JPS5944332B2 - thermal fluorescent phosphor - Google Patents

thermal fluorescent phosphor

Info

Publication number
JPS5944332B2
JPS5944332B2 JP15941978A JP15941978A JPS5944332B2 JP S5944332 B2 JPS5944332 B2 JP S5944332B2 JP 15941978 A JP15941978 A JP 15941978A JP 15941978 A JP15941978 A JP 15941978A JP S5944332 B2 JPS5944332 B2 JP S5944332B2
Authority
JP
Japan
Prior art keywords
phosphor
thermal
glow
li2b4o7
thermal fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15941978A
Other languages
Japanese (ja)
Other versions
JPS5584388A (en
Inventor
周作 江口
千秋 片岡
恵次 四宮
典夫 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP15941978A priority Critical patent/JPS5944332B2/en
Publication of JPS5584388A publication Critical patent/JPS5584388A/en
Publication of JPS5944332B2 publication Critical patent/JPS5944332B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は熱螢光性螢光体、更に詳しくは硼酸リチウム系
熱螢光性螢光体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermally fluorescent phosphor, and more particularly to a lithium borate-based thermally fluorescent phosphor.

従来から知られている硼酸リチウム系熱螢光性螢光体の
1つに銅付活硼酸リチウム螢光体(Li2B407:C
u)がある。
Copper-activated lithium borate phosphor (Li2B407:C
There is u).

この螢光体はフッ化リチウム螢光体(LiF:Mg)や
酸化ベリリウム螢光体(BeO)と同様にその構成元素
の原子番号が低く、生体の実効原子番号に近いため、放
射線吸収特性が生体のそれに近似しており、この螢光体
を用いた熱螢光線量計は生体組織の吸収線量測定が容易
であるという特長を有する反面、熱螢光効率がきわめて
悪く、従つて放射線の検出感度が低いことと、螢光体を
加熱した時に発する熱螢光強度を加熱温度に対してプロ
ットした曲線(以下この曲線を「グロー曲線」とよぷ)
のピーク温度が低く、従つて熱螢光線量計として用いた
時、フエーデイングが大きいという欠点を有しており、
この螢光体を熱螢光線量計として用いるにあたつては問
題があつた。本発明は実効原子番号が生体組織のそれに
近く、放射線吸収特性も人体軟部組織のそれと比較的類
似している上に上記Li2B407:CU螢光体よりも
熱螢光効率の高い熱螢光性螢光体を提供することを目的
とするものである。
This phosphor, like lithium fluoride phosphor (LiF:Mg) and beryllium oxide phosphor (BeO), has low atomic numbers of its constituent elements and is close to the effective atomic number of living organisms, so it has radiation absorption properties. Thermal fluorescence dosimeters using this fluorophore have the advantage of being easy to measure the absorbed dose of living tissue, but the thermal fluorescence efficiency is extremely low, making it difficult to detect radiation. A curve that plots the low sensitivity and the intensity of the thermal fluorescence emitted when the phosphor is heated against the heating temperature (hereinafter this curve will be referred to as the "glow curve").
Its peak temperature is low, so it has the disadvantage of large fading when used as a thermal fluorescence dosimeter.
There were problems when using this phosphor as a thermal fluorescent dosimeter. The present invention uses a thermofluorescent fluorescent material whose effective atomic number is close to that of living tissue, whose radiation absorption characteristics are relatively similar to those of human soft tissue, and whose thermal fluorescent efficiency is higher than that of the Li2B407:CU phosphor. The purpose is to provide a light body.

更に本発明は上記Li2B407:CU螢光体に比べて
グロー曲線の主ピーク温度が高く、フエーデイングの少
ない熱螢光性螢光体を提供することを目的とするもので
ある。
A further object of the present invention is to provide a thermally fluorescent phosphor that has a higher main peak temperature in its glow curve and less fading than the Li2B407:CU phosphor.

