JPS5946352A - Method of reducing engine roughness by way of air-fuel ratio control - Google Patents

Method of reducing engine roughness by way of air-fuel ratio control

Info

Publication number
JPS5946352A
JPS5946352A JP15827982A JP15827982A JPS5946352A JP S5946352 A JPS5946352 A JP S5946352A JP 15827982 A JP15827982 A JP 15827982A JP 15827982 A JP15827982 A JP 15827982A JP S5946352 A JPS5946352 A JP S5946352A
Authority
JP
Japan
Prior art keywords
cylinder
engine
air
fuel ratio
mean effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15827982A
Other languages
Japanese (ja)
Inventor
Toshiaki Motoi
許斐 敏明
Tsuneji Ito
伊藤 恒司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15827982A priority Critical patent/JPS5946352A/en
Publication of JPS5946352A publication Critical patent/JPS5946352A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Abstract

PURPOSE:To improve the driving performance of an engine and to keep the specific fuel consumption of the engine low, by preventing occurrence of engine roughness with high accuracy by detecting variation of the indicated mean effective pressure of each cylinder during one cycle of engine operation and deviation of the indicated mean effective pressures of a plurality of cylinders, and controlling the air-fuel ratio of each cylinder on the basis of the above two factors. CONSTITUTION:Output signal of a crank signal sensor 3 and combustion pressure signals of each cylinder produced by respective combustion pressure sensors 4 are furnished to a Pi-meter 9, which calculates the indicated mean effective pressure Pi of each cylinder from these signals. These signals are also furnished to a control circuit 10 together with the crank signal. Further, a signal relating to the flow rate of intake air is furnished from an air-flow meter 7 to the control circuit 10. In the control circuit 10, the engine speed N is calculated from the crank signal and an air-fuel ratio necessary for the actual operational conditions of an engine is determined from the indicated mean effective pressure calculated by the Pi-meter 9, the flow rate Q of intake air detected by the air-flow meter 7, etc. Further, in controlling the air-fuel ratio, engine roughness is judged to be within a tolerable range if variation of the indicated mean effective pressure Pi during one cycle of engine operation is smaller than a prescribed tolerable value or deviation of the indicated mean effective pressure of the cylinders is lower than a prescribed tolerable value.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は1ンジンラフネスの軽減Ij法、訂しくは空燃
比を制tIlするごとによるエンジンラフネスの軽減方
法に門りるちのである。 近年、自動中関連技術の発達(よ11覚しく、燃iil
消′I!率の改善、1)1ガス中の(j害成分の低減、
運転のし易さや走行の安定性ど言つI、二いわゆるドラ
ーrバビリiイ(運転性)の向」−等が)〔1究され、
J、す1めれた自動中が提供されつつある。 またドライバビリディ向上の一つとして「ンジンの各気
筒毎の出力の変動や゛気筒間の出力のバラツキによって
生ずるエンジンラフネス(小安定なエンジン回転やエン
ジンの振動を表ねり)の軽減が挙げられる。 エンジンラフネスは第1図に示すように空燃比をリーン
(燃料の割合が少ない)にづると増大づるが、燃費は向
上し、また図示平均有効性1)1は低下づることが知ら
れ−Cいる。 従来、1〜ルクセンサ等を用いてエンジンの出力軸より
hルク等を検出して全気筒−神に」−ンジン出力を制0
11 ”lることによりエンジンラフネスを軽減Jる方
法等が行われているが、各気筒f0の粘緻な制御を行う
ことはできず、結局ある程度1./、、lのエンジンラ
フネスを軽減Jることは無理ひあり、また強いて軽減し
ようと覆れば燃費が低下りると言う問題があった。 本発明は、前述の問題を解決覆る目的で鋭意検討の結果
なされたもので、かかる目的はエンジン出力に相関する
図示平均有効圧PI3即ち第2図で示す“蛸ぎ気筒内の
燃焼圧の指11線図に沿−)て同図中の出力として1り
用する3a c表わづ面積、」、リポンブ(1事どし−
(作用りる3b’(”表わり面積を減じ、これを行程容
積ひ除した値1数式C表わ1」ば1’i −(Sa−3
1+ )/Vl+と4「る。但し\/ h Cr!。 行脚容積を表わ1゜1を各気筒、各り−rクルfo k
−検出し、検出した図示平均有効Itより8気筒111
の図示平均有効圧のクイクル間変動及び図示平均(]効
圧の気筒間較差を求め、当該りrクル間蛮靭I13にび
気筒間較差に基づき各気筒の空燃比を制御りることを特
徴どする空燃圧制tell k’ 、1、るrンジンノ
フネスの軽減方法によつ(達成される。 以下に本発明を、一実施例を挙げ(図面とJ((J:説
明りる。 まり゛第3図は本発明方法が適用さJIlこ実施例の「
ニンジン(/I4ノイクル、4気筒の場合を承り)及び
ての周辺装置の概略4表わl 1%q 11.図(゛あ
る。同図にJ3いC11は]−ンジン、2 G;Lクシ
ンク岬11(、二1°1結されたクランク(8号発こし
用円板C円板外周1.ltま例えば′マグネッ1〜が等
間隔に配設され!、:ものを表わしている。3は例えば
ピックアップ−1イルからなるクランク信号センリ゛で
前記クランク信号発生用円板2の回転に同期してクラン
ク信号を発にt′TJるものを表わづ。4は各気筒の点
火プラグに一体化されて若しくは点火プラグとは別個に
設(]られ気筒内のパック、即ち燃焼圧を検出づる燃焼
IJ:レンサを表わす。そして5はインデータマニホー
ルド、6はインデータマニホールド5に取り付(Jられ
、パルス信号のデユーアイ比にJ:って聞弁聞が、TJ
ンl〜ロールされる燃料噴射弁、7はエンジン負荷を検
出づるための負荷ヒンリである−「アノl」メータを夫
々表わしている。 更に、8は燃焼圧レンチ4及びクランク信号廿ン1)3
の検出信号を増幅する入力インピーダンスの高い増幅器
、9は増幅器8を介して出力される燃焼r−を信号及び
クランク信号より図示平均有効JTを算出するPiメー
タ、10はマイクロブ[11L7ツυを含む制御回路を
夫々表わしている。 また、制御回路10は第4図で示すように入力ボート1
0a、出力ポー1−10b、入・出力データヤ)油筒デ
ータを一時的に記憶4る−にΔM(ランダムアクセスメ
モリ)’IOC,制御ブ11ゲノムや制御用のデータを
格納づるR OM (リードAンリメtす)10d、デ
ータの油筒処理、制御を1<0M10d内の制御f I
IIグシlXk IY、 −、) ’l t−J ’)
 ’?−fり[1ブ[]レッ()−1即らCPU(tン
1〜ラルブ11:] L?シングニLニツl”)10e
、これら各素子を結び(1弓の伝送路とされるパスライ
ン1 ’Or 、及び出カポ−]〜10bから出力され
る伏5号の増幅をflつ駆動回路10(+から構成され
ている。。 以上のように構成された木実ffd+例のl’l川に−
ノい゛C説明づると、まずエンジン1が始りJされるど
クランク軸が回転し、クランクiM 、F bシリ3J
、り出力されるクランク信2)と共に燃焼月しンリ4 
hs lらの各気筒の燃焼圧伝号が増幅器Bに送られ、
増幅された夫々の信号は、Piメータ9cr: r″A
られ各気筒の図示平均有効圧Piが詐出され、更にこの
図示平均有効圧Piと」(にクランク信号が制御回路1
0に送られる。まiE 11111神回路10、には−
[1)し]メータ7から吸入空気量信号が)′Aられ(
いる、。 そして制御回路10においてはROM10d内の制御プ
ログラムに従ってクランク信Q J、す]−ンジン回転
数Nが棹出され、更にF)iメータ9にJ、り算出され
た図示平均有効圧、エアフロメータ7により検出された
吸入空気ff1Q、等に基づき現−1−ンジン状態にt
ljいて必要な空燃比が設定され、当該設定値に基づき
、クランク角信号に同期して所定量の燃料が燃料Il!
!射弁6を介してl@射され、気筒内に送られる。以後
ニ[レジン稼動中は同様の制御が繰り返し行われる。 また空燃比を制御覆るに際し、第5図で示りJ、うに図
示平均有効圧Piのり゛イクル間変動が予め定められた
許容値S1より小さいか、若しくは第6図で示Jように
図示平均有効圧Piの気筒間較差が予め定められi=許
容値S2より小さ
The present invention is directed to a method for reducing engine roughness, or more specifically, a method for reducing engine roughness by controlling the air-fuel ratio. In recent years, the development of automatic fuel related technology (
Extinguish I! Improvement of ratio, 1) Reduction of (j harmful components in 1 gas,
