JPS594442A - Treatment of carbonaceous material - Google Patents

Treatment of carbonaceous material

Info

Publication number
JPS594442A
JPS594442A JP57112571A JP11257182A JPS594442A JP S594442 A JPS594442 A JP S594442A JP 57112571 A JP57112571 A JP 57112571A JP 11257182 A JP11257182 A JP 11257182A JP S594442 A JPS594442 A JP S594442A
Authority
JP
Japan
Prior art keywords
catalyst
activated carbon
carbon
reaction
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57112571A
Other languages
Japanese (ja)
Inventor
Yasuyuki Koie
鯉江 泰行
Mitsuhisa Sakamoto
光久 坂本
Yukihiro Tsutsumi
堤 幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57112571A priority Critical patent/JPS594442A/en
Publication of JPS594442A publication Critical patent/JPS594442A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To suppress an amt. of byproduct greatly in hydrogen chloride removing reaction, by treating carbonaceous materials with a radical capturing agent, such as phenols. CONSTITUTION:When carbonaceous materials produced by carbonizing carbon black, polyvinyl chloride, formaldehyde resin, etc. are used as catalyst carriers, they are immersed into a soln. of a phenolic radical capturing agent, such as hydroquinone, catechol, trimethylhydroquinone, p-t-butylcatechol, naphthol, pyrogallol, and heated to 50-150 deg.C with stirring, then washed with a solvent, and dried.

Description

【発明の詳細な説明】 材料の処理方法に関するものである。[Detailed description of the invention] It relates to a method of processing materials.

活性炭は、一般には木材,ヤシ殻等の植物系または石炭
,石油残渣,石油コークス等の鉱物系を経て製造される
。活性炭は、微結晶を基本成分とする微品質炭素で、発
達した細孔を有する多孔質炭素体である。そのため高い
吸着能を有し、各種の工業分野でガスの精製,溶剤の回
収,水の浄化等に利用されている。更に比表面積が50
0ないし15[10yy!/9 と大きく、また500
〜60。
Activated carbon is generally produced from plant-based materials such as wood and coconut shells, or from mineral-based materials such as coal, petroleum residue, and petroleum coke. Activated carbon is fine quality carbon whose basic component is microcrystals, and is a porous carbon body with developed pores. Therefore, it has a high adsorption capacity and is used in various industrial fields for gas purification, solvent recovery, water purification, etc. Furthermore, the specific surface area is 50
0 to 15 [10yy! /9 as big as 500
~60.

°Cまで耐熱性があり、耐熱性,耐アルカリ性も極めて
高いため、触媒または触媒の担体としても多く用いられ
ている。
It is heat resistant up to °C and has extremely high heat resistance and alkali resistance, so it is often used as a catalyst or catalyst carrier.

カーポンブラックは、炭化水素の液体や気体の熱分解ま
たは制御された爆発によって製造される黒鉛結晶子を含
む無定形型炭素材である。顔料。
Carbon black is an amorphous carbon material containing graphite crystallites produced by pyrolysis or controlled explosion of hydrocarbon liquids or gases. pigment.

充てん剤.補強剤として用いられるが、広い表面積を持
つため触媒への応用が考えられる。
Filling agent. It is used as a reinforcing agent, but because it has a large surface area, it can be used as a catalyst.

合成高分子の炭化によって生成される炭素材として、塩
化ビニル炭,3,5ージメチルフェノールホルムアルデ
ヒド樹脂炭,ポリ塩化ビニリデン樹脂炭,アセトンフル
フラール樹脂炭,フェノールホルムアルデヒド樹脂炭,
ポリアクリロニトリルまたは不活性気体中で加熱し炭化
することで得られる。
Carbon materials produced by carbonization of synthetic polymers include vinyl chloride charcoal, 3,5-dimethylphenol formaldehyde resin charcoal, polyvinylidene chloride resin charcoal, acetone furfural resin charcoal, phenol formaldehyde resin charcoal,
Obtained by heating and carbonizing polyacrylonitrile or in an inert gas.

