CN112877069B - Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof - Google Patents

Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof Download PDF

Info

Publication number
CN112877069B
CN112877069B CN202110180776.6A CN202110180776A CN112877069B CN 112877069 B CN112877069 B CN 112877069B CN 202110180776 A CN202110180776 A CN 202110180776A CN 112877069 B CN112877069 B CN 112877069B
Authority
CN
China
Prior art keywords
gallium
oxide
containing compound
chromium
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110180776.6A
Other languages
Chinese (zh)
Other versions
CN112877069A (en
Inventor
张彦
刘家文
王占勇
徐家跃
龚震
黄礼武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN202110180776.6A priority Critical patent/CN112877069B/en
Publication of CN112877069A publication Critical patent/CN112877069A/en
Application granted granted Critical
Publication of CN112877069B publication Critical patent/CN112877069B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • C09K11/681Chalcogenides
    • C09K11/682Chalcogenides with zinc or cadmium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The invention discloses Cr 3+ Gallium aluminate near-infrared long-afterglow luminescent material and a preparation method thereof. The chemical general formula of the near-infrared long afterglow luminescent material is Zn 3 Ga x Al 2‑x Ge a Ti b Sn 2‑a‑ b O 10 :yCr 3+ . The preparation method comprises the following steps: weighing raw materials according to the molar ratio of each substance in the equation, adding a fluxing agent, and grinding in an agate mortar to uniformly mix the raw materials to obtain a precursor; loading the precursor into an alumina crucible, and presintering in air or neutral atmosphere; grinding and uniformly mixing the sample obtained by pre-sintering, and calcining in air or neutral atmosphere to obtain Cr 3+ Gallium aluminate near infrared long afterglow luminescent material. The near-infrared long afterglow fluorescent powder has the advantages of low cost of raw materials, simple and feasible operation, low requirement on equipment and the like. The long afterglow luminescent material has the emission range in the near infrared region, and has the excellent properties of long afterglow time and the like.

Description

Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof
Technical Field
The invention relates to near-infrared long-afterglow fluorescent powder and a preparation method thereof, in particular to Cr-containing fluorescent powder 3+ The doped gallium aluminate near infrared long afterglow luminescent material and its preparation process may be used in indicating illumination and imaging detection, and belongs to the field of long afterglow luminescent material technology.
Background
The long-afterglow luminescent material is one kind of luminescent material capable of absorbing and storing external light radiation energy and releasing light slowly. This characteristic is widely used in indication lighting, such as emergency exit signs, fire-fighting access, architectural decoration, and the like, and recently, is gradually expanded to the application fields of bio-imaging, information storage, and the like. The existing long afterglow materials in the visible light region are mainly divided into blue light, green light and red light materials, wherein the optical properties of the blue and green luminescent materials, such as luminous intensity, afterglow time and the like, already meet the requirements of practical application. However, the luminous intensity and afterglow time of the red long afterglow material are relatively poor, which restricts the application of the material.
In recent years, near-infrared long afterglow materials are in existenceThe field of object imaging is receiving wide attention, and the emitted light is in the Near Infrared Region (NIR), and molecules emit near infrared light (700-1000 nm), and can be used for detecting living molecular targets, because the blood and tissues of living organisms are relatively transparent in the wavelength range, thereby reducing the problems caused by in vivo background interference. Moreover, compared with other imaging marker materials, the long afterglow material used as the bioluminescent marker material has the unique advantage that the diffusion of the marker material can be observed, which is not possessed by any other marker material. However, the near-infrared long afterglow fluorescent material is lower than the blue and green long afterglow fluorescent materials in both fluorescence intensity and afterglow time, and cannot meet the requirements of practical application. The main reasons are two-fold: one is that the luminous center ions with near infrared luminescence are few (mainly comprising Cr) 3+ 、Mn 2 + 、Mn 4+ Etc.), the adjustability of the emission wavelength of the near-infrared long afterglow luminescent material is limited; and secondly, the matrix suitable for doping the luminescence center ions is few, so that the property of the long afterglow material is difficult to optimize. Therefore, it is important to find new substrates for long-lasting phosphors. Among the near-infrared long-afterglow materials reported at present, cr is the most representative 3+ Doped spinel matrix near-infrared long-afterglow luminescent material ZnGa 2 O 4 :Cr 3+ (Zhang W., zhang, J Y., li Y., et al., applied Surface science.2010,256 (14): 4702-4707). Because of the ZnGa content in the spinel 2 O 4 In (3) due to inversion defects of Zn and Ga lattice interchange. Just because the inversion defect plays a role of a trap for storing carriers, the material has better afterglow intensity and afterglow time, but has a large distance from practical application.