Ease of driving and stability of driving, etc., have been investigated.
J. The first automatic medium is being offered. In addition, one way to improve drivability is to reduce engine roughness (representing slightly unstable engine rotation and engine vibration) caused by fluctuations in the output of each cylinder of the engine and variations in output between cylinders. As shown in Figure 1, it is known that engine roughness increases as the air-fuel ratio becomes leaner (lower fuel ratio), but fuel efficiency improves and indicated average effectiveness 1) decreases. Conventionally, a lux sensor or the like is used to detect the hr lux from the output shaft of the engine and control the engine output on all cylinders.
11 Methods have been used to reduce engine roughness by reducing engine roughness, but it is not possible to perform precise control of each cylinder f0, and in the end it is possible to reduce engine roughness by a certain amount. It is impossible to do so, and there is a problem in that if the problem is forcibly reduced, the fuel efficiency will decrease. The indicated mean effective pressure PI3, which is correlated to the engine output, is the area 3a c, which is used as the output in the same figure. ,”,Reponbu (one thing-
(3b'("The value obtained by subtracting the surface area and dividing this by the stroke volume 1 Formula C is 1") If 1'i - (Sa-3
1+)/Vl+ and 4'. However, \/h Cr!. Represents the traveling volume, 1°1 for each cylinder, each -r Cr fo k
-8 cylinders 111 from the detected indicated average effective It
It is characterized by determining the cycle-to-cycle variation in the indicated mean effective pressure and the cylinder-to-cylinder difference in the indicated mean effective pressure, and controlling the air-fuel ratio of each cylinder based on the cycle-to-cycle variation and the cylinder-to-cylinder difference. The present invention will be described below with reference to the drawings and an example of the present invention. FIG. 3 shows an example of a JIl example to which the method of the present invention is applied.
Outline of Carrot (/I4 Neucle, 4-cylinder case) and all peripheral equipment 1 1%q 11. Figure (There is. In the same figure, J3 and C11 are shown) Engine, 2 G; ``Magnets 1~ are arranged at equal intervals!, : represents something. 3 is a crank signal sensor consisting of, for example, a pickup 1, which generates a crank signal in synchronization with the rotation of the crank signal generating disk 2. 4 represents the combustion IJ which is integrated with the spark plug of each cylinder or is installed separately from the spark plug and detects the combustion pressure in the cylinder: 5 represents the input data manifold, 6 is attached to the data manifold 5 (J is attached to the data manifold 5, and the du-eye ratio of the pulse signal is J:).
The fuel injectors are turned and rolled, and 7 represents a load indicator meter for detecting the engine load. Furthermore, 8 is a combustion pressure wrench 4 and a crank signal line 1) 3
9 is a Pi meter that calculates the indicated average effective JT from the combustion r- signal outputted through amplifier 8 and the crank signal; 10 is a microb [11L7 υ included]; Each shows a control circuit. The control circuit 10 also includes an input port 1 as shown in FIG.
0a, output ports 1-10b, input/output data points) Temporarily stores oil cylinder data, ΔM (random access memory)'IOC, control ports 11 ROM (reads) stores genome and control data. A) 10d, data oil cylinder processing, control f I within 1<0M10d
II Gusi lXk IY, -,) 'l t-J')
'? -fri[1b[]re()-1 i.e. CPU (tn1~ralb11:] L?SingniLnitsl")10e
, these elements are connected (pass line 1'Or which is a transmission line of one bow, and output capo) to amplify the Fukuno. .. In the tree ffd configured as above + example l'l river -
To explain, the engine 1 starts, the crankshaft rotates, and the crank iM, Fb series 3J
, the crank signal 2) is output along with the combustion signal 4.
The combustion pressure signals of each cylinder such as hs l are sent to amplifier B,
Each amplified signal is transferred to a Pi meter 9cr: r″A
The indicated mean effective pressure Pi of each cylinder is falsified, and furthermore, the crank signal is transmitted to the control circuit 1.
Sent to 0. MaiE 11111 God Circuit 10, -
[1) The intake air amount signal from the meter 7 is )'A and (
There is. Then, in the control circuit 10, a crank signal QJ, engine rotational speed N is generated according to the control program in the ROM 10d, and furthermore, the calculated indicated mean effective pressure is displayed on the i meter 9, and the air flow meter 7 Based on the intake air ff1Q detected by
lj, the necessary air-fuel ratio is set, and based on the set value, a predetermined amount of fuel is supplied to the fuel Il! in synchronization with the crank angle signal.
! It is injected through the injection valve 6 and sent into the cylinder. Thereafter, the same control is repeated while the resin is in operation. In addition, when controlling the air-fuel ratio, check whether the cycle-to-cycle variation in the indicated mean effective pressure Pi is smaller than the predetermined tolerance value S1, as shown in FIG. 5, or the indicated average as shown in FIG. The cylinder-to-cylinder difference in effective pressure Pi is determined in advance and is smaller than i=tolerance value S2.

