JPS5944144B2 - Profile welding equipment - Google Patents

Profile welding equipment

Info

Publication number
JPS5944144B2
JPS5944144B2 JP8481478A JP8481478A JPS5944144B2 JP S5944144 B2 JPS5944144 B2 JP S5944144B2 JP 8481478 A JP8481478 A JP 8481478A JP 8481478 A JP8481478 A JP 8481478A JP S5944144 B2 JPS5944144 B2 JP S5944144B2
Authority
JP
Japan
Prior art keywords
axis
welding
cylindrical surface
sensor
welding torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8481478A
Other languages
Japanese (ja)
Other versions
JPS5514112A (en
Inventor
治 下司
久治 北畠
義和 宮城
高義 吉村
良一 松嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP8481478A priority Critical patent/JPS5944144B2/en
Publication of JPS5514112A publication Critical patent/JPS5514112A/en
Publication of JPS5944144B2 publication Critical patent/JPS5944144B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 本発明は倣いセンサを溶接作業に支障を及ぼさない離隔
位置に設けて作業性を改善すると共に、溶接トーチと倣
いセンサとの間の位相ずれを解消し正確かつ容易ななら
い制御を行うことができるならい溶接装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention improves work efficiency by providing a scanning sensor at a remote position that does not interfere with welding work, and eliminates the phase shift between the welding torch and scanning sensor to provide accurate and easy welding. The present invention relates to a profile welding device that can perform profile control.

ならい自動溶接を行う溶接装置で従来のものは殆んどが
溶接線の開先を倣いセンサが溶接トーチよりも先行する
形式であつて、これは接触方式、非接触方式の何れを問
わず行われていた。
Most conventional welding devices that perform automatic tracing welding are of the type where the sensor follows the groove of the weld line and precedes the welding torch, and this can be done regardless of whether it is a contact or non-contact method. I was worried.

このようなセンサ先行形ではトーチとセンサの間に生ず
る位相ずれがメモリー機能を要せざるを得ないなどの点
から制御回路の複雑化をもたらし、また、センサを近接
させた場合には、アークによる熱影響でセンサが損傷を
受けるなどの実用上の不都合な問題があつた。
In this type of sensor-advanced type, the phase shift that occurs between the torch and the sensor complicates the control circuit because it requires a memory function, and when the sensors are placed close together, the arc There were practical problems such as damage to the sensor due to the thermal effects of heat.

さらにセンサ先行形のものは、前進・後退を反復する溶
接処理は行えず、溶接作業が一方向に規制されるので、
これを解決しようと丁れば溶接端部において溶接トーチ
をセンサの関係位置を反転させるなどの複雑な手順が必
要となり、また、対象の溶接線が無端状に連続する特殊
な場合を考えると、一方向への溶接繰返しを行つたので
は電気配線や溶接用ワイヤに捩れを生じて好ましくなく
、従つて溶接トーチとセンサの関係位置をどラしても反
転しなければならなくて、操作が面倒となり装置も複雑
化する欠点は免れ得なかつた。
Furthermore, the sensor-advanced type cannot perform welding processes that repeatedly move forward and backward, and the welding work is restricted to one direction.
In order to solve this problem, a complicated procedure such as reversing the relative position of the welding torch and sensor at the welding end would be required.Also, considering the special case where the target weld line is continuous in an endless manner, Repeated welding in one direction is undesirable because it causes twisting of the electrical wiring and welding wire, and therefore, even if the relative position of the welding torch and sensor is changed, it has to be reversed, making the operation cumbersome. Therefore, the disadvantage of complicating the equipment was unavoidable.

本発明は上述する如き現状に対処してその改良をはかる
べく、種々検討を重ねた結果成されたものであつて、特
に長径円柱面と短径円柱面とが相互に直交的な貫挿関係
となつて形成された相貫体の接合部における三次元曲線
からなる溶接線をならい溶接する特定の溶接作業の場合
において倣いセンサを溶接トーチに対して離隔した個所
に配設しながらも位置検出を正確に行い得る如くした新
規な装置を提供し得るに至つたことを特徴とする。
The present invention was achieved as a result of various studies in order to cope with and improve the current situation as described above, and in particular, the present invention is based on a mutually orthogonal penetrating relationship between the long diameter cylindrical surface and the short diameter cylindrical surface. In the case of a specific welding operation in which welding follows a welding line consisting of a three-dimensional curve at the joint of interrelated bodies formed as a result, the position can be detected even when the tracing sensor is placed at a location distant from the welding torch. The present invention is characterized in that it has been possible to provide a novel device that can accurately perform the following steps.