普通の触媒や触媒の担体にない炭素材料の特徴は、不対
電子を有することである。炭素材料の不対電子の濃度は
、炭化工程の炭化温度等と関係があるが、例えば、活性
炭では通常1g1lないし10!0個/fと測定されて
いる(尾崎草ら編。
A feature of carbon materials that is not found in ordinary catalysts or catalyst carriers is that they have unpaired electrons. The concentration of unpaired electrons in a carbon material is related to the carbonization temperature in the carbonization process, and for example, in activated carbon, it is usually measured at 1g1l to 10!0 electrons/f (edited by Kusa Ozaki et al.).

「触媒工学講座 第10巻」128頁、地大書館)。“Catalyst Engineering Course Volume 10” p. 128, Chidai Shokan).

活性炭をはじめとして各種の炭素材料が触媒または触媒
の担体として用いられている。例えば、オレフィンに対
するハロゲン付加反応、置換ハロゲン化反応、有機ハロ
ゲン化物の脱ハロゲン化水素反応または炭化水素の脱水
素反応等があげられる(炭素材料学会網「活性炭 基礎
と応用」講祿社、321頁、1975年)。
Various carbon materials including activated carbon are used as catalysts or catalyst carriers. Examples include halogen addition reactions to olefins, substitution halogenation reactions, dehydrohalogenation reactions of organic halides, and dehydrogenation reactions of hydrocarbons (Carbon Materials Society Network, ``Activated Carbon Basics and Applications'', Kokisha, p. 321). , 1975).

この中で工業的に興味が持たれる反応の一例として1.
2−ジクロロエタンの接触脱塩化水素による塩化ビニル
の製造がある。この反応においても大きな比表面積を有
する活性炭が良い触媒であることは知られている。
Among these, an example of a reaction that is of industrial interest is 1.
There is the production of vinyl chloride by catalytic dehydrochlorination of 2-dichloroethane. It is known that activated carbon having a large specific surface area is a good catalyst for this reaction as well.

しか1、同じく工業的意味がある1、 1.2− ) 
IJジクロロエタン接触脱塩化水素による塩化ビニリデ
ン合成、へ4−ジクロロ−1−ブテンの接触脱塩化水素
によるクロロプレンの合成等には、従来公知の炭素材料
は良好な触媒でないことがわかった。すなわち、活性炭
を触媒また扛触媒担体として1.1.2− )ジクロロ
エタンの接触脱塩化水素反応を行ったところ、塩化ビニ
ル、シスおよびトランス−1,2−ジクロロエチレン等
の副生成物が多く生成され、目的とする塩化ビニリデン
への選択率は非常に低いものであった。また、へ4−ジ
クロロ−1−ブテンの場合には、目的生成物であるクロ
ロプレンは、はとんど得られず、1.4−ジクロロ−2
−ブテン、1−クロロブタジェン等の副生成物が得られ
る。1.1.2−トリクロロエタンの接触的脱塩化水素
反応触媒としてポリアクリロニトリル炭の使用が報告さ
れているが、塩化ビニリデンへの選択率は余シ高くない
However, 1, which also has industrial significance 1, 1.2-)
It has been found that conventionally known carbon materials are not good catalysts for the synthesis of vinylidene chloride by catalytic dehydrochlorination of IJ dichloroethane, the synthesis of chloroprene by catalytic dehydrochlorination of he-4-dichloro-1-butene, etc. That is, when the catalytic dehydrochlorination reaction of 1.1.2-) dichloroethane was carried out using activated carbon as a catalyst or catalyst carrier, many byproducts such as vinyl chloride, cis- and trans-1,2-dichloroethylene were produced. However, the selectivity to the target vinylidene chloride was extremely low. In addition, in the case of he-4-dichloro-1-butene, the target product chloroprene is rarely obtained, and 1,4-dichloro-2
By-products such as -butene and 1-chlorobutadiene are obtained. The use of polyacrylonitrile carbon as a catalyst for the catalytic dehydrochlorination reaction of 1.1.2-trichloroethane has been reported, but the selectivity to vinylidene chloride is not very high.

本発明者らは、塩化ビニリデンま九はクロロプレンが各
々1.1.2− )ジクロロエタンまたは5.4−ジク
ロロ−1−ブテンからイオン的または協奏的な脱塩化水
素反応によって生成されることに着目し、触Isまたは
触媒担体として用いるため、炭素材料の処理方法tS意
検討した。
The present inventors noticed that vinylidene chloride and chloroprene are produced from 1.1.2-) dichloroethane or 5.4-dichloro-1-butene, respectively, by ionic or concerted dehydrochlorination reactions. We also investigated ways to treat carbon materials for use as catalysts or catalyst carriers.