【)れば、図示平均有効圧Piの()
−イクル間変動若しくは気筒間較差によって住するエン
ジンラフネスは許される範囲内であるとされることがら
、空燃比の制御は燃費率の低下(燃費の向−ヒ)に重点
が向かれる。 尚、l) iメータ9において、図示平均イーJダJ 
I−T Piを詐出覆る場合、各気筒行稈容伯の 定量
変化(例えば1リイクル7200分のiう稈fV積を1
00分割しl、:値)毎にクランク信>:1.1.yシ
リ3よりイハ号を出力Jるようにし、この1m号をリン
ブリング信号としC燃焼n−レンリ4J、り検出された
燃焼11を4ノンブリングすれば、第2図゛テ・、示り
指圧櫟図C曲まれた部分3a、3bより求められる図示
’l’ l’=J有効圧()iは、 (11:fj稈容積、Δv:容1i’i f化、l)0
 : ’/ ノンク角Oでの燃焼丹)」j(′c示り如
く加減04中心どりる簡単な演粋にJンノ(求めインご
とが可能となり、演怖スピードが高速化される。 次に本実施例の要部となる制御〕゛1111グラム説明
する。第7図(ま各気筒に、1月)るり、rクル間の判
定制御の7【」−ブ鬼・−1〜を表わり。本図【。。 表わされている処理(ま制御回路10の 沖の各種判定
制御1+1処理の一部どじてリブルーfンの形C表現さ
れている。ここにおいて31は−■アノ1]メータ7と
クランク信号センリ゛3の信号に基づき求めたエンジン
負荷Q/Nの増減変化を判定りるステップ、32はm番
気筒の図示平均有効o+ p i<以下n1に1)iど
も呼ぶ)のリイクル間変肋Sをn回のリイクルにおG3
る各4ノイクルのPi  (Pi、i)とm番気筒の1
〕iのリイクル総和平均 1l11から、の目算式を用
いて算出づるステップ、33はステップ32で求めたS
と前出り゛イクル間変動n容値S1との値を比較判定づ
−るステップ、34は該当気筒の燃料噴射律補IT−値
τlTl0を一定量α漸減させるステップ、35は逆に
τ■0をα漸増さUるステップ、36μ塁準燃料噴射量
τisをROM十の図示していないマツプからその時の
例えば吸入?11+気量、エンジン回転数ににつで定ま
るエンジンの負荷に該当づるτmsを検索覆るか若しく
は負、/+!i等J、り所定の演締式に従ってτmsを
咋出し決定づるステップ、37はτmOどτmsとの和
τmを求め1mの人ささに応じ燃fit噴用井を制御・
】ることによ・)゛(空燃比を1mに応じた値に制御4
るスラップを表わづ。 ここC1自動車が定f1仙ル1jに(1う)だ場合、’
//を埋が木ルーチンに入ってくるど、;Lずスj°ツ
f31に一部」−アフUメータ7等の侶f′3を)i、
に求めら4【た負荷が前回の木ルーチン処理の負?81
に比べη増減があるか否かが判定されるが、定負荷ルl
’i Tdするので負荷に変化はh < N Oと判定
され、ス)°ツブ332に至る。ステップ32に(はm
Yi気筒の])iの 定す−イクル回数間でのりrクル
間変動3mを前記式(1)から算出づる。次いC・ス1
ツブ53J3にj)す、¥1容値531とSmど4比較
し、Smが81以下であれば、1m(+を17分減少し
、逆に81を越えれ4;L: r vPloをα分別1
111 u、次のス)ツゾ:17へ移る。但し、τmO
の初IUJ設定はOC:ある。このステップ37におい
(燃料哨用吊z’ mがτms+τmOに設定され、処
理は本ルーチンを抜1)る。次いで他の気筒す同様に本
ルーチンにより処理される。 負荷が変化しない限り、本ループーンに八−)た場合の
処理は、ステップ31.32.33.34及び37と行
われるか、又はステップ31.32.33.35及び3
7どbわれる。このことにより、気筒のクイクル間変動
SmはSlを越えることなく31近傍に保持され、J、
ンジンラフネスのV1容される範囲」−眼まで、出力及
び燃費を高めて、エンジンが運転されることになる。 次に加減速操作等にJ:り負荷が変化し!、:場合、処
理は、ステップ31にてYESと判定されてステップ3
6に移る。次いでステップ37に移り、τmsと既にス
テップ34あるいは35にて算出されているτmOとの
和である1mを求め燃料噴射吊を1mに設定りる口どに
なる。(負荷の変動が大きい場合はτmoを「0」にリ
レッl−L ’Uも良い。)このにうにして、空燃比が
各気筒側々の負荷に応じてエンジンラフネスが許容され
る範囲内に納まるよう制御される。 次に気筒間の判定制御のフ[J−ヂレートを第8゛図に
承り。本図に表わされている処理は前述した第7図のフ
ローチャートと同様、一連の各種判定制御93埋の一部
とlノで4ノブルーチンの形で表現され、通常第7図の
ノ[r−プレー1〜(こ、にる処理の1やに実行される
。ここにおい゛(,111はある1リイクルにお(ノる
各気筒のPiから最高の[)iと最低の1〕iどの較差
1つi′を算出りるステップ、/12は前出気筒間較差
のW1容埴S2と1記i、)i”との値を比較判定する
ステップ、433は全気筒σ−) l)i総和平均巨i
を算出づるステップ“、4・1はm番[1の気筒の図示
平均有効II’ P i mと1記「1とを比較判定J
るステップ、45Gま各気筒の燃料噴射量2mをβ分だ
1)漸減さUるスjツーf、/10はてmろβ分だ()
漸増さけるスノツプを表ね(j、。 ここで、処理が本ルーチンに人つしくると、まず、ス)
゛ツブ41にl’ f’) i −が算出きれ、次い(
ス)ツブ42に〒す、前出S7と1)i  −との比較
を行い、もし[)i −が82以下(゛あれば、気筒間
較差にJ、る−1−ンジンラフネスは清容(l「1以上
と判定し、何の処理もflわず、あるい(ま現状elf
持の処理をt+って、本ルーチンを抜(ノる。 ステップ42にて1)i′が$2を越λ(いる場合、次
のステップ/13にで百iが算出され、次いでス)1ツ
ブ44に至る。ステップ44に(合気1j)毎に判定処
理が行われる。例えば、II1番目の気筒の図示平均有
効圧pimとPiとを比較し、もし、Pimが iを越
えていると判定された場合、処理(,1ステツプ45に
移り、m番目の気筒の燃料噴射量τmをβ分だ(プ漸減
してPimを下げる。又、1)imとP iが等しいと
判定された場合、処理(よ何す行わ4゛あるいは現状維
持の処理を()う。又、t’tmが11未満と判定され
た場合、処理はスーツツブ46に移り、m番目の気筒の
τmをβ分だ【ノ漸増()てPimを上げる31次いで
m+1番口の気筒に移り、同様な!l!l理を行う。こ
のようにしで、1番目の気筒からはじめて全ての気筒の
燃料噴射量を調整づることににって空燃比の制御を行い
その後、本ルーチンを抜りる。このようにして各気筒の
Piを百1に近づけることによりPi′が82以下どな
るようエンジンが制御され、気筒間の差異により生ずる
エンジンラフネスが最′小眼におさえられ、しかも(の
限度内で出力、燃費を最高に保持づることが可能どなる
。 更に、第7図及び第8図に承り処理がInI;l/合4
)されることにJ、す、コーンジン全1本が−ての負何
1人態に応じて、Jンジンラフネスの限IQ内C゛出力
、燃費を最高に保持し、1ンジン回転を円滑にりること
がCきる。 以−1−nT’ iJi シたj、うに本発明のツと燃
比制御に61、る、J−ンジンラノネスの軽減方法は、
多気筒1ンジンの各気筒fijの各サイクル毎の図示平
均有効11を検出し、検出した図示平均有効)Tj、り
各気筒用の図示平均有効INのソイクル間変動及び図示
平均(i望J1上の気筒間較差を求め、当該り一メクル
間変動及び気筒間較差に基づき各気筒の空燃比を制御l
lすることを特徴としでいる。。 このため本発明方法にj:れば、気筒IFjのソイクル
間変動を抑え、かつ気筒間の図小ψ均Tlr効1■のバ
ランAを抑えることにJ、つ゛(」ンジンラノネスの発
生を精緻に抑制しCドラ−rバ1−′リ−)イを向1し
、かつ燃費率を低く維持りることが司111〕となり、
エンジンラフネス発!1:にr1′う]エンジン及びぞ
の周辺部品の損耗を防ぐことが可能となる。
If [), then () of the indicated mean effective pressure Pi
-Since engine roughness caused by cycle-to-cycle fluctuations or cylinder-to-cylinder differences is considered to be within an acceptable range, air-fuel ratio control focuses on reducing fuel efficiency (improving fuel efficiency). In addition, l) In the i meter 9, the indicated average
When fraudulently overturning the I-T Pi, quantitative changes in the culm ratio of each cylinder (for example, the culm fV product of 7200 minutes of 1 recycle is changed to 1
