JPS5944024A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS5944024A
JPS5944024A JP15542482A JP15542482A JPS5944024A JP S5944024 A JPS5944024 A JP S5944024A JP 15542482 A JP15542482 A JP 15542482A JP 15542482 A JP15542482 A JP 15542482A JP S5944024 A JPS5944024 A JP S5944024A
Authority
JP
Japan
Prior art keywords
optical
optical switch
intersection
switch according
propagation medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15542482A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Kentaro Setsune
瀬恒 謙太郎
Kiyotaka Wasa
清孝 和佐
Kenzo Ochi
謙三 黄地
Hideaki Adachi
秀明 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15542482A priority Critical patent/JPS5944024A/en
Publication of JPS5944024A publication Critical patent/JPS5944024A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain various light guides by providing conductive layers as counter electrodes between the intersection part of a light guide and a substrate and on the surface of the intersection part, and providing a buffer layer between the light guide and conductive layer. CONSTITUTION:At least one conductive layer 361 of the counter electrode 36 of an optical switch 31 is beltlike on said intersection path 34 and said conductive layer is provided on the bisector of the intersection angle of the lengthwise light guide of the intersection part 34 of said light guide 33. Light in single mode propagating to the optical switch travels straight because a propagation medium does not vary in refractive index if no electric field is applied to the counter electrode. An adequate electric field is applied to the counter electrode to increase the refractive index of the light propagation medium by photoelectric effect, and the total reflection condition is satisfied to allow propagation to another light guide. Therefore, the light is turned on and off corresponding to the on-off operation of a power source when observed from one light guide end. Further, the beltlike conductive layer of the counter electrode on the intersection part is made two-thirds as great as the intersection part to obtain the function of the optical switch.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光スィッチに関するものであり、特に光IC
用の薄膜光スイッチを提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical switch, and in particular to an optical IC.
The present invention provides a thin-film optical switch for use in electronic devices.

従来例の構成とその問題点 電子回路で電−(を尋くのに導線を使用するように、壕
だマイクロ波回路では導波管を使用するように、光信号
処理システムあるいは光ICでは、各種の光導波路が必
要になる。
Conventional configurations and their problems Just as conducting wires are used to conduct electricity in electronic circuits, and waveguides are used in underground microwave circuits, optical signal processing systems or optical ICs use Various optical waveguides are required.

小形化光デパイヌあるいは光ICに用いる光スイッチは
従来例えば第1図(IL) 、 (b)に示すような、
リッジ型(&)あるいは拡散型中)の導波路を用いて形
成していた。この場合、リッジ型では、例えば石英ガラ
スからなる基板11の」二に、硼珪酸ガラスからなる薄
層12を設ける。また拡i11.型では、例えばLiN
b05中結晶ノ、(板13の表面に、T1の拡11々層
からなる導波路14を設ける。
Conventional optical switches used for miniaturized optical devices or optical ICs are as shown in FIG. 1 (IL) and (b), for example.
It was formed using a ridge type (&) or diffused type waveguide. In this case, in the ridge type, a thin layer 12 made of borosilicate glass is provided on the second side of a substrate 11 made of quartz glass, for example. Also expanded i11. In the mold, for example, LiN
(On the surface of the plate 13, a waveguide 14 consisting of 11 layers of T1 is provided.

この種の光導波路は光の伝達のみならず、各種光回路、
例えば尤スイッチの形成あるいはこれらを集積化した光
ICの形成に用いられる。
This type of optical waveguide is used not only for light transmission, but also for various optical circuits.
For example, it is used to form a switch or an optical IC that integrates these switches.

従来、例えば第2図に示すような拡散型の光スイッチが
形成されていた。この場合、例えばLiNb03単結晶
拮板22の表面221に互いに交差する。Tiの拡散層
からなる光導波路23において、−に紀元導波路23の
交差部24上にバッファ層26を設け、このバッファ層
26」二に光の通路を選択させる電極対26を有する構
造であった。
Conventionally, for example, a diffusion type optical switch as shown in FIG. 2 has been formed. In this case, for example, the surfaces 221 of the LiNb03 single crystal layer 22 intersect with each other. In the optical waveguide 23 made of a Ti diffusion layer, a buffer layer 26 is provided on the intersection 24 of the epoch waveguide 23, and the buffer layer 26 has a structure having an electrode pair 26 for selecting the path of light. Ta.

」二記構造の光スイッチを第2図(b)に示すが如く電
1i9jえj26に直流7E界を印加させ動作させると
、電極対260対向する電極端261から電気力線28
1が電極対間の光導波路231を通シ電気光学効果によ
り電極対間の光導波路231の屈折率を増加させる。し
たがって、光導波路を伝搬してきた光波は交差部(てよ
り偏光される。また、通常は直流電界を上昇させ、全反
射条件を満足させることによシ消光比を」二げ、光スィ
ッチとして用いていた。
When the optical switch having the above structure is operated by applying a direct current 7E field to the electric currents 1i9j and 26 as shown in FIG.
1 passes through the optical waveguide 231 between the electrode pair and increases the refractive index of the optical waveguide 231 between the electrode pair due to the electro-optic effect. Therefore, the light waves propagating through the optical waveguide are polarized at the intersection.Also, the extinction ratio is increased by increasing the DC electric field and satisfying the total internal reflection condition, which is used as an optical switch. was.

しかしながら、上記構造の従来の光スィッチにおいては
、第2図(b)に示すように基板22と光導波路23と
の誘電率が等しく、しかも、電極対であるため、電気力
線28は不均一であり、しかも分散的であるので、光波
はあまり均一に偏向しない。さらに低電圧駆動のため、
電極対間間隔を狭くしてゆけばよいが、数μm以十にパ
ターン加工を施すのには通常の加工装置ではかなり困難
であり、かつ電気力線の?[f極対間の先導波路への集
中性が悪くなり、効果的に低電圧駆動化を実現できない
という欠点がある。
However, in the conventional optical switch having the above structure, as shown in FIG. 2(b), the substrate 22 and the optical waveguide 23 have the same dielectric constant and are a pair of electrodes, so the lines of electric force 28 are nonuniform , and since it is dispersive, the light waves are not very uniformly deflected. Furthermore, due to low voltage drive,
The distance between the electrode pairs can be narrowed, but it is quite difficult to process a pattern of several micrometers or more using normal processing equipment, and the distance between the electric lines of force is quite difficult to process. [There is a drawback that concentration on the leading wave path between the f pole pair deteriorates and it is not possible to effectively realize low voltage driving.