その結果、通常ラジカル捕捉作用を示す化合物、例えば
、ヒドロキノンまた社パラターシャリブチルカテコール
で処理された炭素材料、例えば、活性炭全触媒または触
媒担体として用いることによって、1,1.2−トリク
ロロエタンまたはへ4−ジクロロ−1−ブテンの脱塩化
水素反応における副生成物の量が大巾に抑制されること
を見出し本発明に到達した。
As a result, carbon materials treated with compounds that normally exhibit radical scavenging properties, such as hydroquinone or paratertiary butylcatechol, such as activated carbon as a total catalyst or catalyst support, can be used to convert 1,1,2-trichloroethane or The present invention was achieved by discovering that the amount of by-products in the dehydrochlorination reaction of 4-dichloro-1-butene can be greatly suppressed.

本発明の上記炭素材料の処理効果の原因は、以下の様に
考えられる。すなわち、未処理炭素材料が脱塩化水素触
媒として良好な結果會与えないのは、触媒に含まれてい
る不対電子が副反応を進行させているからで、本発明の
処理方法によって炭素材料に含まれる不対電子が除かれ
、副反応が抑制されたと考えられる。従って、該処理方
法は、ラジカルの関与が好ましくない反応の触媒または
触媒の担体としての炭素材料の処理に広く応用され得る
The cause of the treatment effect of the carbon material of the present invention is considered as follows. In other words, the reason why untreated carbon materials do not give good results as a dehydrochlorination catalyst is because the unpaired electrons contained in the catalyst promote side reactions. It is thought that the unpaired electrons included were removed and side reactions were suppressed. Therefore, this treatment method can be widely applied to the treatment of carbon materials as catalysts or catalyst carriers for reactions in which participation of radicals is undesirable.

すなわち、本発明は炭素材料を触媒または触媒担体とし
て使用するに際し、ラジカル捕捉剤で処理することを特
徴とする炭素材料の処理方法全提供するものである。
That is, the present invention provides a complete method for treating a carbon material, which is characterized in that the carbon material is treated with a radical scavenger when the material is used as a catalyst or a catalyst carrier.

以下、本発明′l!−更に詳細に説明する。Below, the present invention'l! - Explain in more detail.

本発明は、炭素材料を触媒または触媒担体として用いる
ための処理方法である。
The present invention is a treatment method for using a carbon material as a catalyst or catalyst carrier.

通常、触媒または触媒担体として使用される炭素材料と
しては、例えば、植物系または鉱物基金炭素原料とする
活性炭、カーボンブラックまたはポリ塩化ビニル、へ5
−ジメチルフェノール、ホルムアルデヒド樹脂、ポリ塩
化ビニリデン樹脂。
Carbon materials commonly used as catalysts or catalyst supports include, for example, activated carbon, carbon black or polyvinyl chloride, which are vegetable or mineral based carbon raw materials.
-Dimethylphenol, formaldehyde resin, polyvinylidene chloride resin.

アセトンフルフラール樹脂、フェノールホルムアルデヒ
ド樹脂、ポリアクリロニトリル等の合成高分子の炭化に
よって生成される炭素材等があげられる。好ましくは、
大きな比表面積を有する活性炭である。処理される活性
炭として通常用いられる木材、ヤシ殻等の植物系ケ原料
とするもの、または石炭9石油残液9石油コークス等の
鉱物系を原料とするものが使用できる。活性炭に施され
ている賦活法は通常のものであってよく、例えば、水蒸
気賦活法または塩化亜鉛法であってもさしつかえない。
Examples include carbon materials produced by carbonization of synthetic polymers such as acetone furfural resin, phenol formaldehyde resin, and polyacrylonitrile. Preferably,
It is an activated carbon with a large specific surface area. As the activated carbon to be treated, it is possible to use commonly used activated carbons made from plant-based raw materials such as wood and coconut shells, or those made from mineral-based raw materials such as coal, petroleum residue, and petroleum coke. The activation method applied to the activated carbon may be a conventional method, such as a steam activation method or a zinc chloride method.