Crank signal for every 00 division l, : value)>:1.1. If the Iha signal is outputted from the y-series 3, and this 1m signal is used as a ringing signal, the C combustion n-lens 4J and the detected combustion 11 are non-bringed by 4, as shown in Figure 2. The indicated 'l'l' = J effective pressure ()i obtained from the curved parts 3a and 3b of the acupressure scale diagram C is (11: fj culm volume, Δv: volume 1i'i f conversion, l) 0
: '/ Combustion at non-point angle O)'j('cAs shown, the simple act of adjusting 04 and moving to the center becomes possible, and the acting speed becomes faster.Next. The control which is the main part of this embodiment] 1111g will be explained. Fig. 7 (for each cylinder, January) 7 [" - Buki - 1 ~ of the judgment control between ruri and rcru] will be explained. .This diagram [.. The processes shown in this figure (a part of the various judgment control 1+1 processes of the control circuit 10 are expressed in the form of a rib blue f.Here, 31 is - ■ that 1] meter) 7 and a step of determining an increase/decrease in the engine load Q/N obtained based on the signal of the crank signal sensor 3; 32 is the step of determining the indicated average effective o+pi of the m-th cylinder (hereinafter referred to as n1). G3 to recycle the variable rib S between recycles n times
Pi (Pi, i) of each of the 4 noicles and 1 of the m-th cylinder
] Step 33 is S calculated in step 32 from the total recycling average of i 1l11.
34 is a step of gradually decreasing the fuel injection regulation IT-value τlTl0 of the relevant cylinder by a constant amount α; Step 0 is gradually increased by α, and the 36μ base fuel injection amount τis is obtained from a map (not shown) in the ROM at that time, for example, intake? Search for τms corresponding to the engine load determined by 11+ air volume and engine rotation speed, or negative, /+! Step 37 is to derive and determine τms according to a predetermined formula. 37 calculates the sum τm of τmO, etc., and controls the fuel injection well according to the height of 1m.
] By controlling the air-fuel ratio to a value corresponding to 1 m4
Shows a slap. If C1 car is (1) at constant f1 x 1j, then '
// is entered into the tree routine, ;Lzusj°tsu f31 part'-Af U meter 7 etc. part f'3)i,
4. Is the load negative for the previous tree routine processing? 81
It is determined whether there is an increase or decrease in η compared to the constant load l
'i Td, so it is determined that the change in load is h < NO, leading to S) ° tube 332. Step 32
The cycle-to-cycle variation of 3 m between the specified number of cycles of i in the Yi cylinder is calculated from the above equation (1). Next C. Su1
j) Compare the ¥1 volume value 531 and Sm 4, and if Sm is 81 or less, decrease 1m (+ by 17 minutes, and conversely exceed 81 4; L: r vPlo α separation 1
111 u, next step) Tuzo: Move on to 17. However, τmO
The first IUJ setting is OC: Yes. In this step 37, the fuel sentinel z'm is set to τms+τmO, and the process skips this routine. Then, it is processed by this routine in the same way as other cylinders. As long as the load does not change, the processing in this loopoon will proceed with steps 31.32.33.34 and 37, or with steps 31.32.33.35 and 3.
7. I get hit. As a result, the cylinder quickle fluctuation Sm is maintained near 31 without exceeding Sl, and J,
The engine is operated with increased output and fuel efficiency up to the V1 range of engine roughness. Next, the load changes due to acceleration/deceleration operations, etc. , : In the case, the process is determined as YES in step 31 and the process proceeds to step 3.