さらに、」二記構造の光スィッチに用いる光導波路を第
1図(a)の如く拡散型光導波路で構成するときには、
導波路の境界が不明確であり、例えば、同一表面に二次
元的に複数のスイッチを集積化する場合、集積度に限界
があるという欠点がある。
Furthermore, when the optical waveguide used in the optical switch having the structure 2 is configured with a diffused optical waveguide as shown in FIG. 1(a),
The boundary of the waveguide is unclear and, for example, when a plurality of switches are two-dimensionally integrated on the same surface, there is a limit to the degree of integration.

また、リッジ型で構成するときには、表面に凹凸がある
から、この上に光スィッチを形成し難いという欠点があ
る。
Further, when the ridge type structure is used, there is a drawback that it is difficult to form an optical switch on the surface because of the unevenness.

発明の目的 本発明は、小!(1:光デバイスあるいは光reに用い
るのに適した光スィッチの構造をり″えることである。
Purpose of the Invention The present invention is intended for small! (1: Changing the structure of an optical switch suitable for use in an optical device or optical re).

発明の(構成 本発明は基板の表面を被膜で覆い、この被膜に!I:い
に交差する溝を設け、かつこの溝に光伝搬媒体を埋設す
ることにより形成された光導波路において、少なくとも
上記光導波路の交差部と基板との間および上記交差部の
表面にそれぞれ導電層を設は対向電極とし、上記光導波
路と上記導電層との間にバッファ層を設けだものである
(Structure of the Invention) The present invention provides an optical waveguide formed by covering the surface of a substrate with a film, providing intersecting grooves in the film, and embedding an optical propagation medium in the grooves. A conductive layer is provided between the intersection of the optical waveguide and the substrate and on the surface of the intersection, and serves as a counter electrode, and a buffer layer is provided between the optical waveguide and the conductive layer.

実施例の説明 以下、図面を用いた実施例により本発明を説明する。Description of examples Hereinafter, the present invention will be explained by examples using drawings.

第3図は本発明の一実施例にかかる光スイッチである。FIG. 3 shows an optical switch according to an embodiment of the present invention.

すなわち、本実施例の光スイッチ31は、少なくとも基
板32の表面321を被膜331で覆い、この被膜33
1に互いに交差する溝332を設けかつこの溝332に
光伝搬媒体333を埋設することにより形成された光導
波路33において、少なくとも上記光導波路33の交差
部34と基板32との間36および上記交差部34の表
面341に導電層361を設は対向電極36とし、上記
光導波路33と士、記導電層361との間にバッファ層
37を設けたことを特徴としている。
That is, the optical switch 31 of this embodiment covers at least the surface 321 of the substrate 32 with the coating 331, and the coating 33
In the optical waveguide 33 formed by providing grooves 332 that intersect with each other in the grooves 1 and embedding an optical propagation medium 333 in the grooves 332, at least a gap 36 between the intersection 34 of the optical waveguide 33 and the substrate 32 and the intersection 332 are formed. A conductive layer 361 is provided on the surface 341 of the portion 34 as a counter electrode 36, and a buffer layer 37 is provided between the optical waveguide 33 and the conductive layer 361.

この場合、光が光伝搬媒体33のみを通;尚すべく、光
伝搬媒体33における光の屈折率を、保護被膜331お
よび基板32の表面層の光の屈折率より大きくする。
In this case, the light passes only through the light propagation medium 33; to this end, the refractive index of the light in the light propagation medium 33 is made larger than the refractive index of the light in the protective coating 331 and the surface layer of the substrate 32.

第3図に示すごとく、本発明の実施例にかかる光スィッ
チは、その表面が平担である光導波路を用いている。ま
た、光導波路部のU字溝の形成と、光伝搬媒体のU字溝
への埋込みは、通常の半導体プロセス例えばM 着プロ
セヌとホトリソプロセスで形成できるから、従来の拡散
型に見られたような先導液部の面内での広がりが少なく
、第3図のU字F+’♂)332のI’i’、1界に示
すような、シャープな光・;I波路境児が実現できる。
As shown in FIG. 3, the optical switch according to the embodiment of the present invention uses an optical waveguide whose surface is flat. In addition, the formation of the U-shaped groove in the optical waveguide section and the embedding of the optical propagation medium into the U-shaped groove can be performed using normal semiconductor processes, such as M-type prosthesis and photolithography processes, which are different from those seen in the conventional diffusion type. The in-plane spread of the leading liquid part is small, and it is possible to realize a sharp light wave path boundary as shown in the I'i', 1 field of U-shaped F+'♂)332 in Figure 3. .

このため、本発明の実b11!例にかかるA′、スイッ
チは、尤デバイスの高密1%化、IC化に白゛唆力とな
る。
For this reason, the fruit b11 of the present invention! The switch A' according to the example will be an inspiration for increasing the density of devices to 1% and increasing the use of ICs.

本イ贅明とらば、この腫の尤スイ1.チの形1+I<に
、最、IJ、4 (7) l’71°i I+14 (
1’ l’l カh ルコトヲ見イ出L、(−レニa、
5づき、商+ll能の小型薄ハラコ光スイッチを発明し
た。
If you want to know more about this luxury, please feel free to use this tumor.1. Form 1+I<, maximum, IJ, 4 (7) l'71°i I+14 (
1'l'l Kah Rukotowo Ide L, (-Renia,
5, he invented a small, thin optical switch with a quotient of 100%.

すなわち、第2図の光スイッチの構造において光(rz
 柘媒体を、BaTiO3,PbTiO3あるいはPL
ZT糸Cヒ合物のうちのいずれかで構成すると、形成も
容易でかつこの「虫の光スイッチの集f−を化も容易で
あることを見い出した。すなわち、第3図の構造の尤ス
イッチにおいて、光伝搬媒体中の光の屈折率が、表面保
護層および基板中の光の屈折率より大きいという基本的
な条件以外に、光スイッチとして利用するには、例えば
光伝搬媒体中の光の伝搬損失が小さいこと、また光伝搬
媒体が形成され得るような特111をもった基板を有す
ることが重要である。さらに、この種の光スィッチが、
小型化あるいは集積化光デバイヌにも応用されるには、
光伝搬媒体が例えば大きい電気光学効果を示す必要があ
る。さらに、表面保護層の形成と、U字溝への光伝搬媒
体の埋込みが可能であることも、これらの材料の選択に
重要である。
That is, in the structure of the optical switch shown in FIG.
The medium is BaTiO3, PbTiO3 or PL.
It has been found that if it is composed of any of the ZT yarn C hybrid compounds, it is easy to form and it is also easy to create this ``insect light switch assembly f-''. In a switch, in addition to the basic condition that the refractive index of light in the optical propagation medium is larger than the refractive index of light in the surface protective layer and the substrate, for example, the refractive index of the light in the optical propagation medium is required for use as an optical switch. It is important that the propagation loss of the optical switch is small and that the substrate has a characteristic 111 on which an optical propagation medium can be formed.
In order to be applied to miniaturized or integrated optical devices,
It is necessary for the light propagation medium to exhibit, for example, a large electro-optic effect. Furthermore, the ability to form a surface protective layer and embed a light propagation medium in the U-shaped groove is also important in selecting these materials.

