572419B (en) * 2017-03-13 2021-09-24 迈络思科技有限公司 Long-distance active optical cable

Similar Documents

Publication Publication Date Title
US4765702A (en) Glass integrated optical component
US5160523A (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
JP2003506737A (en) Multiplexing / demultiplexing apparatus using double diffractive optical lens
JPS5946602A (en) Flat plate prism
JPS61149905A (en) Optical multiplexer and demultiplexer
CN111929769A (en) Multichannel wavelength division multiplexing module with compact structure
CN208477158U (en) A kind of extra small spacing optical filter assembly structure
CN108873179A (en) A kind of adjustment method of silicon substrate coarse wavelength division multiplexing device assembly
JPS58168026A (en) Embedded type spherical lens having distributed refractive index
CN109116474A (en) Wavelength-division multiplex/demultiplexing fiber coupling mould group and its optical device
JPS58134613A (en) Multifiber connector
JPS57177104A (en) Optical demultiplexer
RU100638U1 (en) INTEGRAL OPTICAL MATRIX RADIATION DIVIDER
CN110596815A (en) Optical multiplexer/demultiplexer
JPS60235102A (en) Transmission type light scattering element
JPH0450561B2 (en)
CN212321900U (en) Multichannel wavelength division multiplexing module with compact structure
JPS58209709A (en) Star coupler for multimode optical fiber and its manufacture
TWI688793B (en) Optical multiplexer/demultiplexer
TW499581B (en) Planar waveguide diffractive beam splitter/beam coupler
JPS5616104A (en) Diffraction grating type optical branching filter
RU2338224C2 (en) Integrated optical radiation divider
JPS63106606A (en) Optical multiplexer and demultiplexer
JPS58205107A (en) Lens with v-shaped groove base
JPH063555A (en) Optical branching device