しかしてかXる特徴を有する本発明装置は、溶接トーチ
と倣いセンサを前記三次元曲線からなる溶接線の各点に
おける曲率半径の方向に所定の相対的関係位置が保持さ
れる如き配置構成となしたことを要旨とするものであり
、その態様の詳細な点については添付図面とともに示す
下記説明によつて明らかにされるところである。溶接装
置の溶接処理対象となるワーク1は第1図々示の如く長
径円柱面を有する長径母管2と、該母管2に比し径の小
さい短径円柱面を有する短径枝管3とを両管軸が相互に
直交叉する貫挿関係に接合されてなる相貫体であつて、
その接合部における溶接線′は、図示例においては長径
母管2が水平に、短径枝管3が垂直に配設されている関
係上、鳥徹形状が真円をなす鞍形の周縁に形成された三
次元曲線となることは明らかである。
However, the device of the present invention having the above characteristics has an arrangement in which the welding torch and the copying sensor are maintained at a predetermined relative position in the direction of the radius of curvature at each point of the welding line consisting of the three-dimensional curve. This is a summary of what has been accomplished, and the detailed aspects thereof will be made clear by the following description shown together with the accompanying drawings. As shown in Figure 1, the workpiece 1 to be welded by the welding device includes a long-diameter main pipe 2 having a long-diameter cylindrical surface, and a short-diameter branch pipe 3 having a short-diameter cylindrical surface smaller in diameter than the main pipe 2. and are joined in a penetrating relationship in which both pipe axes are orthogonal to each other,
In the illustrated example, the long-diameter main pipe 2 is arranged horizontally and the short-diameter branch pipe 3 is arranged vertically, so the weld line' at the joint part is located at the periphery of a saddle shape where the bird's eye shape is a perfect circle. It is clear that a three-dimensional curve is formed.

前記溶接線′の部分にアーク溶接を行う溶接装置の構造
は、第1図に基本的骨格形態で示す如く、固定用基台4
上に立設して上下方向に自由度を持つたZ軸、該Z軸の
上端部において枢支さ瓢水平方向の左右(ワーク1の位
置に対する左右方向)に自由度を持つたX軸、該X軸に
枢支されて、水平方向の前後(ワーク1の位置に対する
接離方向)に自由度を持つたY軸、該Y軸の先端におい
てz軸と平行を保持して垂設され、垂直方向の基準軸V
の周りで等距離の平行を保持した公転運動を行う回動軸
Fの4軸を有しており、立設固定したワーク1の短径枝
管3における母線に対して、Z軸と基準軸Vが共に平行
を保持し、かつ、回動軸Fが短径枝管2の外側を回動し
得る如く設けている。そして回動軸Fの先端に溶接トー
チ6を垂直面内での揺動可能に枢着している。Z軸は1
駆動源例えば電動機7によつて上下方向の寸法が調節さ
れるが、このときの上下変位はz用ポテンシヨメータ8
により電気変位として測長される。
The structure of the welding device that performs arc welding on the weld line' is as shown in the basic skeleton form in FIG.
a Z-axis that is erected above and has a degree of freedom in the vertical direction; an X-axis that is pivoted at the upper end of the Z-axis and has a degree of freedom in the horizontal direction (left-right direction with respect to the position of the workpiece 1); a Y-axis that is pivoted on the X-axis and has a degree of freedom in the horizontal direction (in the direction of approaching and separating from the position of the workpiece 1); Vertical reference axis V
It has four rotational axes F that perform a revolution movement maintaining equidistant parallelism around the Z-axis and the reference axis The pipes V are provided so that they both remain parallel, and the rotation axis F can rotate on the outside of the short diameter branch pipe 2. A welding torch 6 is pivotally attached to the tip of the rotating shaft F so as to be swingable in a vertical plane. Z axis is 1
The vertical dimension is adjusted by a driving source, for example, an electric motor 7, and the vertical displacement at this time is controlled by a z potentiometer 8.
The length is measured as electrical displacement.

X軸は5駆動源例えば電動機9によつて左右方向の寸法
が調節され、このときの匠右変位はX用ポテンシヨメー
タ10により電気変位として測長される。
The horizontal dimension of the X-axis is adjusted by five driving sources, such as an electric motor 9, and the horizontal displacement at this time is measured as an electrical displacement by an X potentiometer 10.

またY軸は電動機11により、前後方向の寸法が調節さ
れ、このときの前後変位はY用ポテンシヨメータ12に
よつて電気変位として測長される。
Further, the longitudinal dimension of the Y axis is adjusted by an electric motor 11, and the longitudinal displacement at this time is measured as an electrical displacement by a Y potentiometer 12.