Zn 3 Ga 2 Ge 2 O 10 :Cr 3+ The material is a novel near-infrared long-afterglow material, and the afterglow time exceeds 360 hours (Pan Z., lu Y., liu F., nature Materials,2012.11 (1): 58-63). On the basis, the expensive gallium oxide raw material is replaced by alumina with lower price, similar structure and performance, and the lattice site of Ge is replaced by Ti or (and) Sn at the position of an anion group to regulate and control the luminescent ion Cr 3+ The surrounding crystal field environment, thereby obtaining the near-infrared long afterglow material with more excellent near-infrared luminescent performance. The gallium aluminate near-infrared long-afterglow fluorescent powder has the advantages of low cost of raw materials, simplicity and feasibility in operation, low requirement on equipment and the like. The long afterglow luminescent material has the emission range in the near infrared region, and has the excellent properties of long afterglow time and the like.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: provides a Cr 3+ The doped mixed spinel matrix near-infrared long-afterglow luminescent material has low cost, simple process and good afterglow performance, can be effectively excited in the range of 300-500nm, and the luminescent wavelength range is positioned in the infrared band of 850-1200 nm.
In order to solve the technical problem, the invention provides Cr 3+ The gallium aluminate near infrared long afterglow luminescent material is characterized in that the chemical general formula is Zn 3 Ga x Al 2-x Ge a Ti b Sn 2-a-b O 10 :yCr 3+ Wherein, 0 < x<1.8,0≤a≤2,0≤b≤2,a+b=2,0.01at%<y<20at%; the luminescent center is non-rare earth ion Cr 3+
The invention also provides the Cr 3+ The preparation method of the gallium aluminate near-infrared long-afterglow luminescent material is characterized by comprising the following steps:
step 1): respectively selecting a zinc-containing compound raw material, a gallium-containing compound raw material, an aluminum-containing compound raw material, a germanium-containing compound raw material, a tin-containing compound raw material, a titanium-containing compound raw material and a chromium-containing compound raw material according to a chemical general formula; weighing raw materials according to the molar ratio of each substance in the equation, adding a fluxing agent, and grinding in an agate mortar to uniformly mix the raw materials to obtain a precursor;
step 2): putting the precursor into an alumina crucible, then covering and placing the alumina crucible in a muffle furnace, and performing presintering in air or neutral atmosphere;
step 3): taking out the sample obtained by pre-sintering in the step 2), putting the sample into an agate mortar, grinding and uniformly mixingThen the mixture is put into an alumina crucible again and calcined in air or neutral atmosphere to obtain Cr 3+ Gallium aluminate near infrared long afterglow luminescent material.
Preferably, in the step 1), the zinc-containing compound raw material is any one or a combination of several of zinc oxide, zinc nitrate, zinc carbonate, zinc hydroxide and zinc oxalate; the gallium-containing compound raw material is any one or combination of more of gallium oxide, gallium nitrate, gallium carbonate, gallium hydroxide and gallium oxalate; the aluminum-containing compound raw material is any one or combination of more of aluminum oxide, aluminum nitrate, aluminum carbonate, aluminum hydroxide and aluminum oxalate; the germanium-containing compound raw material is any one or combination of more of germanium oxide, germanium nitrate, germanium hydroxide and germanium oxalate; the titanium-containing compound raw material is any one or a combination of more of titanium oxide, titanium nitrate, titanium carbonate, titanium hydroxide and titanium oxalate; the tin-containing compound raw material is any one or combination of several of tin oxide, tin nitrate, tin carbonate, tin hydroxide and tin oxalate; the chromium-containing compound raw material is any one or combination of chromium oxide, chromium nitrate, chromium carbonate, chromium hydroxide and chromium oxalate.