本発明に用いられるラジカル捕捉剤は、ラジカル捕捉作
用を示す有機化合物または無機化合物で例えばヒドロキ
ノン、カテコール、トリメチルヒドロキノン、パラター
シャリブチルカテコール。
The radical scavenger used in the present invention is an organic compound or inorganic compound that exhibits a radical scavenging action, such as hydroquinone, catechol, trimethylhydroquinone, and paratertiary butylcatechol.

ナフトール、ピロガロール等のフェノール類、またはフ
ヱノチアジンの窒素、酸素および硫黄のいずれかを含む
複素環化合物、三塩化鉄等の無機ノ・ロゲン化合物が使
用され得るが、フェノール類が好ましく、特にヒドロキ
ノンまfCハパラターシャリブチルカテコールが好まし
い。
Phenols such as naphthol and pyrogallol, or heterocyclic compounds containing any of nitrogen, oxygen and sulfur such as phenothiazine, inorganic compounds such as iron trichloride may be used, but phenols are preferred, especially hydroquinone or fC. Haparatertiary butylcatechol is preferred.

炭素材料の処理方法は、ラジカル捕捉剤の溶液中に炭素
材料を浸漬する方法が簡便である。例えば、ヒドロキノ
ンまたはパラターシャリブチルカテコール溶液中に活性
炭を入れ、加熱攪拌しながら浸漬し、その後洗浄乾燥す
る方法である。その際、加熱温度は用いる溶媒によって
変わり得るが、通常50〜150℃の範囲である。加熱
時間は処理される活性炭量およびラジカル捕捉剤溶液の
濃度によって変わるが、30分間以上であれば十分であ
る。ラジカル捕捉剤溶液の濃度は広い範囲で選ぶことが
できるが、0.05M以上であればさしつかえない。溶
媒は上記ラジカル捕捉剤ケ溶解するものであればいずれ
でも良く、通常エタノールまfcは水が使用できる。浸
漬処理された活性炭は戸別され更に溶媒で洗浄される。
A simple method for treating the carbon material is to immerse the carbon material in a solution of a radical scavenger. For example, activated carbon is placed in a hydroquinone or paratertiary butyl catechol solution, immersed in the solution while heating and stirring, and then washed and dried. At that time, the heating temperature may vary depending on the solvent used, but is usually in the range of 50 to 150°C. The heating time varies depending on the amount of activated carbon to be treated and the concentration of the radical scavenger solution, but 30 minutes or more is sufficient. The concentration of the radical scavenger solution can be selected within a wide range, but any concentration of 0.05M or higher is acceptable. Any solvent may be used as long as it dissolves the radical scavenger, and usually ethanol or water can be used. The immersed activated carbon is sent to each house and washed with a solvent.

乾燥はその方法には特に制限はないが、常圧ま之は減圧
下で溶媒を除去すればよく、例えば200℃以下で加温
するか、あるいハ!素、水素、アルゴン、ヘリウム。
There are no particular restrictions on the drying method, but it is sufficient to remove the solvent under normal pressure or reduced pressure, for example, by heating at 200°C or less, or by heating at 200°C or less. element, hydrogen, argon, helium.

二酸化炭素等の不活性ガス存在下で実施すればよい。This may be carried out in the presence of an inert gas such as carbon dioxide.

上記の様に処理された炭素材料は、そのまま触媒として
用いられ得るが、触媒成分葡担持する担体として用いら
れても良い。
The carbon material treated as described above can be used as a catalyst as it is, but it can also be used as a carrier for supporting catalyst components.

本発明の触媒または触媒担体は、前記各種反応に有効で
あるが、もっとも顕著な効果は炭素数1〜12、好まし
くは2〜8、更に好ましくは2〜4のハロゲン化炭化水
素の脱ハロゲン化水素反応において発現される。
The catalyst or catalyst carrier of the present invention is effective in the various reactions mentioned above, but the most remarkable effect is dehalogenation of halogenated hydrocarbons having 1 to 12 carbon atoms, preferably 2 to 8 carbon atoms, and more preferably 2 to 4 carbon atoms. Expressed in hydrogen reactions.

