JPS5943838B2 - blue light emitting device - Google Patents

blue light emitting device

Info

Publication number
JPS5943838B2
JPS5943838B2 JP51042125A JP4212576A JPS5943838B2 JP S5943838 B2 JPS5943838 B2 JP S5943838B2 JP 51042125 A JP51042125 A JP 51042125A JP 4212576 A JP4212576 A JP 4212576A JP S5943838 B2 JPS5943838 B2 JP S5943838B2
Authority
JP
Japan
Prior art keywords
light
light emitting
blue light
emitting device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51042125A
Other languages
Japanese (ja)
Other versions
JPS52125286A (en
Inventor
恵吏 布村
鉄人 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP51042125A priority Critical patent/JPS5943838B2/en
Publication of JPS52125286A publication Critical patent/JPS52125286A/en
Publication of JPS5943838B2 publication Critical patent/JPS5943838B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は小型青色発光装置を提供するもので、特に、G
al−xAlxAsに代表される半導体レーザと薄膜光
導波路とを組み合わせ光導波路内で光学的に非線形相互
作用を発生させ、青色発光を得る装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a compact blue light emitting device, particularly
The present invention relates to a device that combines a semiconductor laser typified by al-xAlxAs and a thin film optical waveguide to generate optical nonlinear interaction within the optical waveguide to obtain blue light emission.

オプトエレクトロニクスの進展は目覚しく、特にレーザ
は、その出現以来、多くの研究、開発が行なわれ、多方
面への応用がなされてきている。
Optoelectronics has made remarkable progress, and lasers in particular have undergone much research and development since their appearance, and have been applied in a wide variety of fields.

また近年は、光通信、光情報処理への応用が期待されて
いる。これらの将来の応用を考える場合には、オプトエ
レクトロニクスの分野においても素子や装置の固体化、
小型化、集積化が進められなければならない。
Furthermore, in recent years, applications in optical communications and optical information processing are expected. When considering these future applications, it is important to solidify elements and devices in the field of optoelectronics.
Miniaturization and integration must be promoted.

これらの努力は、現在充分とは言えないが、着実に進め
られている。
These efforts are currently progressing steadily, although they cannot be said to be sufficient.

伝送路としての光ファイバーは実用段階にあり、受光素
子や光回路素子の固体化、小型化、集積化の研究も盛ん
に行なわれている。
Optical fibers as transmission lines are at the practical stage, and research is being actively conducted on solid-state, miniaturization, and integration of light receiving elements and optical circuit elements.

特に発光源としての半導体レーザが実用の段階にあるこ
とは光応用の前途を明るいものにしている。
In particular, the fact that semiconductor lasers as light emitting sources are at the stage of practical use makes the future of optical applications bright.

しかし、現在のところ実用に供し得る室温動作のpn接
合式の半導体レーザとして得られる波長域は、約700
0λ〜9000λであり、短波長の青色の発光について
は、発光ダイオードとしても容易でなくまして青色発振
半導体レーザダイオードの実現は非常に困難であり現在
、まだ成功例は全く報告されていない。
However, at present, the wavelength range that can be obtained as a pn junction type semiconductor laser operating at room temperature that can be used practically is about 700 nm.
Regarding blue light emission with a short wavelength of 0λ to 9000λ, it is not easy to make a light emitting diode, and it is extremely difficult to realize a blue oscillation semiconductor laser diode, and no successful example has been reported yet.

従来の実用化されている青色発振レーザはアルゴンガス
レーザに見るごとく、大型で高価であり、水冷を要し電
力消費も大きいものである。
Like argon gas lasers, conventional blue oscillation lasers that have been put into practical use are large and expensive, require water cooling, and consume large amounts of power.

本発明は、全く新規な方法で従来の欠点、困難さを克服
し、低廉化された小型で低電力の青色発光素子を提供す
ることを目的とする。
It is an object of the present invention to overcome the conventional drawbacks and difficulties using a completely novel method, and to provide an inexpensive, compact, and low-power blue light emitting device.