光(へ搬損失が小さく、しかもTlil元気効果が大き
い伺刺としては、5従来の1★術では、例えば、LiN
bO3のバルク単結晶があるが、第2図の構造を実現す
るだめには、この種のバルク単結晶を薄く研磨して、L
iNb0 sより光の屈折率が小さいバッファ層、例え
ば石英ガラス層を被覆した基板−にに接着する必要があ
る。一方、高度の光通路には単一モードの光を伝搬させ
るが、これには、光伝搬媒体の厚さを光の波長と同程度
のμmオーダにする必要がある。
In the conventional 1★ technique, for example, LiN
There is a bulk single crystal of bO3, but in order to realize the structure shown in Figure 2, this kind of bulk single crystal must be polished thin and L
It is necessary to adhere to a substrate coated with a buffer layer having a lower optical refractive index than iNb0s, for example, a quartz glass layer. On the other hand, single-mode light is propagated through a high-level optical path, but this requires the thickness of the optical propagation medium to be on the order of μm, which is comparable to the wavelength of the light.

しかし、単結晶をμmオーダに研磨、接着することは実
際には不可能であるから、通常は、単結晶の基板、例え
ばLiNbO3光伝搬路の場合は、これより光の屈折率
が小さい、例えばLiTa03単結晶のM板」二に、L
iNb05薄層を、例えば1ooo℃程廓の高温下で液
相エピして形成する。
However, since it is actually impossible to polish and bond a single crystal to a μm order, normally, in the case of a single crystal substrate, such as a LiNbO3 optical propagation path, the refractive index of light is smaller than this, e.g. "M plate of LiTa03 single crystal" Second, L
The iNb05 thin layer is formed by liquid phase epitaxy at a high temperature of, for example, about 100°C.

しかしながら、このような製造プロセスでは、第2図の
本発明の実施例(でかかる光スィッチは実現できない。
However, such a manufacturing process cannot realize the bulky optical switch according to the embodiment of the present invention shown in FIG.

第3図に・1′ζずように光導波路33に対向市(々(
36を装(l:jする場合、損失を生じるので光導波路
33と苅向°市1i’$436との間に光伝搬媒体の光
の屈折率より小さい屈折率を有する損失の少ない誘電1
′イ・、たと工(dsi02. MgO+ α−人工2
05(サファイア)。
In Fig. 3, the optical waveguide 33 faces the optical waveguides (
36 (l:j), since a loss occurs, a low-loss dielectric 1 having a refractive index smaller than the refractive index of light of the optical propagation medium is used between the optical waveguide 33 and the light propagation medium.
'I, and engineer (dsi02. MgO+ α-artificial 2
05 (sapphire).

スピネル、 SrTiO3,GaPの少なくとも一種で
構成したバッファ層37を挿入することにより損失の軽
減を図ることができることを確認した。
It has been confirmed that loss can be reduced by inserting a buffer layer 37 made of at least one of spinel, SrTiO3, and GaP.

第3図に示す対向電極26はAu、λg、 Pt、 C
uAl  の金層の′νなくとも一種で構成すると有効
である。この場合、例えば透明導電膜を用いても同等の
効果が得られる。
The counter electrode 26 shown in FIG. 3 is made of Au, λg, Pt, C.
It is effective to constitute at least one type of uAl gold layer. In this case, the same effect can be obtained even if a transparent conductive film is used, for example.

本発明の光スィッチの構成とその実現の可能性について
、構成材料を変えて探索した結果、例えば、光伝搬媒体
として、PbTi0 s薄膜が適し、JI(板に石英ガ
ラス基板が適し、表面保護層に石英ガラスが適し、バッ
ファ層にサフアイヤ(ct−ム1zOi)確認した。す
なわち、この種の構成材料では、スパッタリング法およ
び真空蒸着法という薄膜形成技術を導入することにより
、比較的低温で、本発明にかかる構造の光スィッチが実
現でき、光ICなど光集積化デバイスの実現に有効であ
ることを確認した。
As a result of exploring the configuration of the optical switch of the present invention and the possibility of its realization by changing the constituent materials, we found that, for example, a PbTi0s thin film is suitable as the optical propagation medium, a quartz glass substrate is suitable for the JI (plate), and a surface protective layer is suitable. It was confirmed that quartz glass is suitable for the buffer layer, and sapphire (ct-mu1zOi) is suitable for the buffer layer.In other words, this kind of constituent material can be used at relatively low temperatures by introducing thin film forming techniques such as sputtering and vacuum evaporation. It was confirmed that an optical switch having the structure according to the invention can be realized and is effective in realizing optical integrated devices such as optical ICs.

次に本発明にかかる光スィッチの形成手順と構成材料要
素をさらにくわしく説明する。
Next, the formation procedure and constituent material elements of the optical switch according to the present invention will be explained in more detail.

まず、例えば石英ガラスを基板にし、この上に例えばA
u膜を0.2μm程度真空蒸着し、更にこの上に例えば
サフアイヤ(α−ム120s)膜を厚さ0.2μm程度
例えば高周波ヌパッタリングで蒸着する。この場合、蒸
着時の基板の温度は、200〜300℃程度である。そ
して、サファイヤ膜上に例えば石英ガラス膜を厚さ0.
5μm程度例えば高周波スパッタリングで蒸着し、通常
の半導体製造プロセスに用いる例えばフォトリソ加工に
よりU字溝を形成する。
First, for example, quartz glass is used as a substrate, and on this, for example, A
A U film is vacuum-deposited to a thickness of about 0.2 μm, and a sapphire (α-mu 120s) film is further deposited thereon to a thickness of about 0.2 μm, for example, by high-frequency nuputtering. In this case, the temperature of the substrate during vapor deposition is about 200 to 300°C. Then, for example, a quartz glass film is placed on the sapphire film to a thickness of 0.
A thickness of about 5 μm is deposited by, for example, high-frequency sputtering, and a U-shaped groove is formed by, for example, photolithography, which is used in a normal semiconductor manufacturing process.