本発明者等は上記目的を達成するため Li2B4O7:CU螢光体の共付活剤について種々検
討した結果、Li2B407:CU螢光体にインジウム
(In)を共付活すればLi2B407:CU螢光体よ
りも高効率の熱螢光を呈する熱螢光性螢光体が得られる
こと、更にLi2B4O7:CU螢光体にInおよびケ
イ素(Si)を共付活すればLi2B、O、:Cu螢光
体よりも高効率の熱螢光を呈するのに加えてLi2B4
07の螢光体よりも高温側にグロー曲線の主ピークをも
つたフエーデイングの少ない熱螢光性螢光体が得られる
ことを見出し、本発明を完成させるに至つた。
In order to achieve the above object, the present inventors investigated various co-activators for Li2B4O7:CU phosphor, and found that if indium (In) is co-activated to Li2B407:CU phosphor, Li2B407:CU fluorophore will emit light. It is possible to obtain a thermofluorescent phosphor that exhibits thermal fluorescence with higher efficiency than that of a Li2B4O7:CU phosphor, and furthermore, by coactivating In and silicon (Si) to a Li2B4O7:CU phosphor, Li2B, O, :Cu phosphor can be obtained. In addition to exhibiting thermal fluorescence with higher efficiency than that of the photoreceptor, Li2B4
It was discovered that a thermally fluorescent phosphor having a main peak of the glow curve on the higher temperature side than the phosphor No. 07 and less fading could be obtained, and the present invention was completed.

本発明の熱螢光性螢光体はその組成式が で表わされるものである。The thermal fluorescent phosphor of the present invention has a compositional formula of It is expressed as

特に熱螢光強度に着目した時、上記組成式中のXおよび
yはそれぞれ3X10−4くx〈8×10−3および3
×10−4≦y≦3X10−2範囲にあることがより好
ましく、またグロー曲線の主ピーク温度の位置を高温側
に移動させるためにはZ値が5×10−3≦z≦5X1
0−2の範囲にあることがより好ましい。本発明の熱螢
光性螢光体は以下に述べる製造方法で製造される。螢光
体母体の出発原料としては市販の硼酸リチウム(Li2
B4O7)を用い、付活剤原料としては酸化銅(CuO
)または高温で容易にCuOに変りうる銅の化合物、酸
化インジウム(In2O3)または高温で容易にIn2
O3に変りうるインジウムの化合物および酸化ケイ素(
SiO2)または高温で容易にSiO2に変りうるケイ
素の化合物が用いられる。上記原料を化学量論的にLi
2B4O7:XCU.yIn,.ZSi(但し、X,.
yおよびZはそれぞれ10−5≦X≦5X0くy≦8X
10−2および0≦Z≦3×10−1を満たす数である
)となるように混合する。
Particularly when paying attention to the thermal fluorescence intensity, X and y in the above composition formula are 3X10-4 and 3
It is more preferable that the Z value be in the range of x10-4≦y≦3X10-2, and in order to move the position of the main peak temperature of the glow curve to the high temperature side, the Z value should be in the range of 5×10-3≦z≦5X1.
More preferably, it is in the range of 0-2. The thermofluorescent phosphor of the present invention is manufactured by the manufacturing method described below. Commercially available lithium borate (Li2
Copper oxide (CuO) was used as the activator raw material.
) or a compound of copper that can easily be converted to CuO at high temperatures, indium oxide (In2O3) or In2 that can be easily converted to CuO at high temperatures.
Compounds of indium and silicon oxide (
SiO2) or a silicon compound that can be easily converted to SiO2 at high temperatures is used. The above raw materials are stoichiometrically Li
2B4O7:XCU. yIn,. ZSi (however, X, .
y and Z are each 10-5≦X≦5X0; y≦8X
10-2 and 0≦Z≦3×10-1).