回動軸Fは電動機131tcより公転運動が成され、こ
のときの回転変位はF用ポテンシヨメータ14により、
Y軸を基準とした時計方向の回転角度に対応する電気変
位として測長される。なお、回動軸Fは水平アーム15
を介して基準軸Vに一体連結されていて、公転一回転に
対し自転一回転を行い、従つて回動軸F端に取り付けた
溶接トーチ6と、該トーチ6の指向線を含む垂直面内に
中立線を合致させて前記回動軸Fに取り付けたX−Y−
F用倣いセンサ17とが、常にワーク1側に指向し得る
ようになつている。
The rotating shaft F is rotated by the electric motor 131tc, and the rotational displacement at this time is determined by the F potentiometer 14.
The length is measured as an electrical displacement corresponding to a clockwise rotation angle with respect to the Y-axis. Note that the rotation axis F is the horizontal arm 15.
The welding torch 6 is integrally connected to the reference axis V through one revolution, and rotates once on its axis for every revolution, and is therefore attached to the end of the rotation axis F. X-Y- attached to the rotation axis F with the neutral line aligned with
The F copying sensor 17 can always be directed toward the workpiece 1 side.

次に溶接トーチ6は前記基準軸Vの延長上に先端を常時
指向し得る如く揺動可能に回動軸F端に取着されている
Next, the welding torch 6 is swingably attached to the end of the rotating shaft F so that the tip can always be oriented on the extension of the reference axis V.

一方、前記X−Y−F用倣いセンサ17は2つの触覚子
を先端に持つ構造であつて、触覚子が共に短径枝管3の
管壁に接当した中立状態で溶接トーチ6を溶接線′に所
定の狙い角度で指向させることができるようになつてい
て、前記中立状態をはずれた場合にはX軸成分とY軸成
分との両成分に解析した補正信号と回転信号とを制御系
に送ることにより、電動機9,11,131fC夫々出
力を与え得るよう形成されている。
On the other hand, the X-Y-F scanning sensor 17 has a structure having two tactile elements at the tip, and the welding torch 6 is welded in a neutral state where both tactile elements are in contact with the pipe wall of the short diameter branch pipe 3. It is possible to direct the target to the line' at a predetermined aiming angle, and when the neutral state is deviated from, the correction signal and rotation signal analyzed into both the X-axis component and the Y-axis component are controlled. The electric motors 9, 11, and 131fC are configured to be able to provide outputs to each of the electric motors 9, 11, and 131fC by sending them to the system.

しかして5は本発明において特徴をなすところのz軸用
倣いセンサであり、該倣いセンサ5は溶接トーチ6が枢
支される回動軸Fの下端部に設けられて、Z軸成分を検
出して制御系に送ることにより電動機7f1C出力を与
えるよう形成されている。
Reference numeral 5 designates a Z-axis scanning sensor which is a feature of the present invention, and the scanning sensor 5 is provided at the lower end of the rotating shaft F on which the welding torch 6 is pivoted to detect the Z-axis component. The electric motor 7f1C is configured to provide an output of the electric motor 7f1C by sending it to the control system.

以上の構成になる溶接装置はZ用ポテンシヨメータ8の
電気変位によつて溶接トーチ6の高さが判断可能であり
、またX用ポテンシヨメータ10とY用ポテンショメー
タ12と、F用ポテンシヨメータ14との3つの電気変
位の合成によつてワーク1ff−対する溶接トーチ6の
関係位置を判断することが可能であり、そして両倣いセ
ンサ5,17からZ軸、X軸、Y軸およびF軸に対する
補正指令が出されることにより、溶接線′に対して溶接
トーチ6を所定狙い角度で指向することができる。前記
倣いセンサ5は、回動軸Fへの取付けに際して、次の条
件を満足し得るように特定の配置形態をとらせることが
本発明の要件である。即ち、第2図イ,口に示すように
、倣いセンサ5の指向線を溶接線′上の溶接トーチ6が
指向する交点Aにおける曲率半径の延長線に常時交らせ
るようにすることと、この交つた点Bから溶接線′上の
前記交点Aに至る線分BAがZ軸と直交するX軸.Y軸
を含む水平面に投影した線長Sを常に一定長に保持し得
る如くすることの2点であつて、これをさらに理解しや
すく説明すると、短径枝管3の円柱面と同軸でそれより
も大径の円柱面と長径母管2の円柱面とが形成する相貫
線と、短径枝管3の軸および溶接トーチ6の先端を含む
面との交点を倣いセンサ5が常に検出し得るようにする
ことである。
The welding device configured as described above can determine the height of the welding torch 6 based on the electrical displacement of the Z potentiometer 8, and also includes an X potentiometer 10, a Y potentiometer 12, and an F potentiometer. By combining the three electric displacements with the meter 14, it is possible to determine the relative position of the welding torch 6 with respect to the workpiece 1ff, and from both tracing sensors 5 and 17, the Z-axis, X-axis, Y-axis and F By issuing a correction command for the axis, the welding torch 6 can be directed at a predetermined target angle with respect to the welding line'. It is a requirement of the present invention that the copying sensor 5 is arranged in a specific manner so as to satisfy the following conditions when attached to the rotation axis F. That is, as shown in FIG. 2A, the pointing line of the copying sensor 5 is always made to intersect with the extension line of the radius of curvature at the intersection A to which the welding torch 6 is directed on the welding line'; The line segment BA from this intersection point B to the intersection point A on the weld line' is the X-axis, which is perpendicular to the Z-axis. The two points are that the line length S projected on the horizontal plane including the Y-axis can always be maintained at a constant length. The sensor 5 constantly detects the intersection of the intersecting line formed by the cylindrical surface of the larger diameter than the cylindrical surface and the cylindrical surface of the long-diameter main pipe 2, and the surface including the axis of the short-diameter branch pipe 3 and the tip of the welding torch 6. The goal is to do what is possible.