次に、とのU字溝部に再び高周波スパッタリングで、P
bTi0 s薄膜を、石英ガラスの厚さだけ蒸着する。
Next, high frequency sputtering is applied again to the U-shaped groove of P.
A bTi0s thin film is deposited to a thickness of quartz glass.

この場合、基板温度を600’C程度にし化学組成がP
bTiO3の化学当量比からのずれがないとすると、(
110)而のPbTi05の透明な配向11ζきが形成
される。
In this case, the substrate temperature is about 600'C and the chemical composition is P.
Assuming that there is no deviation from the chemical equivalence ratio of bTiO3, (
110) A transparent orientation 11ζ of PbTi05 is formed.

このように形成された光導波路の交差部に例えば石乾ガ
ラヌを厚さ0.2μm程度たとえば高周波スパッタリン
グで蒸着しバッファ層とする。さらに例えばム1膜を例
えば0.2μm真空蒸着し、更に通常のたとえばフォト
リソ加工により対向電極を形成する。
At the intersections of the optical waveguides thus formed, a buffer layer is formed by depositing, for example, stone-dried galanus to a thickness of about 0.2 μm, for example, by high-frequency sputtering. Furthermore, for example, a film of 0.2 μm is vacuum-deposited, and a counter electrode is further formed by conventional photolithography.

また、本発明者らは本発明にかかる光スィッチにおける
対向電極に最適の構成のあることを見い出し、それに基
づき高性能の光スィッチを実現した。すなわち、第3図
の構成の光スィッチ31における対向電極36は、少な
くとも一方の導電層361は上記交差路34上で帯状で
あシ、かつ上記先導波路33の交差部34の長手方向の
光導波路の交差角の2等分線上に上記帯状の導電層を設
けるとよいことを見い出した。さらに、上記帯状の導電
層3610幅員を上記光導波路33の幅員より小さく、
かつ導波路の交差部34上の帯状の導電層361の長手
方向の寸法が上記交差部34の長手方向の長さのも1以
上あれば良いことを見い出した。
Furthermore, the present inventors have discovered that there is an optimal configuration for the counter electrode in the optical switch according to the present invention, and based on this, a high-performance optical switch has been realized. That is, the counter electrode 36 in the optical switch 31 having the configuration shown in FIG. It has been found that it is preferable to provide the above-mentioned band-shaped conductive layer on the bisector of the intersection angle. Furthermore, the width of the strip-shaped conductive layer 3610 is smaller than the width of the optical waveguide 33;
Moreover, it has been found that the longitudinal dimension of the strip-shaped conductive layer 361 on the intersection 34 of the waveguide should be equal to or greater than the length of the intersection 34 in the longitudinal direction.

したがって、単一モードの光が光スィッチに伝搬してく
ると対向電極に電界の加わらない場合伝搬媒体の屈折率
の変化はなく、前記伝搬光は直進する。一方、対向電極
に適当な電界を加えると光電効果により光伝搬媒体の屈
折率が増加し、全反則条件を満足し、伝搬光は全反則し
、他の光導波路へと伝搬する。したがって、一方の光導
波路端より観測すると電源のオン−オフ(0N−OFF
)に対応して光がオン−オフされることになる。光ヌイ
ッチとして動作させるには前記の如く対向電極の帯状の
導電層の幅員は光導波路の幅員より狭いことが必要であ
シ、逆に広い場合は交差部での導波路の移変りのための
反射が生ぜず、導波路中を光波は直進する。まだ、交差
部上の対向電極の帯状の導電層の長手方向の寸法が交差
部の長手方面の寸法の24未満では、直流電界の印加に
より対向電極間の交差部において全反射条件を満足して
も、光波の一部は導波路中を直進し消光比を大きくとる
ことができない。ゆえに、交差部上の対向1L極の帯状
の導′市層の寸法を交差部の1以」二にすることにより
、光スィッチとして機能させることができる。
Therefore, when single-mode light propagates to the optical switch, there is no change in the refractive index of the propagation medium unless an electric field is applied to the opposing electrode, and the propagating light travels straight. On the other hand, when an appropriate electric field is applied to the opposing electrode, the refractive index of the optical propagation medium increases due to the photoelectric effect, the total refraction condition is satisfied, and the propagating light undergoes total refraction and propagates to another optical waveguide. Therefore, when observed from one end of the optical waveguide, the power is turned on and off (0N-OFF).
) the light will be turned on and off in response to the As mentioned above, in order to operate as an optical switch, the width of the band-shaped conductive layer of the counter electrode must be narrower than the width of the optical waveguide. No reflection occurs and the light waves travel straight through the waveguide. However, if the longitudinal dimension of the strip-shaped conductive layer of the opposing electrodes above the intersection is less than 24 times the longitudinal dimension of the intersection, the total reflection condition cannot be satisfied at the intersection between the opposing electrodes by applying a DC electric field. However, some of the light waves travel straight through the waveguide, making it impossible to obtain a large extinction ratio. Therefore, by making the size of the band-shaped conductive layer of the opposite 1L pole on the intersection part larger than or equal to the size of the intersection part, it can function as an optical switch.

本発明者らは、また本発明にかかる光スイッチを構成す
る光導波路に最適の形状のあることを見い出し、それに
基づき高性能の光スィッチを発明した。
The present inventors also discovered that there is an optimal shape for the optical waveguide constituting the optical switch according to the present invention, and based on this finding, invented a high-performance optical switch.

すなわち、第2図の構成の光スィッチにおいて互いに交
差する光導波路の交差角が40以下であるとよいことを
見い出しだ。電気光学効果の最も大きいPLZTにおい
ても、放電破壊の生ずる2 0 K V / cmの電
界印加による屈折率の変化△nは10−2程度で、交差
角が20程度以下でしか満足されない。交差角が20か
ら40では反射係数が多きいので、光スィッチとして動
作可能である。
That is, it has been found that in the optical switch having the configuration shown in FIG. 2, it is preferable that the crossing angle of the optical waveguides that intersect with each other is 40 or less. Even in PLZT, which has the largest electro-optic effect, the change in refractive index Δn due to the application of an electric field of 20 KV/cm, which causes discharge breakdown, is about 10-2, which is satisfied only when the intersection angle is about 20 or less. When the intersection angle is between 20 and 40, the reflection coefficient is large, so it can operate as an optical switch.