なお、螢光体母体の出発原料として硼酸リチウム(Li
2B4O7)を用いる代わりに酸化リチウム(Li2O
)または炭酸リチウム(Li2CO3)、硝酸リチウム
(LiNO3)などの高温で容易にLi2Oに変りうる
リチウムの化合物と、酸化硼素(B2O3)または硼酸
(H3BO3)、硼酸アンモニウム {(NH4)2B407}などの高温で容易にB2O3
に変りうる硼素化合物を用い、これらの原料をLi2O
およびB2O3に換算した時Li2Olモルに対してB
2O3が2モルとなる割合で上記付活剤原料と共に混合
しても良い。
Note that lithium borate (Li) is used as the starting material for the phosphor matrix.
2B4O7) instead of using lithium oxide (Li2O
) or lithium compounds that can be easily converted to Li2O at high temperatures, such as lithium carbonate (Li2CO3) and lithium nitrate (LiNO3), and high-temperature compounds such as boron oxide (B2O3), boric acid (H3BO3), and ammonium borate {(NH4)2B407}. easily B2O3
These raw materials are converted into Li2O using a boron compound that can be converted into
and B2Ol mole when converted to B2O3
It may be mixed with the above activator raw material at a ratio of 2 mol of 2O3.

各原料は乳鉢等を用いて充分に混合した後、アルミナル
ツボ、白金ルツボ、石英ルツボ等の耐熱性容器に充填し
、焼成する。
After each raw material is thoroughly mixed using a mortar or the like, it is filled into a heat-resistant container such as an alumina crucible, a platinum crucible, or a quartz crucible, and fired.

焼成は以下に述べる2通りの方法で行なわれる。1つは
空気中で750℃ないし850℃の温度で30分ないし
3時間焼成した後急冷する方法であり、もう1つは空気
中で950℃ないし1000℃の温度で30分ないし2
時間焼成して一度溶融し、これをステンレス等の金属皿
上に取出して急冷し、得られたガラス状の焼成物をボー
ルミル、乳鉢等で粉砕した後、600℃ないし800℃
の温度で30分ないし2時間熱処理し急冷する方法であ
る。
Firing is performed in two ways as described below. One is to bake in air at a temperature of 750°C to 850°C for 30 minutes to 3 hours, and then rapidly cooled, and the other is to bake in air at a temperature of 950°C to 1000°C for 30 minutes to 2 hours.
After firing for a time and melting it, it is taken out on a metal plate such as stainless steel and rapidly cooled. The resulting glass-like fired product is crushed in a ball mill, mortar, etc., and then heated to 600°C to 800°C.
This method involves heat treatment at a temperature of 30 minutes to 2 hours, followed by rapid cooling.

前記2通りの方法のいずれを採用しても良いが、前者の
方法による方が良い結果が得られる。なお、上述の方法
により得られた焼成物をアルゴンガス等の不活性ガス雰
囲気中で再焼成すれば熱螢光強度が更に高くなる場合が
ある。この場合、焼成温度および焼成時間は750℃な
いし850℃で30分ないし3時間が適当である。上述
の焼成の後、焼成物を洗浄し、ふるいにかけて粒子径の
そろつた粉末螢光体とする。、このようにして組成式L
i2B4O7:XCUlyIn.zSi(但し、X.y
およびzは上記と同じ定義を有する)で表わされる硼酸
リチウム系熱螢光性螢光体が得られる。
Although either of the above two methods may be employed, better results can be obtained with the former method. Incidentally, if the fired product obtained by the above method is re-fired in an inert gas atmosphere such as argon gas, the thermal fluorescence intensity may be further increased. In this case, the firing temperature and firing time are suitably 750°C to 850°C for 30 minutes to 3 hours. After the above-mentioned firing, the fired product is washed and sieved to obtain a powder phosphor having a uniform particle size. , thus the composition formula L
i2B4O7:XCUlyIn. zSi (However, X.y
and z have the same definitions as above) is obtained.

本発明の熱螢光性螢光体において付活剤の1つであるC
uの濃度(x値)は、Li2B4O7:CU螢光体の場
合と同様、Zが10−5以下の場合及び5X10−2以
上である時はいずれも得られる螢光体の熱螢光効率がき
わめて低く、熱螢光線量計用として実用的でなく、好ま
しいX値の範囲は10−5≦X〈5×10−2であり、
3×10−4くX≦8X10−3の範囲にある時、特に
良い結果が得られる。
C which is one of the activators in the thermally fluorescent phosphor of the present invention
As in the case of the Li2B4O7:CU phosphor, the concentration of u (x value) is such that when Z is 10-5 or less and when Z is 5X10-2 or more, the thermal phosphor efficiency of the obtained phosphor is The preferred range of X value is 10-5≦X〈5×10-2, which is extremely low and impractical for use in thermal fluorescence dosimeters.
Particularly good results can be obtained when the range is 3 x 10-4 x ≦ 8 x 10-3.