かXる条件を満足するためには、例えば倣いセンサ5の
指向線を垂直下向きとなし、かつ溶接トーチ6の揺動面
内に含まれるように倣いセンサ5を配設することによつ
て簡単に行うことができる。
In order to satisfy the above conditions, for example, the pointing line of the scanning sensor 5 may be directed vertically downward, and the scanning sensor 5 may be arranged so as to be included within the swinging plane of the welding torch 6. can be done.

次に前記溶接装置を自動ならい溶接するための制御回路
のうちのz軸系を第3図によつて説明する。Z軸系制御
回路は倣いセンサ5としてのポテンシヨメータ5′と、
制御装置側に設けた原点合わせ用ポテンシヨメータ30
と、両ポテンシヨメータ5′,30の電気信号差に応じ
た出力を発する比較増幅器32と、Z用ポテンシヨメー
タ8と、制御装置側に設けたメモリー31と、記憶操作
・制御操作の間の切換えを行わせる切換えスイツチ33
と、出力増幅器34と、Z軸駆動電動機7とから構成さ
れており、その作動態様については後述する溶接装置の
ならい運転の動作説明において詳述する。
Next, the z-axis system of the control circuit for automatic profile welding of the welding apparatus will be explained with reference to FIG. The Z-axis control circuit includes a potentiometer 5' as a copying sensor 5,
Potentiometer 30 for origin adjustment provided on the control device side
, a comparison amplifier 32 that generates an output according to the electrical signal difference between both potentiometers 5' and 30, a Z potentiometer 8, a memory 31 provided on the control device side, and a memory operation/control operation. A changeover switch 33 that switches between
, an output amplifier 34, and a Z-axis drive electric motor 7, the operation of which will be explained in detail in the following description of the operation of the welding apparatus tracing operation.

叙上の構成になるならい溶接装置は、X軸,Y軸,Z軸
および回動軸Fならびに溶接トーチ6の揺動軸の5軸調
整により、溶接トーチ6が溶接線′上の基準となる原点
に正しく指向し、かつ、そのときの狙い角度が適正にな
るように原点合わせを行う。
In the tracing welding device having the above configuration, the welding torch 6 becomes a reference on the welding line' by adjusting the five axes of the X-axis, Y-axis, Z-axis, rotation axis F, and the swing axis of the welding torch 6. The origin is aligned so that the object is correctly pointed at the origin and the aiming angle at that time is appropriate.

このように原点合わせを行わせる初期状態即ちスタート
位置においては、第3図々示のように切換えスイツチ3
3は接点Cが閉成し、かっ接点A,Bが開放した状態に
ある。
In the initial state where the home alignment is performed in this way, that is, at the start position, the changeover switch 3 is turned on as shown in Figure 3.
3 is in a state where contact C is closed and contacts A and B are open.

なお、Z軸以外の各軸の制御については、前記倣いセン
サ17と、回動軸用ポテンシヨメータ14と、X軸・Y
軸の制御を行わせるための正弦・余弦ポテンシヨメータ
21と、X用ポテンシヨメータ10と、Y用ポテンシヨ
メータ12を要素とした制御系(図示せず)によつて所
定の速度でならい制御が行われるものであつて、以下Z
軸の制御について順次説明を進める。
Regarding the control of each axis other than the Z-axis, the copying sensor 17, the rotary axis potentiometer 14, and the X-axis/Y-axis
A control system (not shown) including a sine/cosine potentiometer 21 for controlling the axis, an X potentiometer 10, and a Y potentiometer 12 is used to control the axis at a predetermined speed. Control is performed, and the following Z
We will explain the control of the axes one by one.

前記スタート位置の決定を行うには、先ず原点合わせ用
ポテンシヨメータ30によつて、電動機7を回動させて
、センサ5をスタート位置に設定する。
In order to determine the start position, first, the electric motor 7 is rotated using the home position adjustment potentiometer 30, and the sensor 5 is set at the start position.

そして位置が決まると、そのときのz軸用ポテンシヨメ
ータ8の値を前記メモリー31に読み込ませる。
When the position is determined, the value of the z-axis potentiometer 8 at that time is read into the memory 31.