しかし、40を超えると反射係数を充分とることられな
い。
However, if it exceeds 40, a sufficient reflection coefficient cannot be obtained.

また、本発明者らは、本発明の実施例にかかる光スイッ
チを構成する先導波路の@員に最適の寸法のあることを
県出し、それに基づき、高性能の小型薄膜スイッチを発
明した。すなわち、先導波路230幅員が0.5μmか
ら400μmであると良いことを見出した。すなわち、
上記先導波路の幅員が400μmをこえると上記光導波
路の交差路の長手方向の寸法が交差角46でおいても*
’ Mll以−Fとなり光スィッチの小型化に適当では
ない。
In addition, the present inventors have determined that there is an optimal dimension for the member of the leading waveguide constituting the optical switch according to the embodiment of the present invention, and based on this, they have invented a high-performance compact thin film switch. That is, it has been found that the width of the leading waveguide 230 is preferably from 0.5 μm to 400 μm. That is,
If the width of the leading waveguide exceeds 400 μm, even if the longitudinal dimension of the optical waveguide intersection has an intersection angle of 46*
' Since it is more than Mll-F, it is not suitable for miniaturizing optical switches.

光導波路の幅員が0.s tt m未満では、光導波路
の側面の加工形邪による伝搬ロスが無視できなくなる。
The width of the optical waveguide is 0. Below s tt m, propagation loss due to the machining of the side surfaces of the optical waveguide cannot be ignored.

前記の如き構成の光スィッチを具体的に光導波路が交差
角2°で交差、しており、この光導波路の幅員が40 
/Z m、帯状導電層の幅員が471 m、光導波路の
厚さを1μmのPbTi0 sで形成する。この光スィ
ッチに適当な電界を加−゛えると、第3図(b)に示す
キうに電気力線38は対向型1@26間に均一にしかも
集中的であるので、電界を効果的に用いることがで、き
る。しかも、対向型11fjJ間隔は単に″に、導波路
の厚さによるだけであるから、従来の光スーイソチに比
べ電極間隔を近づけることができ、さらに均一な′電界
を得ることができる利点を有している。したがって、前
記の如く形成した光スィッチは、波長0.632 B 
u rILの光波の場合、印加電1工20Vで20dB
の消光比が得られることを確認した。従来のT1拡散型
先導波路で従来の光スィッチを作製する場合、電気力線
の広がりの影響のため印加電圧40Vで20dBの消光
比であり、前記実施例の場合非常に低電圧駆動化が実現
されたことが確認できる。
Specifically, the optical switch having the above configuration has optical waveguides that intersect at a crossing angle of 2°, and the width of this optical waveguide is 40°.
/Z m, the width of the strip-shaped conductive layer is 471 m, and the thickness of the optical waveguide is 1 μm. When an appropriate electric field is applied to this optical switch, the electric field lines 38 are uniform and concentrated between the opposing types 1@26, as shown in FIG. 3(b), so that the electric field can be effectively reduced. You can do it by using it. Moreover, since the facing type 11fjj spacing is simply dependent on the thickness of the waveguide, it has the advantage that the electrode spacing can be made closer compared to the conventional optical waveguide, and a more uniform electric field can be obtained. Therefore, the optical switch formed as described above has a wavelength of 0.632 B.
In the case of urIL light waves, 20 dB with an applied voltage of 20 V
It was confirmed that an extinction ratio of When a conventional optical switch is manufactured using a conventional T1 diffused guided waveguide, the extinction ratio is 20 dB at an applied voltage of 40 V due to the spread of electric lines of force, and in the above example, extremely low voltage driving is achieved. It can be confirmed that this has been done.

以−hの説明では光伝搬媒体としてPbTiOsについ
て述べたが、PbTiOs以外に、BaTiO3やPL
ZT系薄111[例工[PLZT(9/65/3.5)
、 PLT、 PZTすどのペロブスカイト構造の薄膜
でも、 PbTiOsと同様の製造プロセスで形成でき
電気光学効果も大きく、本発明にがかる岑スイッチの構
成材料として有効である。
In the explanation below, PbTiOs was mentioned as an optical propagation medium, but in addition to PbTiOs, BaTiO3 and PL
ZT series thin 111 [Example work] PLZT (9/65/3.5)
, PLT, and PZT can be formed by the same manufacturing process as PbTiOs and have a large electro-optic effect, and are effective as constituent materials for the switch according to the present invention.

さらに同様の構成材料として、光伝搬媒体としてB G
 O(Bi12Goo、、o) 、 BTO(Bi12
TiO、、o)あるイId、 BSO(Bi12SiO
20) f+’iNヲ用イル?ニー トカiTiである
ことを確認した。さらに、光伝搬媒体材料としてLiT
a0 sあるいはLiNb05薄膜が使用できることを
確認した。
Furthermore, as a similar constituent material, B G is used as a light propagation medium.
O(Bi12Goo,,o), BTO(Bi12
TiO,,o) certain Id, BSO(Bi12SiO
20) f+'iNwo use il? It was confirmed that it was Neetka iTi. Furthermore, LiT is used as a light propagation medium material.
It was confirmed that a0s or LiNb05 thin film can be used.

以上の説明では、表面被膜として石英ガラスについて述
べたが、表面被膜としては、その光の屈折率が光の伝搬
媒体より小さく、またU字溝が例えばホトエッチ法で容
易に形成できさえすればよく、石英ガラスに限定される
ものではない。例えば、硼珪酸ガラス、ソーダガラスの
他、窒化シリコン等でも実用できる。
In the above explanation, quartz glass was used as the surface coating, but the surface coating only needs to have a smaller refractive index than the light propagation medium, and the U-shaped groove can be easily formed, for example, by photoetching. , but is not limited to quartz glass. For example, in addition to borosilicate glass, soda glass, silicon nitride, etc. can also be used.

以上の説明では、バッファ層として、サファイヤ(α−
ム120B)と石英ガラスについて述べたが、バッファ
層としてはその光の屈折率が光の伝搬媒体よシ小さく、
またその表面に伝搬媒体からなる薄膜を容易に形成でき
さえすればよく、サファイヤや石英ガラスに限定される
ものではない。例え □−ハ、硼珪酸ガラス、ソーダガ
ラスの他、窒化シリコン′:9でも実用できる。
In the above explanation, sapphire (α-
As mentioned above, silica glass can be used as a buffer layer because its refractive index for light is smaller than that of the light propagation medium.
Further, it is only necessary that a thin film made of a propagation medium can be easily formed on the surface thereof, and the material is not limited to sapphire or quartz glass. For example, in addition to borosilicate glass and soda glass, silicon nitride':9 can also be used for practical purposes.