第1図は本発明の熱螢光性螢光体の1つであるLl2B
4O7:0.003Cu.yIn螢光体において共付活
剤であるInの濃度(y値)と熱螢光強度との関係を示
したグラフである。
Figure 1 shows Ll2B, which is one of the thermofluorescent phosphors of the present invention.
4O7: 0.003Cu. 2 is a graph showing the relationship between the concentration (y value) of In, which is a co-activator, and the thermal fluorescence intensity in a yIn phosphor.

グラフの縦軸はnを含まない(y−0)時の熱螢光強度
を100とした時の相対値で表わしたもので、熱螢光強
度はおよそ145℃に現われるグロー曲線のピークの高
さで比較されている。第1図から明らかなようにLl2
B4O7:0.001Cu.yIn螢光体においてy値
が増加すると熱螢光強度は次第に増加し、3×10−3
付近で最大となるが、y値が更に増加すると熱螢光強度
は逆に低下し、y値が8X10−2以上ではInを共付
活しないLl2B4O7:0.001CU螢光体より低
くなる。この傾向は付活剤であるCuの濃度に関係なく
ほぼ同様であり、また共付活剤としてInに加えてSi
を用いた場合、グロー曲線の主ピーク温度はより高温側
に移動するが、グロー曲線の主ピークの高さで比較する
とIn濃度(y値)と熱螢光強度との関係はほぼ第1図
に示したような傾向を示した。このようにLi2B4O
7:CU螢光体にInを共付活することによつてLi2
B4O7:CU螢光体の熱螢光強度を増加させることが
できるが、Li2B4O7:CU螢光体よりも高い熱螢
光強度が得られるInの濃度(y値)の範囲はO<y≦
8X10−2であり、より好ましいIn濃度範囲は3×
10−4≦y≦3X10−2である。第2図ぱ本発明の
熱螢光性螢光体および従来公知のLi2B4O7:CU
螢光体のグロー曲線を示したもので曲線A,b,eおよ
びdはそれぞれLl2B4O7:0.003Cu,.0
.0021n螢光体、Ll2B4O7:0.003Cu
10.0021n10.005Si螢光体、Ll2B4
O7:0.003Cu、0.0021n,.0.015
Si螢光体およびLl2B4O7:0.003Cu螢光
体のグロー曲線である。
The vertical axis of the graph is expressed as a relative value when the thermal fluorescence intensity when n is not included (y-0) is taken as 100, and the thermal fluorescence intensity is the height of the peak of the glow curve that appears at approximately 145°C. It is compared with As is clear from Figure 1, Ll2
B4O7: 0.001Cu. As the y value increases in the yIn phosphor, the thermal fluorescence intensity gradually increases, reaching 3 x 10-3
The thermal fluorescence intensity reaches a maximum near this point, but as the y value increases further, the thermal fluorescence intensity decreases, and when the y value exceeds 8X10-2, it becomes lower than that of the Ll2B4O7:0.001CU phosphor that does not coactivate In. This tendency is almost the same regardless of the concentration of Cu as an activator, and in addition to In as a co-activator, Si
When using , the main peak temperature of the glow curve moves to a higher temperature side, but when comparing the height of the main peak of the glow curve, the relationship between In concentration (y value) and thermal fluorescence intensity is almost the same as that shown in Figure 1. The results showed the same trends as shown in . In this way, Li2B4O
7: By coactivating In to the CU fluorophore, Li2
The thermal fluorescence intensity of the B4O7:CU phosphor can be increased, but the range of In concentration (y value) in which a higher thermal fluorescence intensity can be obtained than that of the Li2B4O7:CU phosphor is O<y≦
8×10−2, and a more preferable In concentration range is 3×
10-4≦y≦3X10-2. Figure 2: Thermofluorescent phosphor of the present invention and conventionally known Li2B4O7:CU
The glow curves of the phosphors are shown, and curves A, b, e and d are Ll2B4O7:0.003Cu, . 0
.. 0021n phosphor, Ll2B4O7:0.003Cu
10.0021n10.005Si phosphor, Ll2B4
O7: 0.003Cu, 0.0021n,. 0.015
Glow curves of Si phosphor and Ll2B4O7:0.003Cu phosphor.