Move on to 6. Next, the process moves to step 37, where 1 m, which is the sum of τms and τmO already calculated in step 34 or 35, is determined, and the fuel injection length is set to 1 m. (If the load fluctuations are large, it is also good to set τmo to "0" and reset l-L'U.) In this way, the air-fuel ratio will be within the range that allows engine roughness depending on the load on each cylinder side. It is controlled to fit within. Next, the J-dilation rate for judgment control between cylinders is shown in Figure 8. The processing shown in this figure is expressed in the form of a 4-knob routine consisting of a series of various judgment controls 93 and 1, similar to the flowchart shown in FIG. r-play 1~(This is executed in the 1st step of the process. Here, ゛(, 111 is the highest [)i and the lowest 1]i from the Pi of each cylinder in a certain recycle. The step of calculating which difference i' is, /12 is the step of comparing and determining the value of the difference between the cylinders W1, S2 and 1 i,)i'', and 433 is the step of calculating the difference between all cylinders σ-)l. ) i total average giant i
4.1 is the indicated average effective II' P i m of cylinder m [1] and comparison judgment J
step, 45G, the fuel injection amount for each cylinder is 2m by β 1) Gradually decreases by 10 m by β ()
Indicates the snoop that will be gradually increased (j,. Here, when the process is added to this routine, first, step)
After l'f') i - has been calculated in the tube 41, then (
Compare S7 and 1) i −, which are applied to the tube 42, and if [)i − is less than or equal to 82 (゛, then the difference between the cylinders is J, and the engine roughness is fine ( l "It is determined that it is 1 or more, and no processing is performed, or (currently elf
The current processing is called t+, and this routine is skipped. At step 42, 1) i' exceeds $2 λ (If there is, 100 i is calculated in the next step /13, and then step) It reaches 1 tube 44. In step 44, determination processing is performed every (Aiki 1j). For example, the indicated mean effective pressure pim of the 1st cylinder II is compared with Pi, and if it is determined that Pim exceeds i, the process moves to step 45 and the fuel injection of the mth cylinder is performed. Gradually decrease the amount τm by β to lower Pim. Also, 1) If it is determined that im and Pi are equal, perform the process (4) or maintain the status quo. , t'tm is determined to be less than 11, the process moves to the suittub 46, and gradually increases τm of the m-th cylinder by β minutes to raise Pi31.Then, the process moves to the m+1-th cylinder, and the same process is performed. In this way, the air-fuel ratio is controlled by adjusting the fuel injection amount of all cylinders starting from the first cylinder, and then this routine is exited. In this way, by bringing the Pi of each cylinder close to 101, the engine is controlled so that Pi' is 82 or less, and the engine roughness caused by the difference between the cylinders is minimized, and moreover, within the limit of It becomes possible to maintain the highest output and fuel efficiency.Furthermore, as shown in Figures 7 and 8, the treatment is InI;
) In order to maintain maximum output and fuel efficiency within the IQ limit of engine roughness, each engine runs smoothly. I can do that. 1-nT' iJi The method of reducing engine run-downs according to the present invention and fuel ratio control is as follows:
The indicated average effective 11 for each cycle of each cylinder fij of a multi-cylinder engine is detected, and the detected indicated average effective) Tj is calculated, and the indicated average effective IN for each cylinder is calculated between cycles and the indicated average The air-fuel ratio of each cylinder is controlled based on the cylinder-to-cylinder variation and the cylinder-to-cylinder difference.
It is characterized by: . Therefore, if the method of the present invention is used, it is possible to suppress the variation between cylinders IFj and the balun A of the small ψ average Tlr effect 1 between the cylinders. The main objective is to suppress the C driver, direct the C driver, and maintain the fuel efficiency low.
From engine roughness! 1: ni r1'] It becomes possible to prevent wear and tear on the engine and its peripheral parts.