第1図は本発明で実施された全固体で小型な青色発光装
置の概略図であり、半導体レーザ1と基板3の上に形成
された光薄膜導波路2からなつている。
FIG. 1 is a schematic diagram of an all-solid-state compact blue light emitting device according to the present invention, which is composed of a semiconductor laser 1 and an optical thin film waveguide 2 formed on a substrate 3.

その接合は後述する通りのものであり、図中の概略寸法
かられかる通り小型な構造の素子ができる。本発明の原
理は本質的に高密度光エネルギーの電磁波が光学的に非
線型な媒質と相互作用を起し、基本波(一次光)の周波
数の2倍(波長でH)の第2高調波(二次光)を発生す
ることを利用している。
The bonding is as described below, and as can be seen from the approximate dimensions in the figure, an element with a compact structure can be obtained. The principle of the present invention is essentially that an electromagnetic wave with high density optical energy interacts with an optically nonlinear medium, and a second harmonic of twice the frequency (H in wavelength) of the fundamental wave (primary light) is generated. It utilizes the generation of (secondary light).

現在、実用段階にある半導体レーザは7000A〜90
00λの範囲であり、逓倍により波長が3500λ〜4
500λ程度の青色光を得ることができる。
Semiconductor lasers currently in practical use range from 7000A to 90A.
00λ range, and by multiplication the wavelength can be increased from 3500λ to 4
Blue light of approximately 500λ can be obtained.

また、効率のよい第2高調波の発生のためには、非線型
効果を有する媒質中を高光エネルギー密度で伝播させる
必要があるが、非線型材料を光導波路構造とすることに
よつて、出力0.1〜1ワツトの半導体レーザを一次光
として使用した場合においても10ハVd以上のエネル
ギー密度を実現することが可能である。
In addition, in order to efficiently generate the second harmonic, it is necessary to propagate it at high optical energy density through a medium that has a nonlinear effect, but by using a nonlinear material as an optical waveguide structure, the output Even when a 0.1 to 1 watt semiconductor laser is used as the primary light, it is possible to achieve an energy density of 10 Vd or more.

勿論このためには、効率よく、半導体レーザ光を膜中に
導入しなければならないが、これは第2図に示すような
方法によつて可能であり、小型化にも支障はない。第2
図は薄膜2の終端部の膜上にテーパ4を蒸着やスパツタ
等でつけテーパ部に光5を入射し、テーパ4での光の膜
厚によるカツトオフを利用して膜内へー次光を導入する
。またテーパ4と薄膜2との界面は格子6をつけておい
てもよい。よく知られているように、光導波路型の光高
調波発生素子においても、一次光と二次光との伝播モー
ド間の位相整合がとれなければ第2高調波は発生しない
Of course, for this purpose, it is necessary to efficiently introduce semiconductor laser light into the film, but this can be done by the method shown in FIG. 2, and there is no problem with miniaturization. Second
In the figure, a taper 4 is formed on the film at the end of the thin film 2 by vapor deposition or sputtering, and light 5 is incident on the tapered part. Next light is introduced into the film using the cut-off due to the film thickness of the light at the taper 4. do. Further, a grating 6 may be provided at the interface between the taper 4 and the thin film 2. As is well known, even in an optical waveguide type optical harmonic generation element, a second harmonic is not generated unless phase matching is achieved between the propagation modes of the primary light and the secondary light.

優れた非線型光学材料として、LiNbO3やLiTa
O3およびこれらの固溶体がある。LiNbO3の光導
波路はLlイオンの外部拡散や金属イオンの内部拡散に
よつて製作される。また、LiTaO3を基板として、
スパツタ法、液相成長法、あるいは熔融固化法等により
LlNbO3薄膜が形成されているが、これらのもので
は基板部と薄膜部での屈折率差が小さく、7000人〜
9000λの半導体レーザ光を一次光とした場合、位相
整合が不可能であり、高調波発生は実現されない。Ll
NbO3等と充分大きな屈折率差をもち、しかも格子定
数のよく合つた基板による薄膜成長は従来行なわれてい
ない。本発明はLiNbO6,LiTaO3等にくらべ
てはるかに小さな屈折率をもつサフアイアα−Al2O
3単結晶を基板として利用し、スパツタ法等によりLi
Nbl−XTa)CO3(但しO≦X≦1)の{101
0}面(通称Y面)の単結晶薄膜を形成し低損失の光導
波路としこれを第2高調波発生素子として利用する。
LiNbO3 and LiTa are excellent nonlinear optical materials.
There are O3 and solid solutions thereof. The LiNbO3 optical waveguide is fabricated by external diffusion of Ll ions and internal diffusion of metal ions. In addition, using LiTaO3 as a substrate,
LlNbO3 thin films are formed by the sputtering method, liquid phase growth method, or melt solidification method, but these methods have a small refractive index difference between the substrate part and the thin film part, and it takes 7000 ~
When a 9000λ semiconductor laser beam is used as the primary light, phase matching is impossible and harmonic generation is not realized. Ll
Thin film growth using a substrate that has a sufficiently large refractive index difference with NbO3 or the like and has a well-matched lattice constant has not been performed in the past. The present invention uses saphire α-Al2O, which has a much smaller refractive index than LiNbO6, LiTaO3, etc.
3 Using a single crystal as a substrate, Li is deposited by sputtering method etc.
{101 of Nbl-XTa)CO3 (O≦X≦1)
0} plane (commonly called Y plane) is formed to form a low-loss optical waveguide, which is used as a second harmonic generation element.

この場合基板と導波路の屈折率差が充分大きいために目
的とする波長範囲でも容易に位相整合条件を満すことが
できる。第3図にはサフアイアα−AI?203単結晶
の{1012}面(通称R面)を基板としているLiN
bO3薄膜(Y面)の導波路での一次光(0.82μ)
、二次光(0.41μ)の伝播定数の変化を膜厚を横軸
として示す。
In this case, since the refractive index difference between the substrate and the waveguide is sufficiently large, the phase matching condition can be easily satisfied even in the target wavelength range. Figure 3 shows Saphire α-AI? LiN whose substrate is the {1012} plane (commonly known as the R plane) of the 203 single crystal.
Primary light (0.82μ) in the waveguide of the bO3 thin film (Y plane)
, the change in the propagation constant of secondary light (0.41μ) is shown with the film thickness as the horizontal axis.

第3図では一例として一次光、二次光ともTEモードと
した場合である。これよりわかるように、低次のモード
間での位相整合も可能であり、効率のよい第2高調波の
発生が期待される。次に本発明の装置の実施例を示す。
実施例基板にサフアイアα−Al2O3単結晶のR面を
光学的研磨をして用い、この土にLiNbO3単結晶膜
を高周波二極スパツタ法によりエピタキシ一成長させた
In FIG. 3, as an example, both the primary light and the secondary light are set to the TE mode. As can be seen from this, phase matching between low-order modes is also possible, and efficient generation of second harmonics is expected. Next, an example of the device of the present invention will be shown.
EXAMPLE A R-plane of a saphire α-Al2O3 single crystal was optically polished and used as a substrate, and a LiNbO3 single crystal film was epitaxially grown on this soil by a high frequency bipolar sputtering method.

スパツタ時にLiNbO3は組成ずれを起すので化学量
論的組成より若干Li2O成分の多い焼結体をスパツタ
のターゲツトとして使用した。スパツタ条件としては、
40%02入りのAγガスを用い、ガス圧は2×10−
2t0rrとした。基板温度700℃、陽極電流110
mAとして、スパツタ速度を約500λ/Hrにて、膜
厚7350λのLiNbO3膜を成長させた。次いで容
易軸方向に膜に電気分極を施した後第2図で示したよう
にテーパ膜としてAS2S3をテーパ比100:1とし
て蒸着し、この部分より半導体レーザ光が導入されるよ
うに、第1図に示すように設置した。
Since LiNbO3 undergoes compositional deviation during sputtering, a sintered body containing slightly more Li2O than the stoichiometric composition was used as a sputtering target. As for the spatuta conditions,
Aγ gas containing 40% 02 was used, and the gas pressure was 2 x 10-
It was set to 2t0rr. Substrate temperature 700℃, anode current 110℃
A LiNbO3 film with a thickness of 7350λ was grown at a sputtering rate of about 500λ/Hr. Next, after electrically polarizing the film in the easy axis direction, AS2S3 was deposited as a tapered film with a taper ratio of 100:1 as shown in FIG. It was installed as shown in the figure.

半導体レーザはパルス1駆動とし、約100mWのレー
ザ出力とした。
The semiconductor laser was driven with one pulse, and the laser output was approximately 100 mW.

膜中でのレーザ光のエネルギー密度は約5×106W×
dと考えられる。第3図に示すごとく、LiNbO3膜
厚を7350λとした場合に、一次光のTEI)モード
と二次光のTEτモードが位相整合することが計算され
るが、本実施例においても、集光性のよい青色光が検出
され効率は約1%程度であつた。本実施例のLiNbO
3の代りにLlTaO3やLiNbl?XTaxO3(
0≦X≦1)の単結晶膜をサフアイアのR面基板に成長
させることが可能であるので、これらの薄膜によつて同
様な第2高調波を発生させることができるのは勿論であ
る。
The energy density of the laser light in the film is approximately 5 x 106 W x
It is considered to be d. As shown in Fig. 3, when the LiNbO3 film thickness is 7350λ, it is calculated that the TEI) mode of the primary light and the TEτ mode of the secondary light are phase matched. Blue light with good quality was detected and the efficiency was about 1%. LiNbO of this example
LlTaO3 or LiNbl instead of 3? XTaxO3(
Since it is possible to grow a single crystal film of 0≦X≦1 on an R-plane substrate of sapphire, it is of course possible to generate a similar second harmonic with these thin films.

以上説明したように本発明によれば、半導体レーザとの
組み合せによつて全固体で小型の波長3500λ〜45
00Aのコヒーレントな青色発光装置を得ることができ
る。このような装置は従来得られなかつた全固体の青色
レーザ光源となるばかりか、この波長の光は光化学反応
を起し易く、また集光性がよいので、光プリンター(N
On−1mpactPrinter)、ホログラフイ、
等への応用が考えられる。
As explained above, according to the present invention, by combining with a semiconductor laser, an all-solid-state and small-sized laser beam with a wavelength of 3500λ to 45% is achieved.
A coherent blue light emitting device of 00A can be obtained. Not only does such a device provide an all-solid-state blue laser light source that has not been available before, but also because light at this wavelength easily causes photochemical reactions and has good light focusing properties, it can be used as an optical printer (N
On-1mpactPrinter), holography,
Possible applications include.

また、螢光体(ZnS等)を用いれば、容易に高効率で
可視のあらゆる波長の光を得ることができる。
Furthermore, by using a phosphor (such as ZnS), it is possible to easily obtain light of all visible wavelengths with high efficiency.

このように広範な応用が本発明の小型青色発光装置によ
つて期待できるので、その工業的価値は極めて大である
Since the small-sized blue light emitting device of the present invention can be expected to have a wide range of applications as described above, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子構造の例を示す概略図、第2
図は本発明での半導体レーザと薄膜光導波路との結合を
示す図、第3図は膜厚と伝播定数の関係を示し、一次光
と二次光とのグラフ上の交点が位相整合膜厚を与えるこ
とをTE波を例に示してある。 1・・・・・・半導体レーザ、2・・・・・・LiNb
l−XTaxO3薄膜光導波路、3・・・・・・サフア
イア単結晶基板、4・・・・・・テーパ、5・・・・・
・一次光、6・・・・・・格子、7・・・・・・ヒート
シンク。
FIG. 1 is a schematic diagram showing an example of the device structure according to the present invention, and FIG.
The figure shows the coupling between the semiconductor laser and the thin film optical waveguide in the present invention, and Figure 3 shows the relationship between the film thickness and the propagation constant, and the intersection of the primary light and the secondary light on the graph is the phase matching film thickness. This is shown using the TE wave as an example. 1... Semiconductor laser, 2... LiNb
l-XTaxO3 thin film optical waveguide, 3...Sapphire single crystal substrate, 4...Taper, 5...
・Primary light, 6... Lattice, 7... Heat sink.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体レーザと、サファイアα−Al_2O_3単
結晶の{1012}面上に形成されたLiNb_1−x
TaxO_3(但し、0<X<1)薄膜光導波路とを組
み合わせ、半導体レーザ光を前記薄膜光導波路に導入し
、第2高調波を発生させることにより、青色光を発生さ
せるようにしたことを特徴とする青色発光装置。
1 Semiconductor laser and LiNb_1-x formed on the {1012} plane of sapphire α-Al_2O_3 single crystal
TaxO_3 (0 < A blue light emitting device.
JP51042125A 1976-04-14 1976-04-14 blue light emitting device Expired JPS5943838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51042125A JPS5943838B2 (en) 1976-04-14 1976-04-14 blue light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51042125A JPS5943838B2 (en) 1976-04-14 1976-04-14 blue light emitting device

Publications (2)

Publication Number Publication Date
JPS52125286A JPS52125286A (en) 1977-10-20
JPS5943838B2 true JPS5943838B2 (en) 1984-10-24

Family

ID=12627211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51042125A Expired JPS5943838B2 (en) 1976-04-14 1976-04-14 blue light emitting device

Country Status (1)

Country Link
JP (1) JPS5943838B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313980A (en) * 1988-06-14 1989-12-19 Canon Inc Second harmonic wave generating device
JPH01289183A (en) * 1988-05-16 1989-11-21 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH01289182A (en) * 1988-05-16 1989-11-21 Matsushita Electric Ind Co Ltd Semiconductor laser
JP3148896B2 (en) * 1990-11-30 2001-03-26 イビデン株式会社 Lithium niobate single crystal thin film
JP3025982B2 (en) * 1992-01-21 2000-03-27 イビデン株式会社 Waveguide type optical directional coupler

Also Published As

Publication number Publication date
JPS52125286A (en) 1977-10-20

Similar Documents

Publication Publication Date Title
JPH0758378B2 (en) Non-linear optical device
CA2264753A1 (en) Laser
US20060120415A1 (en) Blue laser beam oscillating method and system
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JPS6014222A (en) Optical wavelength converting element
US6807210B2 (en) Systems and a method for generating blue laser beam
JP3129028B2 (en) Short wavelength laser light source
JPS5943838B2 (en) blue light emitting device
CN109378692A (en) A kind of miniaturization high efficiency green light crystal conversion module
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JPH11326966A (en) Second harmonic generator
EP1407522A1 (en) Optical frequency mixing
JPH04335328A (en) Second harmonic generating element and production thereof and light source device formed by using second harmonic generating element
JPS5943837B2 (en) blue light emitting device
JP2676743B2 (en) Waveguide type wavelength conversion element
JP2693842B2 (en) Optical wavelength converter
JP2760172B2 (en) Waveguide type nonlinear optical device
JP2899345B2 (en) Optical device
JPS6118933A (en) Device for changing wavelength of light
JPS6017727A (en) Element for converting wavelength of light
JP2973463B2 (en) Optical waveguide device
CN117613649A (en) Frequency conversion optical fiber
JPH01172934A (en) Non-linear optical element
CN118739014A (en) On-chip integrated multi-frequency laser system
JP2738155B2 (en) Waveguide type wavelength conversion element