例えば、本発明法で処理された活性炭に塩化セシウムと
ジベンゾ−24−クラウン−8の1〜1錯体または塩化
セシウムとジベンゾ−18−クラウン−6の1:2錯体
會担持した触媒全使用して1、1.2−トリクロロエタ
ンまたはへ4−ジクロロ−1−ブテンの接触膜塩化水素
反応を行ったところ、未処理の活性炭に上記錯体を担持
した触媒よりも著しく高い塩化ビニリデンまたはクロロ
プレンへの選択率が得られた仁とは、本発明の大きな特
徴である。
For example, a catalyst in which a 1 to 1 complex of cesium chloride and dibenzo-24-crown-8 or a 1:2 complex of cesium chloride and dibenzo-18-crown-6 is supported on activated carbon treated by the method of the present invention is used. When a catalytic membrane hydrogen chloride reaction of 1,1,2-trichloroethane or he4-dichloro-1-butene was carried out, the selectivity to vinylidene chloride or chloroprene was significantly higher than that of a catalyst in which the above complex was supported on untreated activated carbon. The kernels obtained are a major feature of the present invention.

以下、実施例により本発明ケ具体的に説明するが、本発
明はこれら実施例のみに限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 濃度α5モル←)のパラターシャリブチルカテコールの
エタノール浴液100+++tに市販の4〜6メツシ二
の一鉱物系粒状活性炭202金入れ、10時間加熱還流
した。活性炭をp過分離後、エタノール300ゴで洗浄
した。更に減圧下で乾燥した。
Example 1 Commercially available 4 to 6 mesh monomineral granular activated carbon 202 gold was added to 100 + + + t of an ethanol bath solution of paratertiary butylcatechol at a concentration of α5 mol←), and the mixture was heated under reflux for 10 hours. After the activated carbon was separated by purification, it was washed with 300 g of ethanol. It was further dried under reduced pressure.

この様に処理された活性炭を塩化セシウムとジベンゾ−
24−クラウン−8のモル比1:1の錯体のメタノール
溶液に入れ、攪拌しながら加熱した。溶媒勿留去し、乾
燥させることによって活性炭にセシウム−ジベンゾ−2
4−クラウン−8錯体が20重重量相持された触媒を得
た。
The activated carbon treated in this way is mixed with cesium chloride and dibenzo.
The complex was placed in a methanol solution of 24-crown-8 at a molar ratio of 1:1 and heated with stirring. Cesium-dibenzo-2 is added to activated carbon by distilling off the solvent and drying it.
A catalyst containing 20 4-crown-8 complexes by weight was obtained.

この様にして調製された触媒を内径20+nmφ。The catalyst thus prepared had an inner diameter of 20+nmφ.

長さ600mのパイレック蚤盲反応管に充填し、管状電
気炉によシ250℃に加熱した。1o容量チの蒸気列1
.1.2− トリクロロエタンを含む窒素ガス金流竜2
50 m21分で上記反応管に連続供給した。反応生成
ガスをガスクロマトグラフにより定量し、各生成物の選
択率を算出した。
The mixture was filled into a 600 m long blind Pyrex reaction tube and heated to 250° C. in a tubular electric furnace. 1 o capacity steam train 1
.. 1.2- Nitrogen gas containing trichloroethane 2
50 m was continuously fed to the reaction tube in 21 minutes. The reaction product gas was quantified by gas chromatography, and the selectivity of each product was calculated.

反応の結果ケ表1に示す。The reaction results are shown in Table 1.

実施例2 濃度(112Mのパラターシャリプチルヵテコールのエ
タノール溶液200−に実施例1と同じ粒状活性炭20
2を入れ、5時間加熱還流した。活性炭ケ濾過分降した
のち、エタノール60〇−中で更に1時間加熱還流した
。この活性炭ケ濾過洗浄後、減圧下で乾燥した。
Example 2 The same granular activated carbon as in Example 1 was added to an ethanol solution of paratertiary lipylcatechol at a concentration (112M) of 20%
2 was added and heated under reflux for 5 hours. After filtration and separation through activated carbon, the mixture was further heated under reflux for 1 hour in 600% ethanol. After filtering and washing the activated carbon, it was dried under reduced pressure.

この様に処理された活性炭を実施例1と同様に反応管に
充填し、1,1.2−1リクロロエタンを連続供給した
。反応条件は実施例1と同じとした。
The activated carbon treated in this manner was charged into a reaction tube in the same manner as in Example 1, and 1,1.2-1-lichloroethane was continuously supplied. The reaction conditions were the same as in Example 1.