【図面の簡単な説明】 第1図は空燃比と燃費ヤ、図示ゝ11均有効IF滑’;
 シ’ −くはエンジンラフネスどの相関を承り説明図
、第2図は指圧線図、第3図は本発明方法が適用された
エンジン及びぞの周辺装置の概略を示1J模式図、第4
図は制御回路を示づブロック図、第1)図は−[ンジン
ラフネスと図示平均有効圧の→ブイクル間変動の相関を
示づ説明図、第6図はエンジンラフネスと図示平均有効
j1の気筒間較差の相関を示J説1・・・エンジン 3・・・クランク信号セン1) 4・・・燃焼圧レン→ノ ロ・・・燃料噴射弁 8・・・増幅器 9・・・Piメータ 10・・・制御回路 ioe−cpu 第1図 12           18 懺燃訛 第2図 蚤、 辺−/7”$−AI−虫。 第5図 口元キ丁y仙tm1のガイフル用卜夏勲図示乎四胸勧圧
のv峰軽亮 第7図
[Brief explanation of the drawings] Figure 1 shows the air-fuel ratio and fuel efficiency, as shown in the figure.
Figure 2 is a Shiatsu diagram, Figure 3 is a schematic diagram of the engine and its peripheral equipment to which the method of the present invention is applied,
Figure 1) is a block diagram showing the control circuit, Figure 1) is an explanatory diagram showing the correlation between engine roughness and indicated average effective pressure → inter-vehicle variation, and Figure 6 is an explanatory diagram showing the correlation between engine roughness and indicated average effective pressure j1 between cylinders. Indicates the correlation between the differences・Control circuit ioe-cpu Fig. 1 12 18 懺Burn Accent Fig. 2 Flea, Side-/7"$-AI-mushi. Fig. 5 Mouth Kitten Y Sentm1's Gaifle Usage Pressure V peak Karusuke figure 7

