JPS594475B2 - Catalytic cracking method and equipment for heavy oil - Google Patents

Catalytic cracking method and equipment for heavy oil

Info

Publication number
JPS594475B2
JPS594475B2 JP55030916A JP3091680A JPS594475B2 JP S594475 B2 JPS594475 B2 JP S594475B2 JP 55030916 A JP55030916 A JP 55030916A JP 3091680 A JP3091680 A JP 3091680A JP S594475 B2 JPS594475 B2 JP S594475B2
Authority
JP
Japan
Prior art keywords
catalytic cracking
furnace
heavy oil
cracking
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55030916A
Other languages
Japanese (ja)
Other versions
JPS56127687A (en
Inventor
透 十川
章清 元上
馨 佐藤
賢一 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAIHATSU KONSARUTANTO KK
Original Assignee
NIPPON KAIHATSU KONSARUTANTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAIHATSU KONSARUTANTO KK filed Critical NIPPON KAIHATSU KONSARUTANTO KK
Priority to JP55030916A priority Critical patent/JPS594475B2/en
Publication of JPS56127687A publication Critical patent/JPS56127687A/en
Publication of JPS594475B2 publication Critical patent/JPS594475B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は重質油の接触分解方法及その装置に係り、中国
大慶原油、勝利原油等の重質原油、常圧蒸留残油、減圧
蒸留残油、タールサンド油、シエール油及これらに準す
る重質炭化水素等の重質油に活性の低い触媒を加えて少
なくとも2段階の温度を変えた状態で接触分解を行なわ
しめ、重質油を灯軽油留分に富んだ軽質油とオレフィン
に富んだ石油化学原料ガスに収率よく分解構造でき、さ
らにはタールやピッチを副生ずることのない重質油の接
触分解方法及その装置を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for catalytic cracking of heavy oil, including heavy crude oil such as China's Daqing crude oil and Shengli crude oil, atmospheric distillation residue, vacuum distillation residue, tar sand oil, A low-activity catalyst is added to heavy oil such as Sierre oil and similar heavy hydrocarbons, and catalytic cracking is carried out at varying temperatures in at least two stages to convert the heavy oil into a kerosene-rich oil fraction. The purpose of the present invention is to provide a method and apparatus for catalytic cracking of heavy oil, which can be cracked into light oil and petrochemical raw material gas rich in olefins with good yield, and which does not produce tar or pitch as by-products.

1973年の石油ショック以来、我国の原油−の供給源
の多様化が促進されると共に、世界的な軽質原油の需要
増加傾向により、我国の輸入原油は重質化傾向が強まっ
ている。
Since the oil crisis of 1973, the diversification of Japan's crude oil supply sources has been promoted, and the global demand for light crude oil is increasing, so Japan's imported crude oil has become increasingly heavier.

一方、石油製品の需要は灯軽油留分の需要が多くなり、
石油製品は軽質化傾向をたどっており、原油の重質化と
石油製品の軽質化に対応した分解技術が要望されている
On the other hand, demand for petroleum products is increasing, with demand for kerosene and diesel oil distillates increasing.
Petroleum products are following a trend toward lighter petroleum products, and there is a need for cracking technology that can accommodate heavier crude oil and lighter petroleum products.

従来、原油の接触分解法としてFCC(FluidCa
ralyfic Cracking) 法があるが、
これは沸点範囲の比較的狭い灯軽油等の炭化水素を原料
として、合成シリカアルミナ又はゼオライト等の活性の
高い触媒を多量用い、温度が約500℃、反応時間が約
20秒以下の短時間で一度の接触分解によって、ガソリ
ン留分を多く採取することを目的としている。
Conventionally, FCC (FluidCa) has been used as a crude oil catalytic cracking method.
There is a (ralyfic cracking) law, but
This process uses hydrocarbons such as kerosene, which has a relatively narrow boiling point range, as a raw material, and uses a large amount of highly active catalysts such as synthetic silica alumina or zeolite. The aim is to collect a large amount of gasoline fraction through one-time catalytic cracking.

このような方法は、ガソリン留分の収率が50wt%以
上と多くなるが、反応不飽和分が熱重合してタール状の
重質油が増し、330℃以下の中間留分いわゆる白油の
収率が小さい。
In this method, the yield of the gasoline fraction is as high as 50 wt% or more, but the unsaturated components undergo thermal polymerization, resulting in an increase in tar-like heavy oil, and the middle distillate below 330°C, so-called white oil, increases. Yield is low.

又、活性の低い触媒を用い従来のFCC法により重質油
の接触分解を行なっても、運転制御範囲が比較的狭いF
CC法では白油の収率を上げることは困難である。
Furthermore, even if heavy oil is catalytically cracked by the conventional FCC method using a catalyst with low activity, the operating control range is relatively narrow.
It is difficult to increase the yield of white oil using the CC method.

さらに、重質油を500℃という高温に加熱すると、分
解した不飽和物の熱重合によってタール状又は固形状の
分解残渣が管内壁面に付着堆積して管路を閉塞し、運転
を中断せざるを得ないトラブルが生じ、重軽油を高温に
加熱することは容易でない。
Furthermore, when heavy oil is heated to a high temperature of 500°C, tar-like or solid decomposition residues adhere to and accumulate on the inner walls of pipes due to thermal polymerization of decomposed unsaturated substances, clogging the pipes and forcing the operation to be interrupted. However, it is not easy to heat heavy and light oil to high temperatures.