Preferably, the fluxing agent in the step 1) is any one or a combination of several of ammonium fluoride, sodium fluoride, lithium fluoride, calcium fluoride, barium fluoride, boric acid, boron trioxide, lithium carbonate and sodium carbonate; the adding amount of the fluxing agent is 0.1-5% of the total mass of the precursor.
Preferably, the temperature of the pre-sintering in the step 2) is 950 ℃, and the temperature is kept for 2h.
Preferably, the calcining temperature in the step 3) is 900-1400 ℃ and the time is 5-30h.
Cr prepared by the invention 3+ The gallium aluminate near-infrared long-afterglow luminescent material has wide application in the aspects of indicating illumination, biological imaging, information storage and the like.
Compared with the prior art, the invention has the following beneficial effects:
the near-infrared long afterglow material greatly expands the selectivity of the long afterglow material to the substrate and improves the development space of the near-infrared red afterglow material. The gallium aluminate near-infrared long afterglow material has the advantages of low cost of raw materials, simple and feasible operation, low requirement on equipment and the like. The long afterglow luminescent material has the emission range in the near infrared region, and has the excellent properties of long afterglow time and the like.
Drawings
FIG. 1 is Zn 3 Ga 0.5 Al 1.5 Ge 2 O 10 :0.5%Cr 3+ An X-ray diffraction spectrogram of the near-infrared long-afterglow luminescent material;
FIG. 2 is Zn 3 Ga 0.5 Al 1.5 Ge 2 O 10 :0.5%Cr 3+ Diffuse reflection spectrum of the near-infrared long afterglow luminescent material;
FIG. 3 is Zn 3 Ga 0.5 Al 1.5 Ge 2 O 10 :0.5%Cr 3+ The emission spectrum of the near-infrared long-afterglow luminescent material.
Detailed Description
In order to make the invention more comprehensible, preferred embodiments are described in detail below with reference to the accompanying drawings.
Example 1
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is powder, and the molecular formula is as follows: zn 3 Ga 2 Ge 2 O 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, germanium oxide and chromium oxide with the purity of over 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the germanium oxide and the chromium oxide is 19.0572g, 14.5534g, 16.3302g and 0.0593g respectively. And adding 0.05wt% of NH 4 F fluxing agent is ground and uniformly mixed by an agate mortar to obtain a precursor, the precursor is added with a proper amount of absolute ethyl alcohol in the agate mortar to be ground uniformly, the mixture is placed in a corundum crucible, the temperature is raised to 950 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is cooled to room temperature along with a furnace after being kept warm and calcined for 2 hours, a sample is placed in the agate mortar, the absolute ethyl alcohol is ground uniformly, the mixture is placed in the corundum crucible, and the mixture is ground in the air atmosphereHeating to 1200 ℃ at a heating rate of 100 ℃/h, keeping the temperature, calcining for 10 hours, cooling to room temperature along with the furnace, crushing and grinding the obtained calcined product to obtain Cr 3+ Doped Zn 3 Ga 2 Ge 2 O 10 Near-infrared long afterglow materials.
Example 2
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is in powder form, and the molecular formula is as follows: zn 3 Ga 1.5 Al 0.5 Ge 2 O 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide and the chromium oxide is 3.9423g, 2.2579g, 0.4094g, 3.3780g and 0.0123g respectively. And adding 0.05wt% of NH 4 F fluxing agent is ground and uniformly mixed by an agate mortar to obtain a precursor, the precursor is added with a proper amount of absolute ethyl alcohol in the agate mortar for uniform grinding, the mixture is placed in a corundum crucible, the temperature is raised to 950 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is kept warm and calcined for 2 hours, then the mixture is cooled to room temperature along with a furnace, a sample is placed in the agate mortar, the absolute ethyl alcohol is uniformly ground, the mixture is placed in the corundum crucible, the mixture is heated to 1200 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is kept warm and calcined for 10 hours, then the mixture is cooled to room temperature along with the furnace, and the obtained calcined product is crushed and ground to obtain Cr 3+ Doped Zn 3 Ga 1.5 Al 0.5 Ge 2 O 10 Near-infrared long afterglow materials.