次いでならい作動に入らせるが、作動の前に、切換えス
イツチ33を接点A,Bが閉成、接点Cが開放する側に
切換える。
Next, the tracing operation is started, but before the operation, the changeover switch 33 is switched to the side where contacts A and B are closed and contact C is opened.

センサ5の任意の状態では各ポテンシヨメータ5′,8
,30の値S2,P2,SZOと、メモリー31の記憶
値ZMとの間には、の条件が成立する。
In any state of sensor 5, each potentiometer 5', 8
, 30 values S2, P2, SZO and the stored value ZM of the memory 31, the following condition is established.

S2の変換定数をAV/糟,P2の変換定数をb?7!
11比較増幅器32のゲインをKと設定し、今センサ5
の値S2がVボルト変化した結果、X絹高さが変化して
再び停止したとすると、第3図の回路から明らかなよう
に、となる。
The conversion constant of S2 is AV/熟, and the conversion constant of P2 is b? 7!
11 Set the gain of comparison amplifier 32 to K, and now sensor 5
As a result of the value S2 changing by V volts, the height of X changes and the motor stops again, as is clear from the circuit of FIG. 3.

但し、ポテンシヨメータ8の値Pzが増加することはセ
ンサ5がZ軸によつて移動させられるため、その値S2
が減少することは言う迄もない。
However, the increase in the value Pz of the potentiometer 8 means that the value S2 increases because the sensor 5 is moved along the Z axis.
Needless to say, this will decrease.

1および2式よりK(−AX)=BXとなるから上式を
変形すると、 あるいは 但し 上式から明らかなように倣いセンサ5の変化は、これに
比例した関係でZ軸を上下動させることとなる。
From equations 1 and 2, K(-AX) = BX, so if we transform the above equation, we get: However, as is clear from the above equation, the change in the scanning sensor 5 causes the Z-axis to move up and down in proportion to this. becomes.

従つて倣いセンサ5が長径母管2の所定位置に接触しな
がら移動するときに生じた変位は、z軸に比例的に出力
されて、溶接トーチ6をその変位に応じて垂直方向にな
らい移動させることができる。
Therefore, the displacement that occurs when the tracing sensor 5 moves while contacting a predetermined position of the long-diameter main pipe 2 is output proportionally to the z-axis, and the welding torch 6 is moved in the vertical direction according to the displacement. can be done.

この場合倣いセンサ5の接触位置は、溶接線′から若干
寸法離れた位置にあつて、当該位置の変化は溶接線′の
上下変位とは厳密に一致しない。
In this case, the contact position of the scanning sensor 5 is located at a position slightly spaced apart from the weld line', and the change in position does not exactly match the vertical displacement of the weld line'.

即ち、第2図イ,町ハにおいて示したことから明らかな
ように、溶接線′と倣いセンサ5の接触点軌跡との間に
は、水平面に投影したイ図では一定離隔距離Sを有する
同心円関係となり、一方、曲率半径を含む垂直面上で比
較すると、口図のように母管2の頂面部ではZ軸方向の
差は零であるが、この頂面部と直交する方向の垂直面上
ではZ軸方向のあるレベル差を存していて、さらにその
間の各点、すなわち、第2図イにおいて0くθ〈180
点の範囲における各点では同図ハで展開示するように、
線対称的にレベル差値が増減変化することは明らかであ
る。このように、倣いセンサ5が検出したZ軸方向の値
は頂面部における値を除いて溶接線′のz方向値とは完
全に一致し得ないものであるが、前記離隔距離SG2図
イ参照)を45闘程度の値とした場合には、このレベル
差による最大誤差は誤差階級が10−2程度であつて実
用上何等問題にならないことが実測した結果判明した。
That is, as is clear from what was shown in Figure 2 A and Town C, there is a concentric circle with a constant distance S between the weld line' and the contact point locus of the copying sensor 5 in Figure A projected on the horizontal plane. On the other hand, when compared on a vertical plane including the radius of curvature, the difference in the Z-axis direction is zero at the top of the main tube 2 as shown in the diagram, but on the vertical plane in the direction orthogonal to this top There is a certain level difference in the Z-axis direction, and at each point in between, that is, 0 and θ〈180
At each point in the range of points, as shown in Figure C,
It is clear that the level difference value increases and decreases in a line-symmetrical manner. In this way, the value in the Z-axis direction detected by the scanning sensor 5 cannot completely match the value in the Z-direction of the weld line' except for the value at the top surface, but the separation distance SG2 (see Figure A) ) was set to a value of about 45 fights, it was found from actual measurements that the maximum error due to this level difference was an error class of about 10-2, which did not pose any problem in practice.

以下、その計算方法を第4図及び第5図を参照しながら
1例にもとづいて説明する。
The calculation method will be explained below based on an example with reference to FIGS. 4 and 5.