又、重質油を高温に加熱すると、副生のタール及ピッチ
等の収量が多く、その利用及用途も問題になる。
Furthermore, when heavy oil is heated to high temperatures, a large amount of by-products such as tar and pitch are produced, which poses problems in terms of their use and use.

本発明は上記の問題点を解決し、タールやピッチを副生
ずることなく、しかも需要増が予想される灯軽油等の中
間留分に富む軽質油の収率が圧倒的に大きい重質油の接
触分解方法及その装置を提供するものである。
The present invention solves the above problems and produces heavy oil that does not produce tar or pitch as a by-product and has an overwhelmingly high yield of light oil rich in middle distillates such as kerosene and gas oil, for which demand is expected to increase. The present invention provides a catalytic cracking method and apparatus.

本発明に係る重軽油の接触分解方法は、まず触媒比的0
.05〜0.5で活性の低い触媒、例えば膠質上又はア
ロフェン等を重質油に添加混合し、外部加熱方式の管状
炉構造の第1次分解炉で約350〜500℃に加熱して
第1次接触分解を行なう。
The method for catalytic cracking of heavy and light oil according to the present invention begins with a catalyst ratio of 0.
.. A catalyst with a low activity of 0.05 to 0.5, such as colloid or allophane, is added to and mixed with heavy oil, and heated to about 350 to 500°C in a primary cracking furnace with an externally heated tubular furnace structure. Perform primary catalytic cracking.

これは約350℃以上の比較的低い温度で接触分解が開
始されるが、分解残渣は触媒粒子表面に付着し、分解残
渣が管内壁面に付着堆積して管路を閉塞することがない
Although catalytic cracking is started at a relatively low temperature of about 350° C. or higher, the decomposition residue adheres to the surface of the catalyst particles and does not adhere to the inner wall surface of the pipe and clog the pipe.

次に、第1次接触分解によって生成した気体を取り出し
た残りのものに、さらに同じ触媒を触媒比が約4〜10
の割合で加え、温度を第1次接触分解以上の温度でかつ
約400〜600℃に加熱して第2次接触分解を行なう
Next, the same catalyst is added to the remaining gas produced by the first catalytic cracking at a catalyst ratio of about 4 to 10.
The second catalytic cracking is carried out by heating at a temperature higher than the first catalytic cracking and about 400 to 600°C.

この第2次接触分解は、第1次接触分解の方法とは少し
異なり、流動形式で行なう。
This second catalytic cracking is slightly different from the first catalytic cracking method and is carried out in a fluidized manner.

すなわち、約500〜800℃の高温の水蒸気等で触媒
等を流動させる流動床を多段に配した竪形流動床からな
る第2次分解炉の上部に第1次分解炉からの重質油等を
入れ下部に流動移動させる間に、第2次接触分解を行な
わせるのであるが、この際の加熱温度は上部程低く、下
部桟分解温度を上げておくのである。
That is, heavy oil, etc. from the primary cracking furnace is placed in the upper part of the secondary cracking furnace, which consists of a vertical fluidized bed in which catalysts, etc. are fluidized in multiple stages with high-temperature steam of about 500 to 800°C. The second catalytic cracking is carried out while the gas is introduced and fluidized to the lower part, and the heating temperature at this time is lower in the upper part, and the lower crosspiece decomposition temperature is raised.

すなわち、第2次接触分解の初期は温度の低い状態で行
ない、接触分解が進むにつれて温度を上昇させて行なう
That is, the initial stage of the second catalytic cracking is carried out at a low temperature, and as the catalytic cracking progresses, the temperature is raised.

そして、各温度での分解生成ガスは随時取り出す。Then, the gas produced by decomposition at each temperature is taken out at any time.

従って、第2次接触分解は、重質油が液相で触媒に付着
して接触分解をしながら気体状分解生成物を出し、そし
て過分解することなくただちに分解系から取り出し、未
分解のものはさらに次の流動床で高温水蒸気等から熱を
受けて接触分解をし、徐々に固体状のものとなり、最後
には分解カーボンとなって触媒粒子表面に付着するよう
になる。
Therefore, in secondary catalytic cracking, heavy oil adheres to the catalyst in the liquid phase and is subjected to catalytic cracking to produce gaseous decomposition products, which are then immediately removed from the cracking system without being overly decomposed, and undecomposed products are removed from the cracking system. In the next fluidized bed, it undergoes catalytic decomposition by receiving heat from high-temperature steam, etc., gradually becoming solid, and finally becomes decomposed carbon that adheres to the surface of the catalyst particles.

この結果、第2次接触分解においては、タールやピッチ
が副生ずることもなくなり、灯軽油成分に富んだ軽質油
を作ることができる。
As a result, in the second catalytic cracking, no tar or pitch is produced as a by-product, and light oil rich in kerosene components can be produced.

次に、本発明に係る重質油の接触分解装置について説明
する。
Next, a heavy oil catalytic cracking apparatus according to the present invention will be explained.