Example 3
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is powder, and the molecular formula is as follows: zn 3 GaAlGe 2 O 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are taken as raw materials, and zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide are taken as raw materialsThe specific mass of chromium was 4.0825g, 1.5587g, 0.8480g, 3.4982g, 0.0126g, respectively. Adding 0.05wt% of NH 4 F fluxing agent is ground and uniformly mixed by an agate mortar to obtain a precursor, the precursor is added with a proper amount of absolute ethyl alcohol in the agate mortar for uniform grinding, the mixture is placed in a corundum crucible, the temperature is raised to 950 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is kept warm and calcined for 2 hours, then the mixture is cooled to room temperature along with a furnace, a sample is placed in the agate mortar, the absolute ethyl alcohol is uniformly ground, the mixture is placed in the corundum crucible, the mixture is heated to 1200 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is kept warm and calcined for 10 hours, then the mixture is cooled to room temperature along with the furnace, and the obtained calcined product is crushed and ground to obtain Cr 3+ Doped Zn 3 GaAlGe 2 O 10 Near-infrared long afterglow materials.
Example 4
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is in powder form, and the molecular formula is as follows: zn 3 Ga 0.5 Al 1.5 Ge 2 O 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide and the chromium oxide is 4.2328g, 0.8080g, 1.3187g, 3.6271g and 0.0132g respectively. And adding 0.05wt% of NH 4 F fluxing agent is ground and uniformly mixed by an agate mortar to obtain a precursor, the precursor is added with a proper amount of absolute ethyl alcohol in the agate mortar for uniform grinding, the mixture is placed in a corundum crucible, the temperature is raised to 950 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is kept warm and calcined for 2 hours, then the mixture is cooled to room temperature along with a furnace, a sample is placed in the agate mortar, the absolute ethyl alcohol is uniformly ground, the mixture is placed in the corundum crucible, the mixture is heated to 1200 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is kept warm and calcined for 10 hours, then the mixture is cooled to room temperature along with the furnace, and the obtained calcined product is crushed and ground to obtain Cr 3+ Doped Zn 3 Ga 0.5 Al 1.5 Ge 2 O 10 Near-infrared long afterglow materials. Its X-ray diffractionThe spectrogram is shown in fig. 1, and the X-ray powder diffraction analysis result shows that the obtained fluorescent powder is pure phase. FIG. 2 shows Zn 3 Ga 0.5 Al 1.5 Ge 2 O 10 :0.5%Cr 3+ Diffuse reflection spectrum of the near-infrared long-afterglow luminescent material. FIG. 3 is Zn 3 Ga 0.5 Al 1.5 Ge 2 O 10 :0.5%Cr 3+ Emission spectrum, zn 3 Ga 1.5 Al 0.5 Ge 2 O 10 :0.5%Cr 3+ Emission peak around 979nm, zn 3 Ga 2 Ge 2 O 10 :0.5%Cr 3+ Compared with the prior art (as shown in figure 3), the emission peak position is red-shifted by about 50nm, and the luminous intensity is improved by about 20 percent.
Example 5
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is in powder form, and the molecular formula is as follows: zn 3 GaAlGe 2 O 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide and the chromium oxide is 4.0825g, 1.5587g, 0.8480g, 3.4982g and 0.0126g respectively. Adding 0.05wt% of NH 4 F fluxing agent is ground and uniformly mixed by an agate mortar to obtain a precursor, the precursor is added with a proper amount of absolute ethyl alcohol in the agate mortar to be ground uniformly, the mixture is placed in a corundum crucible, the temperature is raised to 950 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is kept warm and calcined for 2 hours, then the mixture is cooled to room temperature along with a furnace, a sample is placed in the agate mortar, the absolute ethyl alcohol is ground uniformly, the mixture is placed in the corundum crucible, the mixture is heated to 1200 ℃ at the heating rate of 100 ℃/h in the air atmosphere, the mixture is kept warm and calcined for 15 hours, then the mixture is cooled to room temperature along with the furnace, and the obtained calcined product is crushed and ground to obtain Cr 3+ Doped Zn 3 GaAlGe 2 O 10 Near-infrared long afterglow materials.