反応の結果全表1に示す。The complete reaction results are shown in Table 1.

実施例5 濃度1118Mのヒドロキノン水浴液100ゴに実施例
1と同じ活性炭102ケ入れ、水浴(70〜80℃)上
で4時間攪拌しながら加温した。活性炭を濾過分離し3
00 mlの水で洗浄したのち、減圧下で乾燥した。
Example 5 102 pieces of the same activated carbon as in Example 1 were added to 100 g of hydroquinone water bath solution having a concentration of 1118 M, and heated while stirring on a water bath (70 to 80°C) for 4 hours. Filter and separate activated carbon 3
After washing with 00 ml of water, it was dried under reduced pressure.

この様に処理された活性炭ケ実施例1と同様に反応管に
充填し、1.1.2− )リクロロエタンを連続供給し
た。反応条件は実施例1と同じとした。
The activated carbon thus treated was charged into a reaction tube in the same manner as in Example 1, and 1.1.2-)lichloroethane was continuously supplied. The reaction conditions were the same as in Example 1.

反応の結果ケ表1に示す。The reaction results are shown in Table 1.

実施例4 濃度0.2Mのヒドロキノンのエタノール溶液に市販の
10〜32メソシユのヤシ殻活性炭102ケ入れ、5時
間力日熱還流した。活性炭ゲ濾過分離したのち、史にエ
タノール浴媒中で1時間加熱還流した。活性炭ケ濾過洗
浄したのち、減圧下に乾燥した。
Example 4 102 pieces of commercially available coconut shell activated carbon of 10 to 32 mesohydroles were added to an ethanol solution of hydroquinone having a concentration of 0.2M, and the mixture was heated under reflux for 5 hours. After separation by filtration with activated carbon, the mixture was heated under reflux for 1 hour in an ethanol bath medium. After filtering and washing with activated carbon, it was dried under reduced pressure.

この様に処理された活性炭iJ舘化セシウムとジベンゾ
−18−クラウン−6のモル比1:2の錯体のメタノー
ル溶液に入れ加熱し友。溶媒ケ留去し、乾燥させるこ七
によって活性炭にセンラム−ジペンゾ−18−クラウン
−6錯体が15重i%担持された触媒ケ得た。この触媒
付実施例1と同様に反応管に充填し、1.1.2−)リ
クロロエタンの脱塩化水素反応ケ行った。
The activated carbon thus treated was heated in a methanol solution containing a complex of cesium and dibenzo-18-crown-6 in a molar ratio of 1:2. The solvent was distilled off and the mixture was dried to obtain a catalyst in which 15% by weight of Senram-dipenzo-18-crown-6 complex was supported on activated carbon. The reaction tube was filled in the same manner as in Example 1 with this catalyst, and the dehydrochlorination reaction of 1.1.2-)lichloroethane was carried out.

反応の結果を表1に示す。The results of the reaction are shown in Table 1.

実施例5 濃J0.3Mのパラターシャリブチルカテコールのエタ
ノール溶液に実施例4と同じ活性炭ケ入れこの触媒を実
施例1と同様に反応管に充填し、i、 1.2− )リ
クロロエタンケ反応させ次。反応の結果を表1に示す。
Example 5 The same activated carbon as in Example 4 was added to a concentrated 0.3 M ethanol solution of paratertiary butylcatechol. This catalyst was charged into a reaction tube in the same manner as in Example 1, and Let it react next. The results of the reaction are shown in Table 1.

比較例4 実施例4と同じ未処理のヤシ殻活性炭を実施例1と同様
に反応管に充填し、1,1.2−1リクロロ工タンケ反
応させた。反応の結果?表1に示す。
Comparative Example 4 The same untreated coconut shell activated carbon as in Example 4 was filled into a reaction tube in the same manner as in Example 1, and a 1,1.2-1 reaction was carried out. Result of reaction? It is shown in Table 1.

比較例5 実施例1と同じ未処理の粒状活性炭に、セシウム−ジベ
ンゾ−24−1ラウン−80モル比1:1@体が20車
敬チ担持された触媒ケ調製した。
Comparative Example 5 A catalyst was prepared in which cesium-dibenzo-24-1-80 molar ratio 1:1 was supported on the same untreated granular activated carbon as in Example 1.