第1図において、1は第1次分解炉、2は第2次分解炉
、3は再生炉、4は加熱炉、5は環流器、6は冷却器、
7は精留塔、8はリフター、9は触媒混合器、io、i
iは調節弁である。
In FIG. 1, 1 is a primary cracking furnace, 2 is a secondary cracking furnace, 3 is a regeneration furnace, 4 is a heating furnace, 5 is a reflux device, 6 is a cooler,
7 is a rectification column, 8 is a lifter, 9 is a catalyst mixer, io, i
i is a control valve.

第1次分解炉1ば、外部加熱方式の管状炉構造をしてお
り、再生炉3からの可燃性ガスを有した廃ガスを燃焼し
て管内の重質油を加熱できるようになっている。
The primary cracking furnace 1 has an external heating type tubular furnace structure, and can burn the waste gas containing flammable gas from the regeneration furnace 3 to heat the heavy oil in the pipe. .

重質油Foは触媒混合器9において再生炉3からの触媒
を触媒比的0.05〜0.5の割合で添加混合され、第
1次分解炉1に供給される。
The heavy oil Fo is mixed with the catalyst from the regeneration furnace 3 at a catalyst ratio of 0.05 to 0.5 in the catalyst mixer 9, and is then supplied to the primary cracking furnace 1.

そして、第1次分解炉1で重質油が約350〜500℃
に加熱され、第1次接触分解が行なわれる。
Then, in the primary cracking furnace 1, the heavy oil is heated to about 350 to 500℃.
The first catalytic cracking is carried out.

この際、約350℃以上の温度で重質油の一部である低
分子炭化水素が接触分解され、分解の際に発生する分解
残渣が触媒粒子表面に付着する。
At this time, low-molecular-weight hydrocarbons that are part of the heavy oil are catalytically cracked at a temperature of about 350° C. or higher, and decomposition residues generated during the cracking adhere to the surface of the catalyst particles.

従って、第1次接触分解において、分解残渣が管内壁面
に付着堆積することもなく、管路が閉塞されない。
Therefore, in the first catalytic cracking, decomposition residues do not adhere to and accumulate on the inner wall surface of the pipe, and the pipe line is not blocked.

第1次接触分解を終えた重質油、気体状分解生成物、触
媒及分解残渣は、第1次分解炉1より第2次分解炉2の
上部に供給される。
The heavy oil, gaseous cracking products, catalyst, and cracking residue that have undergone the first catalytic cracking are supplied from the first cracking furnace 1 to the upper part of the second cracking furnace 2 .

第2次分解炉2は、複数の流動床、例えば2〜6段の竪
形流動床構造をしたものであり、再生炉3から触媒が上
段の流動床に供給され、そして加熱炉4において約50
0〜800℃に加熱された水蒸気等により流動させられ
、上段の流動床より下段の流動床に送られるようになっ
ている。
The secondary cracking furnace 2 has a vertical fluidized bed structure with a plurality of fluidized beds, for example, 2 to 6 stages, and the catalyst is supplied from the regeneration furnace 3 to the upper fluidized bed, and then in the heating furnace 4 about 50
It is fluidized by steam or the like heated to 0 to 800°C, and is sent from the upper fluidized bed to the lower fluidized bed.

この竪形流動床構造の第2次分解炉2は、第2図及第2
図a −fに示す如く、円筒体20のそれぞれの部分に
仕切板21が設けられて区割されており、各区割された
部分に多孔状の目皿22が取り付けられており、さらに
この目皿22に仕切板23が取り付けられている。
This secondary cracking furnace 2 with a vertical fluidized bed structure is shown in Figs.
As shown in Figures a to f, each part of the cylindrical body 20 is divided by a partition plate 21, and a perforated plate 22 is attached to each divided part. A partition plate 23 is attached to the plate 22.

又、仕切板21によって区割された部分を連通ずるパイ
プ24が仕切板21には取り付けられている。
Further, a pipe 24 is attached to the partition plate 21 to communicate the parts divided by the partition plate 21.

この区割された内部の構造は同じものであってもよいが
、異なった構造のものでもよく、例えば区割Aの部分は
、目皿22が平担に構成され、かつ同じ高さの仕切板2
3が平行に円筒体20の壁に接つして取り付けられてい
るものであり、区割Bの部分は、目皿22が平担に構成
され、かつ同じ高さの仕切板23が一端のみ円筒体20
の壁に接つし、そしてこの接つする部分が交互となるよ
うに平行に取り付けられたものであり、区割Cの部分は
、目皿22が階段状に取り付けられ、かつ仕切板23も
階段状に取り付けられたものであり、区割りの部分は、
目皿22を傾斜させて取り付け、仕切板23を階段状に
取り付けたものであり、区割E。
The structure of this divided interior may be the same, but it may also be of a different structure. For example, in the section A, the perforated plate 22 is configured flat, and the partitions are of the same height. Board 2
3 is attached in parallel to the wall of the cylindrical body 20, and in the section B, the perforated plate 22 is configured flat, and the partition plate 23 of the same height is attached only at one end. Cylindrical body 20
It is connected to the wall and is installed parallel to the wall so that the contacting parts are alternate. It was installed in a stair-like manner, and the divisions were as follows:
The perforated plates 22 are installed at an angle, and the partition plates 23 are installed in a stepped manner.