Example 6
Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow phosphorThe material is powdery, and the molecular formula is as follows: zn 3 GaAlGe 2 O 10 :0.2%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide and the chromium oxide is 4.0825g, 1.5635g, 0.8505g, 3.4983g and 0.0051g respectively. And adding 0.05wt% of NH 4 F fluxing agent is ground and uniformly mixed by an agate mortar to obtain a precursor, the precursor is added with a proper amount of absolute ethyl alcohol in the agate mortar for uniform grinding, the mixture is placed in a corundum crucible, the temperature is raised to 950 ℃ at the heating rate of 100 ℃/h in a neutral atmosphere, the mixture is kept warm and calcined for 2 hours, then the mixture is cooled to room temperature along with a furnace, a sample is placed in the agate mortar, the absolute ethyl alcohol is uniformly ground, the mixture is placed in the corundum crucible, the mixture is heated to 1200 ℃ at the heating rate of 100 ℃/h in an air atmosphere, the mixture is kept warm and calcined for 10 hours, then the mixture is cooled to room temperature along with the furnace, and the obtained calcined product is crushed and ground to obtain Cr 3+ Doped Zn 3 GaAlGe 2 O 10 Near-infrared long afterglow materials.
Example 7
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is in powder form, and the molecular formula is as follows: zn 3 GaAlGe 2 O 10 :0.8%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide and the chromium oxide is 4.0822g, 1.5540g, 0.8453g, 3.4981g and 0.0203g respectively. And adding 0.05wt% of NH 4 F fluxing agent is ground and mixed evenly by an agate mortar to obtain a precursor, the precursor is added with a proper amount of absolute ethyl alcohol in the agate mortar to be ground evenly, the mixture is put into a corundum crucible, the temperature is raised to 950 ℃ at the heating rate of 100 ℃/h in a neutral atmosphere, the mixture is cooled to room temperature along with a furnace after being insulated and calcined for 2 hours, a sample is placed in the agate mortar, the absolute ethyl alcohol is ground evenly and then the mixture is put into the corundum mortarPutting the mixture into a corundum crucible, heating the mixture to 1200 ℃ at the heating rate of 100 ℃/h in the air atmosphere, preserving heat, calcining the mixture for 10 hours, cooling the mixture to room temperature along with a furnace, crushing and grinding the calcined product to obtain Cr 3+ Doped Zn 3 GaAlGe 2 O 10 Near-infrared long afterglow materials.
Example 8
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is powder, and the molecular formula is as follows: zn 3 GaAlGe 2 O 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide and the chromium oxide is 4.0825g, 1.5587g, 0.8480g, 3.4982g and 0.0126g respectively. And adding 0.1wt% of NH 4 F fluxing agent is ground and uniformly mixed by an agate mortar to obtain a precursor, the precursor is added with a proper amount of absolute ethyl alcohol in the agate mortar to be ground uniformly, the mixture is placed in a corundum crucible, the temperature is raised to 950 ℃ at the heating rate of 100 ℃/h in a neutral atmosphere, the mixture is kept warm and calcined for 2 hours, then the mixture is cooled to room temperature along with a furnace, a sample is placed in the agate mortar, the absolute ethyl alcohol is ground uniformly, the mixture is placed in the corundum crucible, the mixture is heated to 1050 ℃ at the heating rate of 100 ℃/h in an air atmosphere, the mixture is kept warm and calcined for 10 hours, then the mixture is cooled to room temperature along with the furnace, and the obtained calcined product is crushed and ground to obtain Cr 3+ Doped Zn 3 GaAlGe 2 O 10 Near-infrared long afterglow materials.