寸だ、前記只14ζ例で示した基板あるいは光伝搬1j
11、体の+:4 才1以外でも、化学組成やその結晶
力(、l、等を父化させることにより、本発明の光スイ
ツチのtf7i成(]1本となりうる。
The substrate or light propagation 1j shown in the above example of just 14ζ
11. Body +: 4 years old Even in children other than 1 year old, by changing the chemical composition and its crystal power (, l, etc.), it is possible to form the tf7i light switch of the present invention.

例えは、Ill −V族rヒ合物でも本発明の構成の基
本条(′1さえ満足されていれば使用でき、例えば光伝
搬媒体をGaPあるいはGaAsにする。この場合赤外
線用の先導波路として有効である。また、■−\[族化
合物も(小用i1J能で、例えば基板にZn5e単結晶
を、光伝搬媒体をZnTeにするとよい。
For example, Ill-V group r-hybrid compounds can also be used as long as the basic conditions ('1) of the structure of the present invention are satisfied. For example, the optical propagation medium is GaP or GaAs. In this case, it can be used as a leading waveguide for infrared light. It is also effective. In addition, compounds of the ■-\[ group are also suitable for small use. For example, it is preferable to use Zn5e single crystal for the substrate and ZnTe for the optical propagation medium.

また、これらの■−■族化合物、例えばZnO。Also, these ■-■ group compounds, such as ZnO.

ZnS、 Odd、 Zn5e、 ZnTeあるいはこ
れらの化合物を光伝搬媒体に用いてもよい。ZnOを光
伝搬媒((・に用いる場合、例えは、硼珪酸ガラス−に
に尊’ltN層とじA1を蒸着し、さらに石英ガラスを
スパッタ蒸着したのち、ZnO膜をスパッタ蒸着すると
、スパッタ蒸着中の基板温度が100℃以下で、光(ム
搬損失が例えば10 dB/ cm以下という良好なC
イ輔配向膜が形成し、この種の光導波路の形成に有用で
あることを確認した。
ZnS, Odd, Zn5e, ZnTe, or a compound thereof may be used as the light propagation medium. When ZnO is used as a light propagation medium (for example, a ZnO layer is deposited on borosilicate glass), a ZnO film is sputter-deposited after sputter-depositing silica glass, and then a ZnO film is sputter-deposited. When the substrate temperature is 100℃ or less, the optical
It was confirmed that an oriented film was formed and is useful for forming this type of optical waveguide.

本発明者らは、本発明にかかる構成の光スィッチにおい
て、電界供給源として太陽電池を用いた。
The present inventors used a solar cell as an electric field supply source in an optical switch configured according to the present invention.

第4図(a) 、 (b)にこの光スイツチのW7B成
を示す。この構成の光スイツチは対向型wX36 」1
に絶縁層41を設け、さらに絶縁層41」二に太陽電池
42を積層し、この太陽電油42と対向型FM3 eと
を′rE気的に導電層43を用いて結合させる構造から
なる。
Figures 4(a) and 4(b) show the W7B configuration of this optical switch. The optical switch with this configuration is the opposite type wX36''1
It has a structure in which an insulating layer 41 is provided on the insulating layer 41, a solar cell 42 is further laminated on the insulating layer 41'', and the solar cell 42 and the facing type FM 3e are electrically coupled using a conductive layer 43.

この構造の光スィッチを用いると太陽電池に光をONま
たはOFFさせることにより光スィッチを駆動させるこ
とが可能で、しかも本発明の構造の光スィッチを用いて
いるので消光比が大きく、しかも対向’ti−hに太陽
電池を積層しているので外部電源が必要なくかつ不必要
な電界が他の部分に加わらないという効用がある。この
尤スイッチは複雑な電気配線の必要がないので集積化に
極めて適しており、光のみで制御する光ICを形成する
ことができる。
Using an optical switch with this structure, it is possible to drive the optical switch by turning on or off light to the solar cell.Moreover, since the optical switch with the structure of the present invention is used, the extinction ratio is large, and moreover, the opposite Since solar cells are stacked on the ti-h, there is no need for an external power source, and there are advantages in that unnecessary electric fields are not applied to other parts. Since this switch does not require complicated electrical wiring, it is extremely suitable for integration, and it is possible to form an optical IC that is controlled only by light.

更に本発明各らは光スイツチ用の光4波路として、第3
図に示す構成のものを用いたが、第5図。
Furthermore, the present invention has developed a third optical wave path as a four-wave path for an optical switch.
The configuration shown in the figure was used, and FIG.

第6図;匝示す構成の光導波路を用いても、本発明の効
果が得られることを見い出した。
FIG. 6: It has been found that the effects of the present invention can be obtained even when using an optical waveguide having the configuration shown in FIG.

ここで、第6図の光導波路61は第1図(IL)のリッ
ジ型と基本的に同じ構造であり、基板52と光伝搬媒体
53との間に対向電極54とバッファ層65を対向電極
66と光伝搬媒体が接触しないようにした構成であり、
バッファ層の屈折率は光伝搬媒体の屈折率より小さくす
る構造である。
Here, the optical waveguide 61 shown in FIG. 6 has basically the same structure as the ridge type shown in FIG. 66 and the optical propagation medium do not come into contact with each other,
The structure is such that the refractive index of the buffer layer is smaller than the refractive index of the optical propagation medium.

第6図は、基板62と光伝搬媒体63との間に対向電極
64と対向電極64と光伝搬媒体63を分離する光伝搬
媒体より小さい光の屈折率を有するバッファ層65を設
け、さらに光伝搬媒体63の表面631に先広M媒体よ
シ小さい光の屈折率を有する装荷層66を設け、装荷層
66下の光伝搬媒体632のみ光波を伝搬させる光導波
路61を示す。前記光導波路51および6゛2上にバッ
ファ層と対向すべき対向電極を順次設けることにより光
スィッチは、第3図の構造の光スィッチ31と同様の効
果をもつ。
In FIG. 6, a counter electrode 64 is provided between a substrate 62 and a light propagation medium 63, and a buffer layer 65 having a smaller refractive index for light than the light propagation medium separating the counter electrode 64 and the light propagation medium 63 is provided. An optical waveguide 61 is shown in which a loading layer 66 having a smaller optical refractive index than the wide M medium is provided on the surface 631 of the propagation medium 63, and only the optical propagation medium 632 under the loading layer 66 propagates light waves. By sequentially providing counter electrodes facing the buffer layer on the optical waveguides 51 and 62, the optical switch has the same effect as the optical switch 31 having the structure shown in FIG.