第5図において、母管2の頂面部母線を基準として、溶
接線′上の任意の点における曲率半径と前記頂而部母線
とがなす水平面上での交叉角をθとしたとき、この溶接
線′上の点と母管2の頂面部母線とのz軸方向のレベル
差Zdは、Zd=兄−/(P)2−(庄)2!JJ7r
!?θとなる。
In FIG. 5, the intersection angle on the horizontal plane between the radius of curvature at any point on the weld line' and the apex generatrix is defined as θ, with the top generatrix of the main pipe 2 as a reference. The level difference Zd in the z-axis direction between a point on the line ' and the top generatrix of the main tube 2 is Zd = Brother - / (P) 2 - (Sho) 2! JJ7r
! ? becomes θ.

同様に、この溶接線′から水平投影面上で45u程度離
隔した倣いセンサ5接触位置におけるレベル差Zd′は
、Zd′{−/(苦)2−(苦′)2dn2θ となる
Similarly, the level difference Zd' at the contact position of the scanning sensor 5, which is about 45 u away from the welding line' on the horizontal projection plane, is Zd'{-/(K)2-(K')2dn2θ.

ところでZdが最大となる値(Zdmax)を示す位置
は、当然θ=90な、すなわちDnθ二1であるから、
Zdmax=譬.〆^)2−(?)2となる。
By the way, the position where Zd shows the maximum value (Zdmax) is naturally θ=90, that is, Dnθ21, so
Zdmax = parable. 〆^)2-(?)2.

同様に、Zd′Max=署〆?)2−(知2となる。Similarly, Zd'Max = station〆? )2-(Knowledge 2).

1−かして、溶接トーチをZd/に比例して変化したと
するとこのときの溶接トーチの位置ムは、Zd=(FZ
d/である。
1-, and if the welding torch is changed in proportion to Zd/, the position of the welding torch at this time is Zd=(FZ
It is d/.

但し、IO:リ一Zdmax/Zd′Max従つて、真
の高さZdと近似値Zdとの間の誤差Δ(θ)は、△(
θ):(l/・Zd′(θ)−Zd(θ)であつて、4
nθを函数とする式となるから、この△(θ)のうちの
最大値ΔMaxを求めれば、溶接トーチをZd/に比例
させて制御したときのZ方向最大誤差値となることは言
うまでもない。
However, IO: Li-Zdmax/Zd'Max Therefore, the error Δ(θ) between the true height Zd and the approximate value Zd is Δ(
θ): (l/・Zd′(θ)−Zd(θ), 4
Since it is an equation in which nθ is a function, it goes without saying that if the maximum value ΔMax of this Δ(θ) is found, it will be the maximum error value in the Z direction when the welding torch is controlled in proportion to Zd/.

すなわち、△Maxは、母管の頂面部母線を基準とした
水平投影移動角(θ)を900まで変化させるように、
前式△(θ)=φ7・Zd′(θ)−Zd(θ)により
時時刻々計算したときの中での最大値を示すものであつ
て、第4図においては直径1000關の母管2に対して
、枝管3の直径を250〜350闘の範囲で10mmず
つ変更したときについての値を絶対値で表示している。
That is, △Max is set so that the horizontal projection movement angle (θ) based on the top generatrix of the main tube is changed up to 900.
It shows the maximum value when calculated time by time using the previous formula △ (θ) = φ7・Zd' (θ) - Zd (θ). 2, the values obtained when the diameter of the branch pipe 3 is changed by 10 mm in the range of 250 to 350 mm are shown in absolute values.

なお、第4図において△Maxの数値の後に示した括弧
内の数値&ちこの最大誤差△Maxのときの水平投影移
動角である。次に実際の計算例を下記に示すが、この例
は母管2の直径Dが1000U1枝管3の直径dが20
0U1倣いセンサ5の検出位置の直径d′が290n肩
の場合である。.゜.φ7=Zdmax/Zd/Max
=10.1018/21.4863前記式△(の=φ5
・Zd′(θ)−Zd(θ)においてθに00から5=
間隔で90′までの各値を代人した結果は下記表に示し
た通りとなる。
In addition, the value in parentheses shown after the value of ΔMax in FIG. 4 is the horizontal projection movement angle when the maximum error is ΔMax. Next, an actual calculation example is shown below. In this example, the diameter D of the main pipe 2 is 1000U, and the diameter d of the branch pipe 3 is 20U.
This is a case where the diameter d' of the detection position of the 0U1 scanning sensor 5 is 290n. ..゜. φ7=Zdmax/Zd/Max
=10.1018/21.4863 The above formula △(=φ5
・Zd′(θ)−Zd(θ), 00 to 5=
The results of substituting each value up to 90' in the interval are shown in the table below.