Claims (1)

【特許請求の範囲】[Claims] 多気筒−「ンジンの各気筒の名りrクル川に図示)17
均有効圧を検出し、検出した図ノ1い11均右効/Tg
 J、り各気Fl毎の図示平均右動J1−のクイクル間
変動及び図示平均有効圧の気筒間較差を求め、当該クイ
クル間変動及び気筒間較差に阜づき各気筒の空燃比を制
御することを特徴とJる空燃比制御によるエンジンラフ
ネスの軒減’lj法。
Multi-cylinder - ``The name of each cylinder of the engine (illustrated on the river) 17
Detecting the equalized effective pressure, the detected figure No. 1-11 equalized right effect/Tg
Calculate the inter-quickle variation of the indicated average rightward movement J1- and the cylinder-to-cylinder difference in the indicated average effective pressure for each quickle-to-quickle variation and cylinder-to-cylinder difference for each quickle Fl, and control the air-fuel ratio of each cylinder based on the quickle-to-quickle variation and inter-cylinder difference. The method of reducing engine roughness by controlling the air-fuel ratio.
JP15827982A 1982-09-10 1982-09-10 Method of reducing engine roughness by way of air-fuel ratio control Pending JPS5946352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15827982A JPS5946352A (en) 1982-09-10 1982-09-10 Method of reducing engine roughness by way of air-fuel ratio control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15827982A JPS5946352A (en) 1982-09-10 1982-09-10 Method of reducing engine roughness by way of air-fuel ratio control