この触媒ケ実施例1と同様に反応管に充填し、へ4−ジ
クロロ−1−7゛テンを連続供給して反応させた。反応
の結果を表3に示す。
This catalyst was charged into a reaction tube in the same manner as in Example 1, and 4-dichloro-1-7'tene was continuously fed to react. The results of the reaction are shown in Table 3.

表6 特許出願人 東洋曹達工業株式会社Table 6 Patent applicant: Toyo Soda Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)  炭素材料を触媒又は触媒担体として使用する
に際し、ラジカル捕捉剤で処理することを特徴とする炭
素材料の処理方法。 Q) ラジカル捕捉剤がフエ・ノール類である特許請求
の範囲第(1)項記載の処理方法。 (3)炭素材料が活性炭である特許請求の範囲第(1)
項記載の処理方法。
[Scope of Claims] (1) A method for treating a carbon material, which comprises treating the carbon material with a radical scavenger when the carbon material is used as a catalyst or a catalyst carrier. Q) The treatment method according to claim (1), wherein the radical scavenger is a phenol. (3) Claim No. (1) in which the carbon material is activated carbon
Treatment method described in section.
JP57112571A 1982-07-01 1982-07-01 Treatment of carbonaceous material Pending JPS594442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112571A JPS594442A (en) 1982-07-01 1982-07-01 Treatment of carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112571A JPS594442A (en) 1982-07-01 1982-07-01 Treatment of carbonaceous material

Publications (1)

Publication Number Publication Date
JPS594442A true JPS594442A (en) 1984-01-11

Family

ID=14590037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112571A Pending JPS594442A (en) 1982-07-01 1982-07-01 Treatment of carbonaceous material

Country Status (1)

Country Link
JP (1) JPS594442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165624A (en) * 1986-12-26 1988-07-08 渥美 勝 Connection structure of pillar and cross beam
US6109487A (en) * 1999-02-12 2000-08-29 Dart Industries Inc. Container with dispensing assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165624A (en) * 1986-12-26 1988-07-08 渥美 勝 Connection structure of pillar and cross beam
US6109487A (en) * 1999-02-12 2000-08-29 Dart Industries Inc. Container with dispensing assembly

Similar Documents

Publication Publication Date Title
US10676415B2 (en) Methods for removing halogenated ethylene impurities in 2, 3, 3, 3-tetrafluoropropene product
KR920003923B1 (en) Process for purifying 1,1,1,2-tetrafluoroethane
US4696682A (en) Solid adsorbent for carbon monoxide and process for separation from gas mixture
RU1836312C (en) Method of decreasing content of unsaturated impurities in saturated fluoro-halogen-carbons
US4902312A (en) Carbon molecular sieves for purification of chlorofluorocarbons
JPH02274702A (en) Preparation of absorbent porous resin beads
CA2248218A1 (en) Porous carbon stock material and method of manufacturing same
EP2327680A1 (en) Process for producing fluorinated propene
JPH05245227A (en) Oxidization of halogenated organic compound using porous carbonaceous material
US4036940A (en) Recovery of iodine
JPS594442A (en) Treatment of carbonaceous material
JP3539434B2 (en) Manufacturing method of high performance carbon material
US3832306A (en) Process for the preparation of active carbon from halohydrocarbons
KR100839063B1 (en) Purification method of, 1,1-difluoroethane
US5597545A (en) Recovery of HF from aqueous streams
JPS62129144A (en) Porous composite structure and its preparation
JP4057103B2 (en) Method for selectively removing perfluoroisobutylene from a halogenated hydrocarbon stream
WO2019237723A1 (en) Catalyst for producing 1,1,1-trifluoro-2,2-dichloroethane by gas-phase chlorination, and preparation and application methods therefor
US3870482A (en) Process for the separation of c{hd 4 {b acetylenic hydrocarbons from gas streams
JP3675907B2 (en) Purification method of difluoromethane
US2926201A (en) Side-chain chlorination of ethylpolychlorobenzenes
JPH0617203B2 (en) Chlorine production method
JPH0834605A (en) Adsorbent for water treatment
JPH0520421B2 (en)
JPS594362B2 (en) Method for purifying hydrogen chloride containing organic compounds