以上の結果から明らかなように、枝管3から同心円上の
45R1!l離れたz軸位置を検出する倣いセンサによ
つて溶接トーチを比例制御したとしても、水平投影移動
角が45チ近辺で誤差は最大となるが、誤差階級は10
−2程度であつて実用上問題にはならない。
As is clear from the above results, 45R1 on the concentric circle from branch pipe 3! Even if the welding torch is proportionally controlled by a tracing sensor that detects the z-axis position l apart, the error will be maximum when the horizontal projection movement angle is around 45 inches, but the error class will be 10.
It is about -2 and does not pose a practical problem.

本発明は以上の説明によつて明らかにしたように長径円
柱面と、短径円柱面とが相互に直交的な貫挿関係になつ
て形成された相貫体の接合部における三次元的相貫曲線
からなる溶接線′を、前記短径円柱面の母線と平行した
z軸を含む多次元自由度を持つ溶接トーチ6によつてな
らい溶接する装置において、溶接トーチ6の三次元位置
のうちのz軸成分を検出するための倣いセンサ5を溶接
トーチ6が枢支される支軸部に設けると共に、短径円柱
面と同軸でそれより大きい径の円柱面と前記長径円柱面
とが形成する相貫線と、短径円柱面・の軸および溶接ト
ーチ6先端を含む面との交点を倣いセンサ5が検出する
如き相対的位置関係を溶接トーチ6と倣いセンサ5との
間に有せしめてなり、躊接線′に対して外側寄りとなる
前記長径円柱面上の所定位置において倣いセンサ5が検
出したZ軸方向レベルによつて、前記z軸成分を間接的
に検出し得る如くしたことを特徴とするものであるから
、倣いセンサを溶接処理位置に対して離隔した個所に設
けることができて、アークによる熱影響を解消させ、長
期間に亘つて安定した検出性能を発揮することが可能と
なる。
As clarified by the above explanation, the present invention aims to improve the three-dimensional phase at the joint of a mutual body formed by a long diameter cylindrical surface and a short diameter cylindrical surface having a mutually orthogonal penetrating relationship. In an apparatus for welding a weld line consisting of a through curve by a welding torch 6 having a multidimensional degree of freedom including the z-axis parallel to the generatrix of the short diameter cylindrical surface, the three-dimensional position of the welding torch 6 is A scanning sensor 5 for detecting the z-axis component of the welding torch 6 is provided on the support shaft on which the welding torch 6 is pivoted, and a cylindrical surface coaxial with the short diameter cylindrical surface and having a larger diameter and the long diameter cylindrical surface are formed. A relative positional relationship is established between the welding torch 6 and the copying sensor 5 such that the copying sensor 5 detects the intersection of the intersecting line and the axis of the short diameter cylindrical surface and the surface including the tip of the welding torch 6. Therefore, the z-axis component can be indirectly detected by the Z-axis direction level detected by the copying sensor 5 at a predetermined position on the long diameter cylindrical surface that is on the outside with respect to the helical tangent. Because of this feature, the scanning sensor can be installed at a location remote from the welding processing position, eliminating the heat effect caused by the arc and demonstrating stable detection performance over a long period of time. It becomes possible.

しかも、倣いセンサ5は常に曲率半径の延長線上に指向
しているので、溶接トーチ6に対して先行あるいは後退
することは全くなくなり、従つて、センサ5、トーチ6
間の位相ずれが全く生じず制御系が簡素化されるばかり
でなく可逆転方式による反復溶接を簡単に行える利点も
ある。
Moreover, since the copying sensor 5 is always oriented on the extension line of the radius of curvature, it never moves ahead or backwards with respect to the welding torch 6. Therefore, the sensor 5, the torch 6
There is an advantage that not only the control system is simplified because no phase shift occurs at all, but also repeated welding can be easily performed using the reversible method.

また、倣いセンサ5が直接溶接線′に接触する従来装置
に比較し多層盛り溶接が極めて各易に行えるすぐれた効
果も奏し、本発明は誠に有用なならい溶接装置である。
Furthermore, compared to the conventional device in which the tracing sensor 5 directly contacts the welding line, multi-layer welding can be performed more easily, making the present invention a truly useful tracing welding device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置例の基本構造を略示する骨格図、第
2図イ,口,ハは本発明装置に係るワーク上における溶
接線と倣いセンサ検出点軌跡との関係を示す平面図、正
面図、展開図、第3図は第1図々示装置に係る要部制御
回路図、第4図は本発明装置に係る溶接線と倣いセンサ
検出点軌跡との関係を数値的に表示した説明図、第5図
は本発明装置に係るz軸方向の誤差を求めるための説明
図である。 5・・・・・・倣いセンサ、6・・・・・・溶接トーチ
、′・・・・・・溶接線。
Fig. 1 is a skeletal diagram schematically showing the basic structure of an example of the device of the present invention, and Fig. 2 A, C, and C are plan views showing the relationship between the weld line on the workpiece and the scanning sensor detection point locus of the device of the present invention. , a front view, a developed view, and FIG. 3 is a main control circuit diagram of the device shown in FIG. FIG. 5 is an explanatory diagram for determining the error in the z-axis direction according to the apparatus of the present invention. 5... Copying sensor, 6... Welding torch, '... Welding line.