Fの部分は、目皿22を平担に取り付け、仕切板23を
略渦巻状に取り付けたものである。
In the part F, the perforated plate 22 is attached flat and the partition plate 23 is attached in a substantially spiral shape.

これらの区割A−Fの構成にはそれぞれ特徴があり、例
えば区割Aの構造においては、構造が簡単であるので低
コストで作れ、かつ一端に供給された触媒等は仕切板2
3を矢印のようにオーバーフローして流動移動するので
、触媒等の移動速度を均一にすることができ、一部の触
媒等のみが他端に早く到達するといった欠点もないので
あるが、オーバーフロ一時に触媒等の一部が逆方向に戻
る欠点があり、又区割Bの構造においては、触媒等の移
動速度を均一にすることができて重質油の濃度差をとり
やすく、又区割Cの構造においては、区割Aの構造にお
ける欠点を除去できるが、構造がそれだけ複雑になり、
又区割りの構造においては、触媒の移動は区割Cのもの
と同様の特徴を有し、又構造も簡単であるが、目皿22
が傾斜している為、流動層高さが均一でなく、流動のみ
だれが生じやすい欠点があり、区割E及Fの構造におい
ては、区割Bと同様な特長があるが、仕切板23の取り
付けが面倒となるといった特徴がある。
The configurations of these divisions A to F each have their own characteristics.For example, in the structure of division A, the structure is simple and can be manufactured at low cost, and the catalyst etc. supplied to one end are separated from the partition plate 2.
3 overflows and moves in a fluid manner as shown by the arrow, so the moving speed of the catalyst, etc. can be made uniform, and there is no drawback that only some catalysts, etc. reach the other end quickly. There is a drawback that a part of the catalyst etc. returns in the opposite direction at a time, but in the structure of Section B, the moving speed of the catalyst etc. can be made uniform, making it easier to compensate for the concentration difference of heavy oil. In the structure of section C, the drawbacks of the structure of section A can be eliminated, but the structure becomes that much more complicated.
In addition, in the structure of the partition, the movement of the catalyst has the same characteristics as that of the partition C, and the structure is simple, but the perforated plate 22
Since the partition plate 23 is sloped, the height of the fluidized bed is not uniform and there is a drawback that flow sag tends to occur.The structure of sections E and F has the same features as section B, but It has the characteristic that it is troublesome to install.

そこで。実施に際しては、重質油の分解時間、温度、触
媒の移動速度、触媒と重質油の混合速度、その他設計条
件によってどのような区割の構造のものを採用するか決
めるのである。
Therefore. When implementing the process, the type of partition structure to be adopted is determined based on the heavy oil decomposition time, temperature, catalyst movement speed, mixing speed of the catalyst and heavy oil, and other design conditions.

第2次分解炉2の区割A部に供給された重質油は、第1
次接触分解により生成した気体状分解生成物を分離し、
この気体状分解生成物Hcは環流器5に送られる。
The heavy oil supplied to section A of the secondary cracking furnace 2 is
Next, the gaseous decomposition products produced by catalytic cracking are separated,
This gaseous decomposition product Hc is sent to the reflux device 5.

他方、残分の重質油及第1次接触分解の触媒とそれに付
着した分解残渣が、再生炉3から供給された高温の触媒
に添加混合されて、第2次接触分解が行なわれる。
On the other hand, the residual heavy oil, the catalyst of the first catalytic cracking, and the cracked residue attached thereto are added to and mixed with the high temperature catalyst supplied from the regeneration furnace 3, and the second catalytic cracking is performed.

この第2次接触分解は、触媒比的4〜10、温度が約4
00〜600℃でかつ第1次接触分解時の温度以上で行
なわれる。
This second catalytic cracking has a catalyst ratio of 4 to 10 and a temperature of about 4
It is carried out at a temperature of 00 to 600°C and above the temperature during the first catalytic cracking.

重質油は触媒の粒子表面に付着し、触媒と共に高温水蒸
気により流動し、触媒の顕熱、高温水蒸気の顕熱から分
解熱を受けて接触分解が行なわれる。
The heavy oil adheres to the particle surface of the catalyst, flows together with the catalyst by high-temperature steam, and receives decomposition heat from the sensible heat of the catalyst and the sensible heat of the high-temperature steam, and undergoes catalytic cracking.

接触分解による気体状分解生成物は水蒸気と共に取り出
され、これらは環流器5に送られる一方、残分は区割B
部にパイプ24を通して送られ、区割A部と同様にして
接触分解が行なわれる。
Gaseous decomposition products from catalytic cracking are taken out together with water vapor, and these are sent to the reflux vessel 5, while the remainder is sent to section B.
It is sent through pipe 24 to section A, and catalytic cracking is carried out in the same manner as section A.

たたし、区割B部における接触分解時の温度は、区割A
部におまる接触分解時の温度よりも約20〜50℃位高
くしておく。
However, the temperature during catalytic cracking in section B is the same as section A.
The temperature is kept about 20 to 50°C higher than the temperature during catalytic cracking.