第2図から明らかなようにLi2B4O7:Cu螢光体
にnを共付活すると熱螢光強度は強くなるが、グロー曲
線のピーク温度はLi2B4O7:Cu螢光体と同様に
約145℃であつてその位置ほ変化しない。しかしなが
ら、Li2B4O7:CUにInl,Siを同時に共付
活すると例えば第2図曲線bに示されるように145℃
付近の他に230℃付近にグロー曲線のピークが現われ
、Siの添加量(z値)が増加するに従つて230℃付
近のグローピークが145℃付近のグローピークに比べ
て相対的に高くなりグロー曲線の主ピークが約230℃
へ移行する。230℃付近のグローピークが145℃付
近のそれに比べて相対的に高くなり、主ピークとなるの
はz値が5X10−3以上の時であり、z値が更に多く
なると主ビークである230℃付近でのグローピーク強
度が145℃付近でのそれに比べて相対的にますます強
くなる。
As is clear from Fig. 2, co-activation of n to the Li2B4O7:Cu phosphor increases the thermal fluorescence intensity, but the peak temperature of the glow curve is approximately 145°C, similar to the Li2B4O7:Cu phosphor. Its position does not change much. However, when Li2B4O7:CU is co-activated with Inl and Si at the same time, for example, as shown in curve b in Figure 2,
In addition to this, a glow curve peak appears near 230°C, and as the amount of Si added (z value) increases, the glow peak near 230°C becomes relatively higher than the glow peak near 145°C. The main peak of the glow curve is approximately 230℃
Move to. The glow peak near 230°C is relatively higher than that near 145°C, and the main peak is when the z value is 5X10-3 or more, and when the z value increases further, the main peak is 230°C. The glow peak intensity near 145°C becomes relatively stronger than that near 145°C.

しかしながらz値がおよそ10−2以上になるとグロー
曲線はほとんど変化しなくなり、およそ5X10−2以
上になると熱螢光強度が次第に弱くなつて3X10−1
以上では得られた螢光体の熱螢光強度がLi2B4O7
:CU螢光体のそれよりも弱くなり好ましくない。従つ
てInと共にSiを共付活剤とする螢光体にあつてはS
i濃度(z値)は3X10−1以下であることが好まし
く、特に5X10−3くZ〈5X10−2の範囲にある
ことがより好ましい。なお、Li2B4O7:CU螢光
体のグロー曲線の主ピークを高温側に移行させるために
はInとSiを共付活することが必要でLi2B4O7
:CU螢光体にInのみ、またはSiのみを共付活した
場合にはグロー曲線のピーク位置の移行が認められない
ので、共付活剤として添加されるSiはInと組合わさ
つて新しいトラツプを形成しているものと思われるが、
Li2B4O7:CU螢光体のグロー曲線の主ピークの
位置を移動させるには本発明の螢光体のごとくInとS
iを共付活する代りに銀(Ag)とSiを共付活しても
同様の結果が得られる。
However, when the z value exceeds approximately 10-2, the glow curve hardly changes, and when the z value exceeds approximately 5X10-2, the thermal fluorescence intensity gradually weakens to 3X10-1.
In the above, the thermal fluorescence intensity of the obtained phosphor is Li2B4O7
: It is weaker than that of CU phosphor, which is not preferable. Therefore, in the case of a phosphor that uses Si as a co-activator together with In, S
The i concentration (z value) is preferably 3X10-1 or less, particularly preferably in the range of 5X10-3 x Z<5X10-2. In addition, in order to shift the main peak of the glow curve of the Li2B4O7:CU phosphor to the high temperature side, it is necessary to coactivate In and Si.
:When a CU phosphor is coactivated with only In or only Si, no shift in the peak position of the glow curve is observed, so Si added as a coactivator is combined with In to create a new trap. It seems that it forms the
To shift the position of the main peak of the glow curve of the Li2B4O7:CU phosphor, In and S are used as in the phosphor of the present invention.
Similar results can be obtained by coactivating silver (Ag) and Si instead of coactivating i.