Claims (1)

【特許請求の範囲】[Claims] 1 長径円柱面と、短径円柱面とが相互に直交的な貫挿
関係となつて形成された相貫体の接合部における三次元
的相貫曲線からなる溶接線lを、前記短径円柱面の母線
と平行したZ軸を含む多次元自由度を持つ溶接トーチ6
によつてならい溶接する装置において、溶接トーチ6の
三次元位置のうちのZ軸成分を検出するための倣いセン
サ5を溶接トーチ6が枢支される支軸部に設けると共に
、短径円柱面と同軸でそれより大きい径の円柱面と前記
長径円柱面とが形成する相貫線と、短径円柱面の軸およ
び溶接トーチ6先端を含む面との交点を倣いセンサ5が
検出する如き相対的位置関係を溶接トーチ6と倣いセン
サ5との間に有せしめてなり、溶接線lに対して外側寄
りとなる前記長径円柱面上の所定位置において倣いセン
サ5が検出したZ軸方向レベルによつて、前記Z軸成分
を間接的に検出し得る如くしたことを特徴とするならい
溶接装置。
1 Weld line l consisting of a three-dimensional interpenetration curve at the joint of the interpenetrator formed by the long-axis cylindrical surface and the short-axis cylindrical surface having a mutually orthogonal penetrating relationship, is connected to the short-axis cylindrical surface Welding torch 6 with multidimensional degrees of freedom including the Z axis parallel to the generatrix of the surface
In an apparatus for tracing welding, a tracing sensor 5 for detecting the Z-axis component of the three-dimensional position of the welding torch 6 is provided on a support shaft on which the welding torch 6 is pivoted, and The sensor 5 traces the intersection of the intersecting line formed by the cylindrical surface that is coaxial with and has a larger diameter and the longer diameter cylindrical surface, and the axis of the shorter diameter cylindrical surface and the surface that includes the tip of the welding torch 6. A positional relationship is established between the welding torch 6 and the copying sensor 5, and the Z-axis direction level detected by the copying sensor 5 at a predetermined position on the long diameter cylindrical surface that is on the outside with respect to the welding line l. Therefore, the profile welding apparatus is characterized in that the Z-axis component can be detected indirectly.
JP8481478A 1978-07-11 1978-07-11 Profile welding equipment Expired JPS5944144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8481478A JPS5944144B2 (en) 1978-07-11 1978-07-11 Profile welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8481478A JPS5944144B2 (en) 1978-07-11 1978-07-11 Profile welding equipment

Publications (2)

Publication Number Publication Date
JPS5514112A JPS5514112A (en) 1980-01-31
JPS5944144B2 true JPS5944144B2 (en) 1984-10-26

Family

ID=13841193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8481478A Expired JPS5944144B2 (en) 1978-07-11 1978-07-11 Profile welding equipment

Country Status (1)

Country Link
JP (1) JPS5944144B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939361B2 (en) * 2007-10-15 2012-05-23 カヤバ工業株式会社 gas spring
CN103240678B (en) * 2013-05-30 2016-01-13 南京大地水刀股份有限公司 Water Cutting equipment space curved surface communicated wire cutting device

Also Published As

Publication number Publication date
JPS5514112A (en) 1980-01-31

Similar Documents

Publication Publication Date Title
JP2766290B2 (en) Welding robot
JPH035606B2 (en)
JPS5944144B2 (en) Profile welding equipment
JP2000194418A (en) Position correction system for ummanned carriage
US6013997A (en) Three dimensional tactile seam tracing device
JP2011002880A (en) Mobile robot
JPH10211574A (en) Welding robot for corrugated and superposed plate part welding
JPS5922943Y2 (en) Copy welding detector
JP3166316B2 (en) Teaching and control method of playback type robot
JPS5944145B2 (en) Profile welding equipment
JPS5922942Y2 (en) Detector for copy welding equipment
JPS6216744B2 (en)
JPS58155184A (en) Poly-articulated robot
JPH07299776A (en) Manipulator control device
JPS6250083A (en) Periphery welding equipment
JPS6355395B2 (en)
JPS5946758B2 (en) Operation control method for automatic working machines
JPH0310965B2 (en)
JPS6344471B2 (en)
JPS6054275A (en) Method for controlling driving of welding torch
JPS6213739Y2 (en)
JPS625708B2 (en)
JPH06238447A (en) Detecting method for corrugation part
JP2923712B2 (en) Drive control method for cylindrical coordinate robot
JP3373567B2 (en) Position learning device