発明の効果 以上の説明から明らかなごとく、本発明にかかる光スィ
ッチは、従来の電極対型に見られたような電界の不均一
さおよび分散性を除去することができ、かつ’rrt 
Fθ(間隔も光伝搬媒体の厚さまで減少させることがで
きるので低電圧で光スィッチを駆動させることが容易で
ある。例えばPLZT系化合物などのポッケルス定数の
大きい物質で構成した光導波路を用いることにより屈折
率の差△nを低’tl、部で容易に得ることができるの
で、消光比を20dB以上得ることができる。また、そ
の光スィッチの加工精度は現在の半導(4)プロセスを
用いれば容易に形成することが可能である。したがって
、本発明にかかる光スイツチは光デバイスの小型化、集
積化、光IC等の集積化機能デバイスとして有効である
Effects of the Invention As is clear from the above explanation, the optical switch according to the present invention can eliminate the non-uniformity and dispersion of the electric field that was observed in the conventional electrode pair type, and
Fθ (The spacing can be reduced to the thickness of the optical propagation medium, making it easy to drive an optical switch with low voltage. For example, by using an optical waveguide made of a material with a large Pockels constant such as a PLZT compound, Since the refractive index difference △n can be easily obtained at low tl, an extinction ratio of 20 dB or more can be obtained.In addition, the processing accuracy of the optical switch can be achieved using the current semiconductor (4) process. Therefore, the optical switch according to the present invention is effective for miniaturization and integration of optical devices, and for integrated functional devices such as optical ICs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(a)、 (b)は薄膜光導波路の構造例を示
す図、第2図(la) 、 (b)はそれぞれ従来の尤
スイッチの構造を示す斜視図および要部断面図、第3図
(a)。 φ)はそれぞれ本発明の一実施例にかかる光ヌイノチの
I’fl)j告を示ず斜r見図および要部断面図、第4
図(a) 、 (b)はそれぞれ本発明の能の実施例に
かかる光スィッチの構造を示す斜限図および要部断面図
、第6図は尤スイッチに用いる先導波路の曲の実施例を
示す図、iJ’+ 6図は光スィッチに用いる先導波路
の能の実施例を示す図である。 32・・・・・・ノ、V板、33・・・・・・光導波路
、34・・・・・交差部、36・・・・・・交差部と基
板との間、36・・・・・・対向’ij3: l’l’
lt、37・・・・・バッファ1曽、321・・・・・
・li(“板表面、331・・・・・被11の(保護被
膜)、332・・・・・・溝(0字7,1.7 )、3
33・・・・・・光伝搬媒体、341 ・・・交ノ(″
部表面、361・・・・・・帯状]n電層(対向電極)
、38・・・・・市;気ノJ線。 代ノ111人の氏名 弁Jjlj+ 中 尾 敏 男 
は妙)1名第1図 2 2 図 24 26f (α) 231  2B 第354 IA 4 図
FIGS. 1A and 1B are diagrams showing an example of the structure of a thin film optical waveguide, and FIGS. 2A and 2B are a perspective view and a sectional view of the main parts, respectively, showing the structure of a conventional switch. Figure 3(a). φ) is a perspective view and a cross-sectional view of essential parts, and the fourth
Figures (a) and (b) are a perspective view and a cross-sectional view of the main parts, respectively, showing the structure of an optical switch according to an embodiment of the present invention, and Fig. 6 shows an embodiment of the structure of a leading waveguide used in the optical switch. The figure shown in FIG. 32..., V plate, 33... optical waveguide, 34... intersection, 36... between intersection and substrate, 36... ...Opposing 'ij3: l'l'
lt, 37... Buffer 1 so, 321...
・li ("Plate surface, 331...11 (protective coating), 332...Groove (0 characters 7, 1.7), 3
33... Light propagation medium, 341... Kono(''
part surface, 361... band-like] n-electrode layer (counter electrode)
, 38...City; Keino J Line. Names of the 111 people in charge: Ben Jjlj+ Toshi Nakao, male
1 person Figure 1 2 2 Figure 24 26f (α) 231 2B 354 IA 4 Figure

Claims (1)

【特許請求の範囲】 (1)基板の表面を被膜で覆い、この被膜に互いに交差
する溝を設け、かつこの溝に光伝搬媒体を埋設すること
により形成された先導波路において、少なくとも上記先
導波路の交差部と基板との間および上記交差部の表面に
導電層を設は対向電極とし、」二記光導波路と」−記導
電層との間にバッファ層を設けたことを特徴とする光ス
ィッチ。 (2)光伝搬媒体の光の屈折率が、被膜およびバッファ
層の光の屈折率よシ大きいことを特徴とする特許請求の
範囲第1項記載の光スィッチ。 (3)光伝搬媒体が、BaTiO3,PbTiOs 、
 PLZT系化合物の少なくとも一種で構成されたこと
を特徴とする特許請求の範囲第1項記載の光スィッチ。 (4)光伝搬媒体をBGO(Bi12GaO20) 、
  B T 0(Bi12Ti02o )あるいはBo
o (Bi 12sio2o )で構成したことを特徴
とする特許請求の範囲第1項記載の光−イッチ。 (6)光伝搬媒体をLiTa0 sあるいはLiNb0
5で構成したことを特徴とする特許請求の範囲第1項記
載の光スィッチ。 (6)光伝搬媒体をGaPおよびGaAsあるいはこれ
らの化合物で構成したことを特徴とする特許請求の範囲
第1項記載の光ヌイッチ。 (7)光伝搬媒体をZnO,ZnS、 CdS、 Zn
5e、 ZnTeあるいはこれらの化合物のうち一種で
構成したことを特徴とする特許請求の範囲第1項記載の
光スィッチ。 斡)バッファ層を少なくとも光1べ搬媒体の光の屈折率
よりも小さい屈折率を有する材料で構成することを特徴
とする特許請求の範囲第1項記載の光スィッチ。 (9)対向電極をムU、ムg、 Pt、 Cu、 AI
のうち少なくとも一種で構成したことを特徴とする特許
請求の範囲第1項記載の光スィッチ。 (10)対向電極を透明導電膜で構成したことを特徴と
する特許請求の範囲第1項記載の光スィッチ。 (11)透明導電膜をSnO2,In2O3,ITO(
InzOs−5nO2)のうち少なくとも一種で構成し
たことを特徴とする特許請求の範囲第10項記載の尤ス
イッチ。 (12)  対向′電極において、少なくとも一方の導
電1;’Jは交差部上で帯状であり、かつ先導波路の交
差部の長手方向の光19波路の交差角の2等分線]二に
帯状の導電層を設けたことを特徴とする特許請求の;庵
囲第1J丁1記4戊の光スィッチ。 (13)帯状の導電層の幅員を上記先導波路の幅員より
小さく、かつ導波路の交差部上の帯状の導電1・1゛・
1の長手方向のζ1′法が上記交差部の長手方向の長さ
の?1 以上あることを特徴とする特許請求の範囲第1
2項記載の光スィッチ。 (14)先導波路の交差部の交差角が4o以下であるこ
とをq、を徴とする特許請求の範囲第1項記載の光スィ
ッチ。 (15)先導波路の幅が0.6から1 o o ttm
であることを特徴とする特許請求の範囲第1項記載の光
スィッチ。 (16)少なくとも光導波路の交差部の表面に設けられ
た導電層上に絶縁層を設け、この絶縁層」二に太陽電池
を積層し、この太陽電池と上記対向電極とを電気的に結
合させたことを特徴とする特許請求の範囲第1項記載の
光スィッチ。
[Scope of Claims] (1) In a guide waveguide formed by covering the surface of a substrate with a film, providing mutually intersecting grooves in the coating, and burying an optical propagation medium in the grooves, at least the guide waveguide A conductive layer is provided between the intersection of the optical waveguide and the substrate and the surface of the intersection is used as a counter electrode, and a buffer layer is provided between the optical waveguide and the conductive layer. switch. (2) The optical switch according to claim 1, wherein the optical refractive index of the optical propagation medium is greater than the optical refractive index of the coating and the buffer layer. (3) The optical propagation medium is BaTiO3, PbTiOs,
The optical switch according to claim 1, characterized in that the optical switch is made of at least one kind of PLZT-based compound. (4) Optical propagation medium is BGO (Bi12GaO20),
BT 0 (Bi12Ti02o) or Bo
2. The optical switch according to claim 1, characterized in that the optical switch is constituted by o (Bi 12sio2o ). (6) Optical propagation medium is LiTa0s or LiNb0
5. The optical switch according to claim 1, characterized in that the optical switch comprises: (6) The optical switch according to claim 1, wherein the optical propagation medium is made of GaP, GaAs, or a compound thereof. (7) Optical propagation medium is ZnO, ZnS, CdS, Zn
5e, ZnTe, or one of these compounds. 4) The optical switch according to claim 1, wherein the buffer layer is made of a material having a refractive index smaller than at least a refractive index of light of the light transport medium. (9) Opposite electrodes: MuU, Mug, Pt, Cu, AI
The optical switch according to claim 1, characterized in that the optical switch is made of at least one of the following. (10) The optical switch according to claim 1, wherein the counter electrode is made of a transparent conductive film. (11) Transparent conductive film made of SnO2, In2O3, ITO (
11. The switch according to claim 10, characterized in that the switch is made of at least one type of InzOs-5nO2. (12) At least one of the conductive electrodes 1;'J is strip-shaped on the intersection, and the bisector of the intersection angle of the light 19 wavepath in the longitudinal direction of the intersection of the leading wavepath] is strip-shaped in the second direction. An optical switch according to claim 1, characterized in that it is provided with a conductive layer. (13) The width of the strip-shaped conductive layer is smaller than the width of the leading waveguide, and the strip-shaped conductive layer 1.1゛.
1 is the length of the intersection in the longitudinal direction? Claim 1 characterized in that there are 1 or more
The optical switch described in item 2. (14) The optical switch according to claim 1, characterized in that q indicates that the intersection angle of the intersection of the leading waveguides is 4o or less. (15) The width of the leading wavepath is from 0.6 to 1 o o ttm
An optical switch according to claim 1, characterized in that: (16) An insulating layer is provided on the conductive layer provided at least on the surface of the intersection of the optical waveguide, a solar cell is laminated on this insulating layer, and the solar cell and the counter electrode are electrically coupled. An optical switch according to claim 1, characterized in that:
JP15542482A 1982-09-06 1982-09-06 Optical switch Pending JPS5944024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15542482A JPS5944024A (en) 1982-09-06 1982-09-06 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15542482A JPS5944024A (en) 1982-09-06 1982-09-06 Optical switch

Publications (1)

Publication Number Publication Date
JPS5944024A true JPS5944024A (en) 1984-03-12

Family

ID=15605699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15542482A Pending JPS5944024A (en) 1982-09-06 1982-09-06 Optical switch

Country Status (1)

Country Link
JP (1) JPS5944024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231522A (en) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol Optical control type optical switch device
JPH0494260U (en) * 1991-01-14 1992-08-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231522A (en) * 1985-04-08 1986-10-15 Agency Of Ind Science & Technol Optical control type optical switch device
JPH0494260U (en) * 1991-01-14 1992-08-17

Similar Documents

Publication Publication Date Title
US7529433B2 (en) Humidity tolerant electro-optic device
US4786128A (en) Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
US6055342A (en) Integrated optical intensity modulator and method for fabricating the same
CA2116538C (en) Slow-wave electrode structure
US4003629A (en) Coupling device for light waves
EP0244442B1 (en) Linear light valve arrays having transversely driven electro-optic gates and method of making such arrays
JP2713087B2 (en) Waveguide optical device
US4198116A (en) Electro-optical switch and modulator
US5438637A (en) Electrically controllable optical filter device
US4035058A (en) Electro-optical switch and a method of manufacturing same
US4120560A (en) Optical waveguide network
JPS63178216A (en) Optical switch array
JPH1039266A (en) Optical control device
US11543688B2 (en) Waveguide component
JPS5987B2 (en) Electro-optical switches and modulators
JPS5944024A (en) Optical switch
JPS5944025A (en) Optical switch
JPS5930507A (en) Substrate for optical circuit
JPH07508598A (en) Multi-branch digital optical switch
JPS63261219A (en) Optical modulator element
JP2868046B2 (en) Light modulator
US4077113A (en) Method of manufacturing an electro-optical switch
JPS59176731A (en) Optical switch
JPH09297289A (en) Optical control device and operating method therefor
JPH10104559A (en) Optical waveguide device