以上述べたように本発明の熱螢光性螢光体は従来から知
られているLi2B4O7:CU螢光体の4ないし5倍
の感度を有し、また、Li2B4O7:Cu螢光体に比
べてグロー曲線の主パークがより高温側に位置する。
As described above, the thermal fluorescent phosphor of the present invention has a sensitivity 4 to 5 times that of the conventionally known Li2B4O7:CU phosphor, and is also more sensitive than the Li2B4O7:Cu phosphor. The main park of the glow curve is located on the higher temperature side.

従つて本発明の螢光体を熱螢光線量計として用いること
によりLi2B4O7:Cu螢光体を用いた熱螢光線量
計に比べ、より低線量の放射線を測定することが可能と
なり、またその熱螢光線量計はフエーディング特性も良
好である。次に実施例によつて本発明を説明する。
Therefore, by using the phosphor of the present invention as a thermal fluorescent dosimeter, it is possible to measure lower doses of radiation than with a thermal fluorescent dosimeter using a Li2B4O7:Cu phosphor. Thermal fluorescence dosimeters also have good fading characteristics. Next, the present invention will be explained with reference to Examples.

実施例 1 上記螢光体原料をボールミルで充分に混合した後アルミ
ナルツボに充填して高温電気炉に入れ、空気中で830
℃の温度で2時間焼成した。
Example 1 The above phosphor raw materials were thoroughly mixed in a ball mill, then filled into an alumina crucible, placed in a high-temperature electric furnace, and heated at 830 °C in air.
It was baked for 2 hours at a temperature of °C.

得られた焼成物を粉砕し、温水で洗浄した後、乾燥させ
てからふるいにかけて粒子径をそろえLl2B4O7:
0.003Cu10,002n螢光体を得た。
The obtained baked product was crushed, washed with warm water, dried, and sieved to make the particle size uniform.Ll2B4O7:
A 0.003Cu10,002n phosphor was obtained.

このようにして得られた螢光体およそ145℃にグロー
曲線のピークをもつた熱螢光を示し、60C0γ線を照
射した後の熱螢光強度はピークの高さで比較するとLl
2B4O7:0.003Cuのそれの約4.8倍であつ
た。このLi2B4O7:0.003Cu10.002
1n螢光体のグロー曲線は第2図曲線aで示される。実
施例 2 上記螢光体原料を用いること以外は実施例1と同様にし
てLl2B4O7:0.003CU10.003In、
0.015Si螢光体を得た。
The thus obtained phosphor exhibits thermal fluorescence with a glow curve peak at approximately 145°C, and the thermal fluorescence intensity after irradiation with 60C0 gamma rays is Ll when compared in terms of peak height.
It was about 4.8 times that of 2B4O7:0.003Cu. This Li2B4O7:0.003Cu10.002
The glow curve of the 1n phosphor is shown by curve a in FIG. Example 2 Ll2B4O7:0.003CU10.003In,
A 0.015Si phosphor was obtained.

このようにして得られた螢光体はおよそ230℃にグロ
ー曲線の主ピークをもつた熱螢光を示し、60C0γ線
を照射した後の熱螢光強度は主ピークの高さで比較する
とLl2B4O7:0.003CU螢光体のそれの約5
倍であり、フエーデング特性もLi2B4O7:0.0
03Cu螢光体のそれに比べ著く改善されていた。この
Ll2B4O7:0.003CU10.003In、0
.015Si螢光体のグロー曲線は第2図曲線Cで示さ
れる。実施例 3 上記螢光体原料をボールミルで充分に混合した後、以下
、800℃で2時間焼成すること以外は実施例1と同様
にしてLl2B4O7:0,001CU10.0011
n螢光体を得た。
The phosphor obtained in this way exhibits thermal fluorescence with a main peak of the glow curve at approximately 230°C, and the thermal fluorescence intensity after irradiation with 60C0 gamma rays is compared with the height of the main peak: Ll2B4O7 : Approximately 5 that of 0.003CU phosphor
Li2B4O7:0.0 times the fading characteristics
It was significantly improved compared to that of the 03Cu phosphor. This Ll2B4O7:0.003CU10.003In, 0
.. The glow curve of the 015Si phosphor is shown by curve C in FIG. Example 3 After thoroughly mixing the above phosphor raw materials in a ball mill, Ll2B4O7:0,001CU10.0011 was prepared in the same manner as in Example 1, except that it was fired at 800°C for 2 hours.
n phosphor was obtained.

このようにして得られた螢光体はおよそ145℃にグロ
ー曲線のピークをもつた熱螢光を示し、60C0γ線を
照射した後の燃螢光強度はピークの高さで比較するとL
l2B4O7:0.001Cu螢光体のそれの約4倍で
あつた。
The phosphor thus obtained exhibits thermal fluorescence with a glow curve peak at approximately 145°C, and the intensity of the glow curve after irradiation with 60C0 gamma rays is L when compared in terms of peak height.
12B4O7: It was about 4 times that of the 0.001Cu phosphor.

実施例 4 上記螢光体原料を用いること以外は実施例3と同様にし
てLl2B4O7:0.0005CU,0.0005I
n、0.02Si螢光体を得た。
Example 4 Ll2B4O7: 0.0005CU, 0.0005I was prepared in the same manner as in Example 3 except that the above phosphor raw materials were used.
n,0.02Si phosphor was obtained.

このようにして得られた螢光体はおよそ230℃にグロ
ー曲線の主ピークをもつた熱螢光を示し、60C0γ線
を照射した後の熱螢光強度は主ビークの高さで比較する
とLl2B4O7:0.0005Cu螢光体のそれの約
3.5倍であり、フエーデイング特性もLl2B4O7
:0.0005CU螢光体のそれに比べ著しく改善され
ていた。
The phosphor obtained in this way exhibits thermal fluorescence with a main peak of the glow curve at approximately 230°C, and the thermal fluorescence intensity after irradiation with 60C0 gamma rays is compared with the height of the main peak: Ll2B4O7 :0.0005Cu phosphor is about 3.5 times that of phosphor, and the fading property is also Ll2B4O7
: It was significantly improved compared to that of the 0.0005CU phosphor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱螢光性螢光体の共付活剤であるIn
濃度(y値)と熱螢光強度との関係を示したグラフであ
る。
Figure 1 shows In, which is a co-activator for the thermofluorescent phosphor of the present invention.
It is a graph showing the relationship between density (y value) and thermal fluorescence intensity.

Claims (1)

【特許請求の範囲】 1 組成式が Li_2B_4O_7:xCu、yIn、zSi(但し
、x、y)およびzはそれぞれ10^−^5≦x≦5×
10^−^2、 0<y≦8×10^−^2および 0≦z≦3×10^−^1 なる条件を満たす数である) で表わされる硼酸リチウム系熱螢光性螢光体。 2 前記x、y、およびzがそれぞれ 3×10^−^4≦x≦8×10^−^3、3×10^
−^4≦y≦3×10^−^2および5×10^−^3
≦z≦5×10^−^2なる条件を満たす数であること
を特徴とする特許請求の範囲第1項記載の熱螢光性螢光
体。
[Claims] 1. The compositional formula is Li_2B_4O_7:xCu, yIn, zSi (where x, y) and z are each 10^-^5≦x≦5×
10^-^2, 0<y≦8×10^-^2 and 0≦z≦3×10^-^1) . 2 The above x, y, and z are respectively 3×10^-^4≦x≦8×10^-^3, 3×10^
-^4≦y≦3×10^-^2 and 5×10^-^3
The thermofluorescent phosphor according to claim 1, wherein the number satisfies the following condition: ≦z≦5×10^-^2.
JP15941978A 1978-12-20 1978-12-20 thermal fluorescent phosphor Expired JPS5944332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15941978A JPS5944332B2 (en) 1978-12-20 1978-12-20 thermal fluorescent phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15941978A JPS5944332B2 (en) 1978-12-20 1978-12-20 thermal fluorescent phosphor

Publications (2)

Publication Number Publication Date
JPS5584388A JPS5584388A (en) 1980-06-25
JPS5944332B2 true JPS5944332B2 (en) 1984-10-29

Family

ID=15693323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15941978A Expired JPS5944332B2 (en) 1978-12-20 1978-12-20 thermal fluorescent phosphor

Country Status (1)

Country Link
JP (1) JPS5944332B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091803A1 (en) * 2010-01-29 2011-08-04 Tartu Ülikool (University Of Tartu) Li2B4O7 BASED TRANSPARENT TISSUE-EQUIVALENT RADIATION DETECTOR FOR THERMALLY OR OPTICALLY STIMULATED LUMINESCENCE DOSIMETRY AND FABRICATING METHOD THEREOF

Also Published As

Publication number Publication date
JPS5584388A (en) 1980-06-25

Similar Documents

Publication Publication Date Title
Saidu et al. Thermoluminescence response of rare earth activated zinc lithium borate glass
Kumar et al. Structural, optical and thermoluminescence study of Dy3+ ion doped sodium strontium borate glass
CN112877069B (en) Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof
Salama et al. Thermoluminescence properties of borosilicate glass doped with ZnO
Vitola et al. The boron effect on low temperature luminescence of SrAl2O4: Eu, Dy
Shiratori et al. Radio-photoluminescence Properties of Heavy-element-based Alkaline Phosphate Glasses and Their Application to X-ray Imaging.
Hashim et al. Realization of dysprosium doped lithium magnesium borate glass based TLD subjected to 1–100 Gy photon beam irradiations
Yamashita et al. Beryllium oxide doped with lithium or sodium for thermoluminescence dosimetry
Yoshimura et al. Thermoluminescent and optical absorption properties of neodymium doped yttrium aluminoborate and yttrium calcium borate glasses
US4248731A (en) Thermoluminescent material
Marini et al. Production and characterization of H3BO3–Li2CO3–K2CO3–MgO glass for dosimetry
Alajlani et al. Thermoluminescence glow curve analysis and kinetic parameters of Dy-doped BaSi2O5 phosphor
Molefe et al. Structural, photoluminescence and thermoluminescence study of novel Li+ co-activated lanthanum oxide activated with Dy3+ and Eu3+ obtained by microwave-assisted solution combustion synthesis
JPS5944332B2 (en) thermal fluorescent phosphor
Ravikumar et al. Spectral and thermoluminescence characteristics of high gamma dose irradiated Dy: LiKB4O7 single crystals
CN112745840B (en) Near-infrared silicate germanate long-afterglow luminescent material and preparation method thereof
Ramasamy et al. Synthesis and TL emission properties of RE3+ (Tm, Tb, Ce, Gd and Dy) doped lithium based alkaline (Ca, Mg) earth metal borates
CN113149432A (en) Anti-radiation boron tellurate luminescent glass and preparation method thereof
JPS6033862B2 (en) Thermal fluorescent composite oxide phosphor
Gaikwad et al. Optically stimulated luminescence in doped K3Na (SO4) 2 phosphors
US3926838A (en) Transparent, crystalline, cathodoluminescent materials
Razak et al. Photoluminescence and thermoluminescence properties of Li2O‐Na2O‐B2O3 glass
JPH05263075A (en) Stimulable thermophosphor
Salleh et al. Effect of strontium concentration on thermoluminescence glow curve of copper doped lithium magnesium borate glass
CN114230182B (en) Rare earth doped transparent photoelectric niobate glass ceramic material and preparation method thereof