Example 9
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is in powder form, and the molecular formula is as follows: zn 3 GaAlGe 2 O 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are taken as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide and the chromium oxide is respectively 4.0825g, 1.5587g, 0.8480g, 3.4982g, 0.0126g. Putting the raw material mixture into an agate mortar, uniformly grinding the raw material mixture by absolute ethyl alcohol, putting the raw material mixture into a corundum crucible, heating the mixture to 950 ℃ at the heating rate of 100 ℃/h in a neutral atmosphere, preserving heat and calcining for 2 hours, cooling the mixture to room temperature along with a furnace, putting a sample into the agate mortar, uniformly grinding the absolute ethyl alcohol, putting the sample into the corundum crucible, heating the mixture to 1300 ℃ at the heating rate of 100 ℃/h in an air atmosphere, preserving heat and calcining for 10 hours, cooling the mixture to room temperature along with the furnace, crushing and grinding the obtained calcined product to obtain Cr 3+ Doped Zn 3 GaAlGe 2 O 10 Near-infrared long afterglow materials.
Example 10
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is in powder form, and the molecular formula is as follows: zn 3 GaAlGe 2 O 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide and the chromium oxide is 4.0825g, 1.5587g, 0.8480g, 3.4982g and 0.0126g respectively. Putting the raw material mixture into an agate mortar, grinding the raw material mixture uniformly by absolute ethyl alcohol, putting the ground raw material mixture into a corundum crucible, heating the mixture to 950 ℃ at a heating rate of 100 ℃/h in a neutral atmosphere, preserving heat, calcining the mixture for 2 hours, then cooling the mixture to room temperature along with a furnace, putting the sample into the agate mortar, grinding the mixture uniformly by the absolute ethyl alcohol, putting the ground sample into the corundum crucible, heating the mixture to 1350 ℃ at a heating rate of 100 ℃/h in an air atmosphere, preserving heat, calcining the mixture for 10 hours, then cooling the mixture to room temperature along with the furnace, crushing and grinding the calcined product to obtain Cr 3+ Doped Zn 3 GaAlGe 2 O 10 Near-infrared long afterglow materials.
Example 11
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is in powder form, and the molecular formula is as follows: zn 3 GaAlGeTiO 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide, the titanium oxide and the chromium oxide is 3.9423g, 1.6261g, 0.8845g, 1.8247g, 1.3927g and 0.0133g respectively. Putting the raw material mixture into an agate mortar, uniformly grinding the raw material mixture by absolute ethyl alcohol, putting the raw material mixture into a corundum crucible, heating the mixture to 950 ℃ at the heating rate of 100 ℃/h in a neutral atmosphere, preserving heat and calcining for 2 hours, cooling the mixture to room temperature along with a furnace, putting a sample into the agate mortar, uniformly grinding the absolute ethyl alcohol, putting the sample into the corundum crucible, heating the mixture to 1350 ℃ at the heating rate of 100 ℃/h in an air atmosphere, preserving heat and calcining for 10 hours, cooling the mixture to room temperature along with the furnace, crushing and grinding the obtained calcined product to obtain Cr 3+ Doped Zn 3 GaAlGeTiO 10 Near-infrared long afterglow materials.
Example 12
Cr (chromium) 3+ The doped gallium aluminate near-infrared long afterglow material is powder, and the molecular formula is as follows: zn 3 GaAlGeSnO 10 :0.5%Cr 3+ . The preparation method comprises the following steps:
according to the molecular formula metering ratio, zinc oxide, gallium oxide, aluminum oxide, germanium oxide and chromium oxide with the purity of more than 99.9 percent are used as raw materials, and the specific mass of the zinc oxide, the gallium oxide, the aluminum oxide, the germanium oxide, the tin oxide and the chromium oxide is 3.7905g, 1.4473g, 0.8845g, 1.6240g, 2.3390g and 0.0118g respectively. Putting the raw material mixture into an agate mortar, uniformly grinding the raw material mixture by absolute ethyl alcohol, putting the raw material mixture into a corundum crucible, heating the mixture to 950 ℃ at the heating rate of 100 ℃/h in a neutral atmosphere, preserving heat and calcining for 2 hours, cooling the mixture to room temperature along with a furnace, putting a sample into the agate mortar, uniformly grinding the absolute ethyl alcohol, putting the sample into the corundum crucible, heating the mixture to 1350 ℃ at the heating rate of 100 ℃/h in an air atmosphere, preserving heat and calcining for 10 hours, cooling the mixture to room temperature along with the furnace, crushing and grinding the obtained calcined product to obtain Cr 3+ Doped Zn 3 GaAlGeSnO 10 Near-infrared long afterglow materials.