さらに、同様にして、区割C,D、E及Fにおいて接触
分解が行なわれる。
Furthermore, catalytic cracking is performed in sections C, D, E, and F in the same manner.

この際の接触分解時の温度は、区割Bよりも区割Cにお
ける方が、区割Cよりも区割りにおける方が、区割りよ
りも区割Eにおける方が、区割Eよりも区割Fにおける
方がそれぞれ約20〜50℃位高くされている。
In this case, the temperature during catalytic cracking is higher in section C than in section B, higher in section C than in section C, higher in section E than in section E, and higher in section F than in section E. The temperatures at 1 and 2 are about 20 to 50°C higher, respectively.

そして、各区割部において生成した気体状分解生成物H
cは水蒸気と共に取り出し、区割A部に設けられたサイ
クロン25によって飛来同伴した触媒を分離し、環流器
5及冷却器6を経て、約350℃以下に冷却されて精留
塔7に供給される。
Then, gaseous decomposition products H generated in each section are
c is taken out together with water vapor, the entrained catalyst is separated by a cyclone 25 provided in section A, and the catalyst is cooled to about 350° C. or lower through a reflux device 5 and a cooler 6, and then supplied to a rectification column 7. Ru.

そして、最後の区割F部においては、重質油は分解残渣
である分解カーボンとなり、触媒粒子表面に付着してい
るのみであり、これらの物が第2次分解炉から取り出さ
れる。
In the final section F, the heavy oil becomes decomposed carbon, which is a decomposition residue, and only adheres to the surface of the catalyst particles, and these materials are taken out from the secondary cracking furnace.

この第2次接触分解における反応時間は、第1次接触分
解の場合と異なり比較的長時間であり、例えば約5〜3
0分である。
The reaction time in this second catalytic cracking is different from that in the first catalytic cracking, and is relatively long, for example, about 5 to 3
It is 0 minutes.

このようにして、比較的活性の低い触媒、例えばアロフ
ェン等を用いて、重質油の第2次接触分解を行ない、分
解によって生成される気体状分解生成物を直ちに取り出
し、過分解による不飽和炭化水素の縮重合を防止すると
共に、さらに未分解の重質油を漸時分解温度を上げ、か
つ比較的長時間による接触分解を行ない、重質油を完全
に分解して分解残渣を分解カーボンとなし、触媒に付着
させて分解系から取り出すこと7こより、タールやピッ
チを副生ずることなく重質油を接触分解でき、しかも分
解生成物は灯軽油留分の中間留分を多く含む軽質油と、
オレフィンに富む石油化学原料に適した分解ガスとなる
In this way, the secondary catalytic cracking of heavy oil is carried out using a catalyst with relatively low activity, such as allophane, and the gaseous decomposition products produced by the cracking are immediately taken out, and the unsaturated products caused by overcracking are removed. In addition to preventing condensation polymerization of hydrocarbons, the decomposition temperature of undecomposed heavy oil is gradually increased, and catalytic cracking is performed over a relatively long period of time to completely decompose the heavy oil and convert the decomposition residue into decomposed carbon. By attaching it to a catalyst and removing it from the cracking system, heavy oil can be catalytically cracked without producing tar or pitch as by-products, and the cracked product is a light oil containing a large amount of middle distillate from kerosene and gas oil fractions. and,
It becomes a cracked gas suitable for petrochemical feedstocks rich in olefins.

尚、触媒を流動させ、かつ分解熱を供給する水蒸気の代
りに、窒素、水素、その他低分子炭化水素等をも用いる
ことができるが、これらのものは酸素を含んでいないこ
とが必要である。
Note that nitrogen, hydrogen, and other low-molecular hydrocarbons can also be used instead of the steam that flows the catalyst and supplies the heat of decomposition, but these must not contain oxygen. .

そして、特に水素を用いると、分解時の脱水素反応を防
止でき、かつ非凝縮性であることより望ましいものであ
る。
The use of hydrogen is particularly desirable because it prevents dehydrogenation reactions during decomposition and is non-condensable.

最後に、精留塔7において、分解ガス、ガソリン留分N
p、灯油及軽油留分Kr、重油留分Hoに分留する。
Finally, in the rectification column 7, the cracked gas and gasoline fraction N
P, kerosene and light oil fraction Kr, and heavy oil fraction Ho.

尚、必要に応じて環流器5における気体状分解生成物の
一部の高沸点留分を液化分離し、再度第2次分解炉2に
戻して接触分解を行なう。
Note that, if necessary, a part of the high boiling point fraction of the gaseous decomposition products in the reflux vessel 5 is liquefied and separated and returned to the second cracking furnace 2 for catalytic cracking.

第2次分解炉から取り出した分解カーボンを付着した触
媒は、調節弁11を経てリフター8にて水蒸気Stによ
り再生炉3に送られる。
The catalyst with decomposed carbon attached thereto taken out from the secondary cracking furnace is sent to the regeneration furnace 3 by steam St via a lifter 8 via a control valve 11.