Publications (1)

Publication Number Publication Date
JPS5946352A true JPS5946352A (en) 1984-03-15

Family

ID=15668125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15827982A Pending JPS5946352A (en) 1982-09-10 1982-09-10 Method of reducing engine roughness by way of air-fuel ratio control

Country Status (1)

Country Link
JP (1) JPS5946352A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171851A (en) * 1985-01-24 1986-08-02 Mazda Motor Corp Control device for multicylinder engine
JPS6240245U (en) * 1985-08-30 1987-03-10
JPS6368734A (en) * 1986-09-09 1988-03-28 Nissan Motor Co Ltd Fuel feeding control device for internal combustion engine
US4736724A (en) * 1986-12-01 1988-04-12 Ford Motor Company Adaptive lean limit air fuel control using combustion pressure sensor feedback
JPS63176644A (en) * 1987-01-19 1988-07-20 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
JPS6435081A (en) * 1987-07-30 1989-02-06 Hitachi Ltd Engine controller
US4825833A (en) * 1986-05-10 1989-05-02 Hitachi, Ltd. Engine control apparatus
EP0448603A1 (en) * 1988-12-19 1991-10-02 Motorola Inc System for monitoring and controlling engine performance.
US5069185A (en) * 1990-06-15 1991-12-03 Edward J. Evasick Diesel tune-up method
JPH05312081A (en) * 1991-07-25 1993-11-22 Ngk Spark Plug Co Ltd Combustion controller of gasoline engine
JPH06221217A (en) * 1993-01-28 1994-08-09 Unisia Jecs Corp Surge torque detection device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147327A (en) * 1978-05-08 1979-11-17 Bendix Corp Internal combustion engine controller
JPS5746034A (en) * 1980-09-05 1982-03-16 Hitachi Ltd Combustion controller
JPS5746033A (en) * 1980-09-05 1982-03-16 Toyota Motor Corp Method of injecting fuel under electronic control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147327A (en) * 1978-05-08 1979-11-17 Bendix Corp Internal combustion engine controller
JPS5746034A (en) * 1980-09-05 1982-03-16 Hitachi Ltd Combustion controller
JPS5746033A (en) * 1980-09-05 1982-03-16 Toyota Motor Corp Method of injecting fuel under electronic control

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171851A (en) * 1985-01-24 1986-08-02 Mazda Motor Corp Control device for multicylinder engine
JPS6240245U (en) * 1985-08-30 1987-03-10
US4825833A (en) * 1986-05-10 1989-05-02 Hitachi, Ltd. Engine control apparatus
JPS6368734A (en) * 1986-09-09 1988-03-28 Nissan Motor Co Ltd Fuel feeding control device for internal combustion engine
US4736724A (en) * 1986-12-01 1988-04-12 Ford Motor Company Adaptive lean limit air fuel control using combustion pressure sensor feedback
JPS63176644A (en) * 1987-01-19 1988-07-20 Toyota Motor Corp Air-fuel ratio controller for internal combustion engine
JPS6435081A (en) * 1987-07-30 1989-02-06 Hitachi Ltd Engine controller
EP0448603A1 (en) * 1988-12-19 1991-10-02 Motorola Inc System for monitoring and controlling engine performance.
US5069185A (en) * 1990-06-15 1991-12-03 Edward J. Evasick Diesel tune-up method
JPH05312081A (en) * 1991-07-25 1993-11-22 Ngk Spark Plug Co Ltd Combustion controller of gasoline engine
JPH06221217A (en) * 1993-01-28 1994-08-09 Unisia Jecs Corp Surge torque detection device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS5946352A (en) Method of reducing engine roughness by way of air-fuel ratio control
JPH08338299A (en) Misfire detecting method
JP2002138889A (en) Control device for vehicle and recording medium
JPH11344501A (en) Method for measuring rotation speed particularly for combustion misfire
JP3381179B2 (en) Vehicle state detection device and detection method
US6513496B2 (en) Fuel injection controller of engine
US20040244471A1 (en) Atmospheric pressure detection device of four-stroke engine and method of detecting atmospheric pressure
JP2008069707A (en) Control device for internal combustion engine
JPH03202641A (en) Output control method of engine
US10597038B2 (en) Control method and control device for engine
JP2005069020A (en) Control device of internal combustion engine
JPS5951135A (en) Fuel injection quantity controller
JP2003172172A (en) Controller for internal combustion engine
US20120059568A1 (en) Engine fuel injection control apparatus
JPH04134141A (en) Controller for vehicle
JPS5968565A (en) Reduction of engine roughness by ingition timing control
KR100435694B1 (en) A method for measuring mass of inducted air and a system thereof
JP4548098B2 (en) Automatic adapting device
JPS63314371A (en) Ignition timing controller for internal combustion engine
US11913399B2 (en) Method for adjusting a fuel mass to be injected
JPH07117023B2 (en) Engine controller
JP3658767B2 (en) Misfire detection device for internal combustion engine
JP2009185611A (en) Device for determining number of misfiring cylinders in internal combustion engine
JP2023116987A (en) Knocking estimation device
JP2784928B2 (en) Engine control device