Claims (6)

1. Cr (chromium) 3+ The gallium aluminate near infrared long afterglow luminescent material is characterized in that the chemical general formula is Zn 3 Ga x Al 2- x Ge a Ti b Sn 2-a-b O 10 :yCr 3+ Wherein, 0 < x<1.8,0≤a≤2,0≤b≤2,a+b=2,0.01at%<y<20at%; the luminescent center is non-rare earth ion Cr 3+
2. The Cr of claim 1 3+ The preparation method of the gallium aluminate near-infrared long-afterglow luminescent material is characterized by comprising the following steps:
step 1): respectively selecting a zinc-containing compound raw material, a gallium-containing compound raw material, an aluminum-containing compound raw material, a germanium-containing compound raw material, a tin-containing compound raw material, a titanium-containing compound raw material and a chromium-containing compound raw material according to a chemical general formula; weighing raw materials according to the molar ratio of each substance in the equation, adding a fluxing agent, and grinding in an agate mortar to uniformly mix the raw materials to obtain a precursor;
step 2): loading the precursor into an alumina crucible, then covering and placing the alumina crucible in a muffle furnace, and presintering the alumina crucible in air or neutral atmosphere;
step 3): taking out the sample obtained by pre-sintering in the step 2), putting the sample into an agate mortar, grinding and uniformly mixing, putting the mixture into an alumina crucible again, and calcining the mixture in air or neutral atmosphere to obtain Cr 3+ Gallium aluminate near infrared long afterglow luminescent material.
3. The Cr of claim 2 3+ The preparation method of the gallium aluminate near-infrared long-afterglow luminescent material is characterized in that in the step 1), the zinc-containing compound raw material is any one or the combination of several of zinc oxide, zinc nitrate, zinc carbonate, zinc hydroxide and zinc oxalate; the gallium-containing compound raw material is any one or combination of more of gallium oxide, gallium nitrate, gallium carbonate, gallium hydroxide and gallium oxalate; the aluminum-containing compound raw material is any one or combination of more of aluminum oxide, aluminum nitrate, aluminum carbonate, aluminum hydroxide and aluminum oxalate; the germanium-containing compound isThe material is any one or combination of more of germanium oxide, germanium nitrate, germanium hydroxide and germanium oxalate; the titanium-containing compound raw material is any one or a combination of more of titanium oxide, titanium nitrate, titanium carbonate, titanium hydroxide and titanium oxalate; the tin-containing compound raw material is any one or combination of several of tin oxide, tin nitrate, tin carbonate, tin hydroxide and tin oxalate; the chromium-containing compound raw material is any one or combination of chromium oxide, chromium nitrate, chromium carbonate, chromium hydroxide and chromium oxalate.
4. The Cr of claim 2 3+ The preparation method of the gallium aluminate near-infrared long-afterglow luminescent material is characterized in that the fluxing agent in the step 1) is any one or the combination of more of ammonium fluoride, sodium fluoride, lithium fluoride, calcium fluoride, barium fluoride, boric acid, boron trioxide, lithium carbonate and sodium carbonate; the adding amount of the fluxing agent is 0.1-5% of the total mass of the precursor.
5. The Cr of claim 2 3+ The preparation method of the gallium aluminate near-infrared long-afterglow luminescent material is characterized in that the presintering temperature in the step 2) is 950 ℃, and the temperature is kept for 2 hours.
6. The Cr of claim 2 3+ The preparation method of the gallium aluminate near-infrared long-afterglow luminescent material is characterized in that the calcining temperature in the step 3) is 900-1400 ℃, and the time is 5-30h.