この再生炉3は、空気Arにより触媒を流動させる流動
床構造をしており、廃触媒は空気で流動されながら付着
している分解カーボンを約550〜800℃で燃焼除去
し、接触分解の為の活性を取り戻させ、再生する。
This regeneration furnace 3 has a fluidized bed structure in which the catalyst is fluidized with air Ar, and the spent catalyst is fluidized with air to burn off attached decomposed carbon at about 550 to 800°C, and to perform catalytic cracking. revitalize and regenerate.

分解カーボンばCO及CO2となり、これらのガスはサ
イクロン3′で飛来同伴の触媒を分離して取り出され、
第1次分解炉1及加熱炉4に送り、CO等の可燃分を燃
焼して熱源の一部に利用する。
The decomposed carbon becomes CO and CO2, and these gases are taken out by separating the entrained catalyst in the cyclone 3'.
It is sent to a primary decomposition furnace 1 and a heating furnace 4, where combustible components such as CO are burned and used as part of the heat source.

再生炉3で再生した触媒は、調節弁10を経て第2次分
解炉2に約550〜8000Cの温度で送られ、第2次
接触分解に使用され、又一部は触媒混合器9に送られて
第1次接触分解に用いられる。
The catalyst regenerated in the regeneration furnace 3 is sent to the secondary cracking furnace 2 at a temperature of about 550 to 8000 C via the control valve 10 and used for secondary catalytic cracking, and a portion is sent to the catalyst mixer 9. and used for primary catalytic cracking.

尚、系内で損失する触媒量は、新しい触媒Catを再生
炉3に補充する。
In addition, to compensate for the amount of catalyst lost in the system, the regeneration furnace 3 is replenished with new catalyst Cat.

次に、重質油として中国大慶原油を用い、アロフェンを
触媒として用い、本発明によって接触分解した例を示す
Next, an example of catalytic cracking according to the present invention using China's Daqing crude oil as heavy oil and allophane as a catalyst will be shown.

表1及表2はそれぞれ重質油及触媒の特性を示し、表3
は接触分解時の条件を示し、表4及5は分解油の特性を
、表6は分解ガスの特性を、表7は分解生成物の収率を
それぞれ示す。
Tables 1 and 2 show the characteristics of heavy oil and catalyst, respectively, and Table 3
Tables 4 and 5 show the properties of cracked oil, Table 6 shows the properties of cracked gas, and Table 7 shows the yield of cracked products.

以上のことから、本発明は次のような特長を有している
From the above, the present invention has the following features.

■ 膠質上あるいはアロフェン等比較的活性の低い触媒
を用いるので重質油を効率よく接触分解でき、軽質化で
きる。
■ Since a relatively low activity catalyst such as colloid or allophane is used, heavy oil can be efficiently catalytically cracked and lightened.

■ 重質油に約0.05〜0.5の触媒比の触媒を加え
、約350〜500℃で短時間の第1次接触分解を行な
うので、分解残渣による管路閉塞のトラブルを防止でき
る。
■ A catalyst with a catalyst ratio of approximately 0.05 to 0.5 is added to heavy oil, and primary catalytic cracking is performed for a short period of time at approximately 350 to 500°C, which prevents troubles such as pipe blockages caused by cracked residues. .

■ 第1次接触分解の行なわれた重質油に、触媒比が約
4〜10の割合で触媒を加え、第1次接触分解時の温度
以上でかつ約400〜600℃で第2次接触分解を行な
い、この第2次接触分解は温度を変えて数段階に分けて
行なうので、生成される気体状分解生成物を過分解する
ことなく取り出すことができ、しかもタールやピッチを
副生ずることなく分解残渣を分解カーボンにまで分解で
き、さらには気体状分解生成物は灯油及軽油留分に富ん
だ油分と、オレフィンに富んだ石油化学原料ガスとなる
■ A catalyst is added to the heavy oil that has been subjected to the first catalytic cracking at a catalyst ratio of approximately 4 to 10, and the second stage is carried out at a temperature higher than the temperature during the first catalytic cracking and approximately 400 to 600°C. This secondary catalytic cracking is carried out in several stages by changing the temperature, so the gaseous decomposition products produced can be taken out without over-decomposition, and without producing tar or pitch as by-products. The decomposition residue can be decomposed into decomposed carbon without any problem, and the gaseous decomposition products become oil rich in kerosene and gas oil fractions and petrochemical raw material gas rich in olefins.

■ 分解カーボンの付着した触媒は、簡単に再生でき、
繰り返し接触分解の触媒として再使用できる。
■ Catalysts with decomposed carbon attached can be easily regenerated.
Can be reused as a catalyst for repeated catalytic cracking.

■ 分解カーボンを燃焼することにより、その燃焼熱を
接触分解用の熱源として利用できる。
■ By burning decomposed carbon, the combustion heat can be used as a heat source for catalytic cracking.

■ 重質油の接触分解装置は、第1次分解炉、及第2次
分解炉と分け、かつ第2次分解炉は内部を複数個の区割
された部屋としたので、接触分解に際し温度を段階的に
変えることができ、接触分解を効率よく行なえ、重質油
をタールやピッチを副生ずることなく灯油及軽油留分を
富む油分とオレフィンに富むガスとに分解することがで
き、しかも分解残渣は触媒と共に除去できるようになる
■ The heavy oil catalytic cracking equipment is divided into a primary cracking furnace, a secondary cracking furnace, and a secondary cracking furnace, and the interior of the secondary cracking furnace is divided into multiple chambers, so the temperature during catalytic cracking is controlled. can be changed in stages, catalytic cracking can be carried out efficiently, and heavy oil can be cracked into kerosene and gas oil fractions into oil-rich components and olefin-rich gases without producing tar or pitch as by-products. The decomposition residue can now be removed together with the catalyst.

■ 接触分解に必要な熱として、分解残渣を燃焼させた
熱をも利用できるので、省エネルギー化を図ることがで
きる。
■ As the heat required for catalytic cracking, the heat from burning the decomposition residue can also be used, resulting in energy savings.

■ 重質油の接触分解に必要な熱の供給は、第1次接触
分解においては外熱方式、第2次接触分解においては触
媒の顕熱及水蒸気等の顕熱等によるので、熱効率が良い
■ The heat required for catalytic cracking of heavy oil is supplied by external heat in the first catalytic cracking, and by the sensible heat of the catalyst and sensible heat of steam in the second catalytic cracking, so it has good thermal efficiency. .

又、第2次接触分解においては、分解温度の調節が容易
である。
Further, in the second catalytic cracking, the decomposition temperature can be easily controlled.

従って、重質油の特性及分解生成して得ようとする軽質
油に対応した接触分解の条件の設定が容易となる。
Therefore, it is easy to set conditions for catalytic cracking that correspond to the characteristics of heavy oil and the light oil to be obtained by cracking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる重質油の接触分解装置の実施例の
説明図、第2図は第2次分解炉の説明図、第2図a=f
は第1次分解炉の各区割A、B、C。 D、E、Fの平面図である。 1・・・・・・第1次分解炉、2・・・・・・第2次分
解炉、3・・・・・・再生炉、4・・・・・・加熱炉、
7・・・・・・精留塔。
Fig. 1 is an explanatory diagram of an embodiment of the heavy oil catalytic cracking apparatus according to the present invention, Fig. 2 is an explanatory diagram of a secondary cracking furnace, Fig. 2 a=f
are sections A, B, and C of the primary cracking furnace. It is a top view of D, E, and F. 1...Primary decomposition furnace, 2...Second decomposition furnace, 3...Regeneration furnace, 4...Heating furnace,
7... Rectification tower.

Claims (1)

【特許請求の範囲】 1 重質油に活性の低い触媒を加えて約350℃以上で
第1次接触分解を行なった後、再度活性の低い触媒を加
えて第1次接触分解時の温度以上でかつ約400℃以上
の温度範囲で温度を段階的に上昇させながら第2次接触
分解を行ない、気体状分解生成物を取り出すことを特徴
とする重質油の接触分解方法。 2 第1次接触分解時の触媒添加量は、重質油に対する
触媒の重量比が約0,05〜0.5である特許請求の範
囲第1項記載の重質油の接触分解方法。 3 第2次接触分解時の触媒添加量は、重質油に対する
触媒の重量比が約4〜10である特許請求の範囲第1項
記載の重質油の接触分解方法。 4 活性の低い触媒は、膠質上である特許請求の範囲第
1項記載の重質油の接触分解方法。 5 活性の低い触媒は、アロフェンである特許請求の範
囲第1項記載の重質油の接触分解方法。 6 第1次接触分解の時間は第2次接触分解の時間より
短かいものである特許請求の範囲第1項記載の重質油の
接触分解方法。 7 外部加熱式の管状構造からなる第1次分解炉、複数
個の区割された部屋からなる第2次分解炉、廃触媒とな
った触媒を再生する再生炉、高温ガスを供給する加熱炉
及分解生成したガスをそれぞれの留分に分離する精留塔
とから構成され、第1次分解炉と第2次分解炉、第2次
分解炉と精留塔、第2次分解炉と再生炉、第2次分解炉
と加熱炉、第1次分解炉と再生炉及再生炉と加熱炉とが
それぞれ接続されたことを特徴とする重質油の接触分解
装置。 8 再生炉は、送り込まれた廃触媒を酸化性気体によっ
て流動させる流動床構造のものである特許請求の範囲第
7項記載の重質油の接触分解装置。 9 加熱炉は、水蒸気、窒素ガス、水素ガス又は低分子
炭化水素ガスを約500〜800℃に加熱するものであ
る特許請求の範囲第7項記載の重質油の接触分解装置。 10 第2次分解炉は、各流動床上に多孔板が設けられ
かつ仕切板が取り付けられたものである特許請求の範囲
第7項記載の重質油の接触分解装置。 11 第2次分解炉は、竪形構造のものである特許請
求の範囲第7項又は第10項記載の重質油の接触分解装
置。
[Scope of Claims] 1. After adding a catalyst with low activity to heavy oil and performing primary catalytic cracking at a temperature of about 350°C or higher, a catalyst with low activity is added again to increase the temperature to a temperature higher than the temperature during the first catalytic cracking. A method for catalytic cracking of heavy oil, which comprises performing secondary catalytic cracking while increasing the temperature stepwise in a temperature range of about 400° C. or higher, and removing gaseous cracking products. 2. The method for catalytic cracking of heavy oil according to claim 1, wherein the amount of catalyst added during the first catalytic cracking is such that the weight ratio of the catalyst to the heavy oil is about 0.05 to 0.5. 3. The method for catalytic cracking of heavy oil according to claim 1, wherein the amount of catalyst added during the second catalytic cracking is such that the weight ratio of the catalyst to the heavy oil is about 4 to 10. 4. The method for catalytic cracking of heavy oil according to claim 1, wherein the catalyst with low activity is colloid. 5. The method for catalytic cracking of heavy oil according to claim 1, wherein the catalyst with low activity is allophane. 6. The method for catalytic cracking of heavy oil according to claim 1, wherein the time for the first catalytic cracking is shorter than the time for the second catalytic cracking. 7 A primary cracking furnace consisting of an externally heated tubular structure, a secondary cracking furnace consisting of multiple compartmented rooms, a regeneration furnace that regenerates the spent catalyst, and a heating furnace that supplies high-temperature gas. It consists of a rectification column that separates the gas produced by decomposition into each fraction, a primary cracking furnace, a secondary cracking furnace, a secondary cracking furnace and a rectification tower, a secondary cracking furnace and a regeneration furnace. A heavy oil catalytic cracking apparatus characterized in that a furnace, a secondary cracking furnace and a heating furnace, a primary cracking furnace and a regeneration furnace, and a regeneration furnace and a heating furnace are connected to each other. 8. The heavy oil catalytic cracking apparatus according to claim 7, wherein the regeneration furnace has a fluidized bed structure in which the spent catalyst sent therein is fluidized by oxidizing gas. 9. The heavy oil catalytic cracking apparatus according to claim 7, wherein the heating furnace heats steam, nitrogen gas, hydrogen gas, or low molecular hydrocarbon gas to about 500 to 800°C. 10. The heavy oil catalytic cracking apparatus according to claim 7, wherein the secondary cracking furnace is provided with a perforated plate on each fluidized bed and a partition plate attached thereto. 11. The heavy oil catalytic cracking apparatus according to claim 7 or 10, wherein the secondary cracking furnace has a vertical structure.
JP55030916A 1980-03-13 1980-03-13 Catalytic cracking method and equipment for heavy oil Expired JPS594475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55030916A JPS594475B2 (en) 1980-03-13 1980-03-13 Catalytic cracking method and equipment for heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55030916A JPS594475B2 (en) 1980-03-13 1980-03-13 Catalytic cracking method and equipment for heavy oil

Publications (2)

Publication Number Publication Date
JPS56127687A JPS56127687A (en) 1981-10-06
JPS594475B2 true JPS594475B2 (en) 1984-01-30

Family

ID=12317018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55030916A Expired JPS594475B2 (en) 1980-03-13 1980-03-13 Catalytic cracking method and equipment for heavy oil

Country Status (1)

Country Link
JP (1) JPS594475B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551229A (en) * 1984-03-19 1985-11-05 Chevron Research Company Cracking of heavy hydrocarbons with improved yields of valuable liquid products

Also Published As

Publication number Publication date
JPS56127687A (en) 1981-10-06

Similar Documents

Publication Publication Date Title
JP7281473B2 (en) High severity fluidized catalytic cracking system and process for producing olefins from petroleum feeds
US4336160A (en) Method and apparatus for cracking residual oils
CN103814114B (en) The fluid catalytic cracking paraffinic naphtha in downflow reactor
US4331533A (en) Method and apparatus for cracking residual oils
US4144189A (en) Process for regenerating spent cracking catalyst
JP6267694B2 (en) Direct catalytic cracking of crude oil by temperature gradient process
JPH03505345A (en) Heavy oil catalytic cracking method and equipment
JP6788006B2 (en) Methods and systems for fluid catalytic cracking
US9719026B2 (en) Catalytic cracking process for the treatment of a fraction having a low conradson carbon residue
US20080152552A1 (en) System and method of recycling spent catalyst in a fluid catalytic cracking unit
AU2008260152A1 (en) System and method of increasing synthesis gas yield in a fluid catalytic cracking unit
JPH03505601A (en) Heavy oil catalytic cracking method and equipment
JP2017502110A (en) Integrated process of solvent degassing and fluid catalytic cracking for the production of light olefins
JPH05508433A (en) Method and apparatus for dehydrogenating alkanes
KR930011920B1 (en) Process for catalystic cracking of hydrocarbons
US6776607B2 (en) Process for minimizing afterburn in a FCC regenerator
JP2007153925A (en) Biomass treatment method using fluidized catalytic cracking
JP3996320B2 (en) Method for producing gasoline with a high content of isobutane and isoparaffin by conversion using a catalyst
JP2007153924A (en) Biomass treatment method using fluidized catalytic cracking
CN101210188B (en) Conversion method for hydrocarbon oil
US5284575A (en) Process for fast fluidized bed catalyst stripping
CN101191068A (en) Cracking method for hydrocarbon oil
JPH02272096A (en) Cracking of hydrocarbon by two-stage catalyst
US5215650A (en) Cooling exothermic regenerator with endothermic reactions
AU2008261140A1 (en) System and method of producing heat in a fluid catalytic cracking unit