CN202110180776.6A 2021-02-08 2021-02-08 Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof Active CN112877069B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110180776.6A CN112877069B (en) 2021-02-08 2021-02-08 Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110180776.6A CN112877069B (en) 2021-02-08 2021-02-08 Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN112877069A CN112877069A (en) 2021-06-01
CN112877069B true CN112877069B (en) 2022-12-09

Family

ID=76057565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110180776.6A Active CN112877069B (en) 2021-02-08 2021-02-08 Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN112877069B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637476B (en) * 2021-08-19 2023-05-30 厦门稀土材料研究所 Rare earth ion co-doped near infrared long afterglow luminescent nano material, preparation method and application thereof
CN114032092B (en) * 2021-12-15 2023-12-01 上海应用技术大学 Trivalent chromium ion doped near infrared band luminescent material and preparation method thereof
CN115520894B (en) * 2022-10-26 2024-02-13 中国科学院长春应用化学研究所 Near infrared luminescent material, preparation method thereof and luminescent device
CN115820245A (en) * 2022-11-16 2023-03-21 江南大学 Near-infrared long-afterglow material and preparation method and application thereof
CN116574505A (en) * 2023-04-27 2023-08-11 桂林电子科技大学 Preparation method of gallate stress luminescent material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108148584A (en) * 2018-02-05 2018-06-12 东北大学 A kind of preparation method of spinel-type gallium zinc germanate spheric granules

Also Published As

Publication number Publication date
CN112877069A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
CN112877069B (en) Cr (chromium) 3+ Doped gallium aluminate near-infrared long-afterglow luminescent material and preparation method thereof
CN108998018A (en) A kind of Cr3+The stanniferous mixing spinelle near-infrared long after glow luminous material and preparation method thereof of doping
Zhang et al. A novel Cr3+-activated far-red titanate phosphor: synthesis, luminescence enhancement and application prospect
CN113004892B (en) Luminescent material based on cerium and europium activated aluminosilicate, and preparation method and application thereof
CN111778027A (en) Cr (chromium)3+Doped germanium-containing garnet phase broadband near-infrared fluorescent powder and preparation method thereof
CN110724530B (en) Near-infrared long-afterglow luminescent material, preparation method and application thereof
CN113667472B (en) Bi3+Doped ultraviolet long-afterglow luminescent material and preparation method and application thereof
Tian et al. High temperature sensitivity phosphor based on an old material: Red emitting H3BO3 flux assisted CaTiO3: Pr3+
Lu et al. Luminescent properties of Mn4+-doped LaTiSbO6 deep-red-emitting phosphor for plant growth LEDs
Lian et al. Structural and optical properties of Dy3+: YAlO3 phosphors for yellow light-emitting diode applications
CN108998016A (en) A kind of Cr3+Mixing spinelle matrix near-infrared long after glow luminous material of doping and preparation method thereof
CN111676015A (en) Near-infrared long-afterglow luminescent material excited by biological window and preparation method thereof
CN113481001B (en) Copper ion doped gallate-based red long-afterglow material and preparation method thereof
CN100386405C (en) Red long afterglow luminescent material and its prepn
CN113462390A (en) Europium-doped tungsten molybdate red fluorescent powder and preparation method and application thereof
CN112694889A (en) Fe3+Gallate-doped near-infrared long-afterglow luminescent material and preparation method and application thereof
CN107033890B (en) A kind of plant LED light fluorophor and its synthetic method
CN107722972B (en) Green long-afterglow luminescent material and preparation method thereof
CN107267146B (en) Mn (manganese)4+Ion-doped titanium aluminate red nano fluorescent powder and preparation method thereof
CN112745840B (en) Near-infrared silicate germanate long-afterglow luminescent material and preparation method thereof
CN108774522A (en) A kind of molybdate red fluorescent powder of white light LEDs scheelite type and preparation method thereof
Wu et al. Novel Te doping in Y2O3–Al2O3 system phosphor
Zou et al. Far-red-emitting SrGdAlO4: Cr3+, Bi3+ phosphors for plant growth regulation
Hu et al. Crystal growth behavior and fluorescence properties of LaMgAl11O19: Eu3+ nano-powders prepared via sol-gel process
Singh et al. Pb2+ doped CaY2Al4SiO12 garnet phosphor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant