JPS5943719B2 - heat storage device - Google Patents

heat storage device

Info

Publication number
JPS5943719B2
JPS5943719B2 JP52081753A JP8175377A JPS5943719B2 JP S5943719 B2 JPS5943719 B2 JP S5943719B2 JP 52081753 A JP52081753 A JP 52081753A JP 8175377 A JP8175377 A JP 8175377A JP S5943719 B2 JPS5943719 B2 JP S5943719B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
heating fluid
storage device
fluid passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52081753A
Other languages
Japanese (ja)
Other versions
JPS5416765A (en
Inventor
敬 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP52081753A priority Critical patent/JPS5943719B2/en
Publication of JPS5416765A publication Critical patent/JPS5416765A/en
Publication of JPS5943719B2 publication Critical patent/JPS5943719B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 本発明は夫々様々な温度を呈する種々の加熱流体(廃ガ
ス・温廃水等)からその有する熱量を何個に回収蓄熱す
る蓄熱装置に関する3、 昨今、省資源化な目的とした各種の廃熱利用システムが
開発されている。
[Detailed Description of the Invention] The present invention relates to a heat storage device that collects and stores heat from various heating fluids (waste gas, heated waste water, etc.) each exhibiting various temperatures. Various waste heat utilization systems have been developed for this purpose.

廃熱利用システムを開発する場合に先ず問題となるもの
に、廃熱発生源の規模、廃熱発生量の時間的変動及び廃
熱発生源と廃熱利用設備との距離等が挙げられる。
The first issues that arise when developing a waste heat utilization system include the scale of the waste heat generation source, temporal fluctuations in the amount of waste heat generation, and the distance between the waste heat generation source and the waste heat utilization equipment.

即(3、廃熱を利用し〜ようとする場合に、廃熱発生源
の規模があまり小さく廃熱発生量が少ないと、廃熱回収
による経済的効果に比べて廃熱利用設備の設置に要する
費用の方が割高となってシ5.まい、また廃熱発生針が
多くてもそれが定常的に得られるものでなく、間欠的に
発生するものであるような場合には、たとえ廃熱利用設
備を設置してもその利用率が低(結局採算に合わない結
果となってしまう。
Immediately (3) When trying to utilize waste heat, if the scale of the waste heat generation source is too small and the amount of waste heat generated is small, it may be difficult to install waste heat utilization equipment compared to the economic effect of waste heat recovery. The cost required will be relatively high, and even if there are many waste heat generating needles, if the waste heat is not obtained constantly but is generated intermittently, Even if heat utilization equipment is installed, its utilization rate is low (eventually, it becomes unprofitable).

また廃熱発生源とその廃熱を必要とする設備との距離が
あまりかげ離れているような場合には、廃熱を熱エネル
ギの形で移送しようとすると、エネルギ損失が多く、一
方熱エネルギを電気エネルギ等に変換して移送しようと
すれば発電機、夕・−ビン等の大規模な付帯設備が必要
となる等の問題があった。
In addition, if the distance between the waste heat generation source and the equipment that requires the waste heat is very large, there will be a lot of energy loss when trying to transfer the waste heat in the form of thermal energy; If one were to convert the energy into electrical energy and then transfer it, there were problems such as the need for large-scale auxiliary equipment such as generators and generators.

そこで、従来面に開発されている廃熱利用設備は主に発
電所や製鉄所のように大規模且つ定常的に廃熱の得られ
る場所に設置されたものが多く、−般の生産工場等に使
用される小規模なボイラ、各種加熱炉、反応炉、廃棄物
焼却炉等から排出されるような発生量が時間的に一定し
ないか、もしくは発生熱量の少ない廃熱については従来
何ら利用が成されない。
Therefore, most of the waste heat utilization equipment that has been developed in the past has been installed in places where waste heat can be obtained on a large scale and constantly, such as power plants and steel mills. Waste heat emitted from small-scale boilers, various heating furnaces, reactors, waste incinerators, etc. used in Not done.

更に、上述したような小規模なボイラ、各種加熱炉、反
応炉、廃棄物焼却炉等の小規模な廃熱発生源にあっては
、個々に発生する廃熱量は少ないが、その数においては
前述の発電所や製鉄所等の数とは比較にならない程多く
、従ってこれら小規模な、もしくは廃熱発生量が時間的
に変動する廃熱発生源より放出される廃熱量の総和は膨
大なものとなることが推測され、このような大量の熱エ
ネルギを利用し、ないことは極めて無駄なことであると
考えられた。
Furthermore, in the case of small-scale waste heat generation sources such as small-scale boilers, various heating furnaces, reactors, and waste incinerators as mentioned above, the amount of waste heat generated individually is small, but the number The number of waste heat sources is incomparably greater than the number of power plants and steel mills mentioned above, and the total amount of waste heat released from these small-scale or waste heat generation sources whose waste heat generation amount fluctuates over time is enormous. It was assumed that such a large amount of thermal energy would be used, and it would be extremely wasteful to not use it.

そこで、本出願人は以上のごとき廃熱利用システノ、上
の問題点を解決すべく先に任意の場所で蓄熱することが
出来且つ他の場所で放熱することが出来る新規な蓄熱装
置を提供した。
Therefore, in order to solve the above-mentioned problems with the waste heat utilization system, the present applicant has provided a new heat storage device that can first store heat at any location and radiate it at another location. .

9この蓄熱装置の要旨は相変化又は化学反応により熱の
吸収、放出を行なう物質を蓄熱体中に封入し、該蓄熱体
を高温廃ガスの通路の熱交換器に着脱自在に設けて、蓄
熱体に熱量を吸収せしめた後取り出し〜得るように構成
されたもので、この装置によれば廃熱発生量が少ないこ
と、廃熱発生量に時間的な変動があること、或いは廃熱
発生源の近(に廃熱を必要とする設備が存在しないこと
等の理由によって廃熱利用設備(廃熱回収から利用に至
る一貫設備)を構成することが出来な(・ような小規模
もしくは発生量の一定しない廃熱発生源からもその放出
される熱エネルギを無1駄な(回収することが出来、ま
た蓄熱体自体が着脱自在であることから、この回収され
た熱量を例えばエネルギセンタ等の熱利用に最も好都合
な廃熱発生源とは別の場所に集めればこれを有効に利用
することが出来る。
9 The gist of this heat storage device is that a substance that absorbs and releases heat through phase change or chemical reaction is sealed in a heat storage body, and the heat storage body is detachably installed in a heat exchanger in a high-temperature waste gas passage. This device is configured to absorb heat into the body and then take it out.This device generates a small amount of waste heat, has temporal fluctuations in the amount of waste heat generated, or detects the source of waste heat. It is not possible to construct waste heat utilization equipment (integrated equipment from waste heat recovery to utilization) due to reasons such as the absence of equipment requiring waste heat in the vicinity of It is possible to recover the thermal energy emitted from the inconsistent waste heat generation source (wasteful), and since the heat storage body itself is detachable, the recovered heat can be used for example in energy centers etc. This waste heat can be used effectively if it is collected in a location different from the waste heat generating source that is most convenient for heat utilization.

ところで、この装置に使用される蓄熱体としては主に相
変化により熱を吸収する物質を封入j〜てなるものが使
用され、即ちある物質Aにこの物質よりも温度の高い物
質Bを接触させる等すると、温度の高い物質Bより温度
の低い物質Aに向けて温度差による熱の移動が起り、こ
の結果物質Bの有する熱量の一部が物質Aに吸収、蓄熱
されることとなるが、この際物質Aの蓄熱前の温度と蓄
熱後の温度との間の温度範囲内に物質Aの相変化温度(
融点、沸点等)が存在すると、物質Aには蓄熱前後の温
度差と比熱との積に相当する顕熱に加えて、その物質の
相変化時の潜熱までが蓄熱されたこととなり、極めて多
量の熱エネルギが蓄熱され、これを利用して運搬可能な
程度の少量の蓄熱物質であっても出来る限り多量の熱エ
ネルギを蓄熱出来るように配慮されたものである。
By the way, the heat storage body used in this device is mainly one that is filled with a substance that absorbs heat through a phase change, that is, a substance A is brought into contact with a substance B that has a higher temperature than this substance. When equal, heat transfers due to the temperature difference from substance B, which has a high temperature, to substance A, which has a low temperature, and as a result, a part of the amount of heat that substance B has is absorbed and stored in substance A. At this time, the phase change temperature of substance A (
(melting point, boiling point, etc.), in addition to the sensible heat equivalent to the product of the temperature difference before and after heat storage and the specific heat, substance A will have stored latent heat during the phase change of the substance, and an extremely large amount of heat will have been stored in substance A. This system is designed to store as much thermal energy as possible even with a small amount of heat storage material that can be transported using this storage material.

このような蓄熱装置によれば、例えば高炉設備に使用さ
れる熱風炉のような単に物質(煉瓦)の比熱を利用して
熱を蓄える蓄熱装置に比較すれば多量の熱エネルギを効
率よく蓄熱することが可能となる。
According to such a heat storage device, a large amount of thermal energy can be efficiently stored, compared to a heat storage device such as a hot blast furnace used in blast furnace equipment, which stores heat simply by utilizing the specific heat of a substance (brick). becomes possible.

しかしながらこの蓄熱装置にあっても廃熱発生源の温度
が蓄熱物質の相変化よりも著(〜く高いような場合には
、蓄熱物質中に蓄えられる総熱量に対するこの物質中に
潜熱として蓄えられている熱量の割合は低いものとなり
、かならずしも効率よく熱を蓄えるには至っていなかっ
た。
However, even in this heat storage device, if the temperature of the waste heat generation source is significantly higher than the phase change of the heat storage material, the amount of latent heat stored in this material relative to the total amount of heat stored in the heat storage material will increase. The ratio of the amount of heat being absorbed was low, and it was not always possible to store heat efficiently.

即ち、例えば蓄熱物質として25℃程度の水を採用し、
110℃程度の温度を有する廃ガスとの間に熱交換を行
なえば、水は最終的に110℃程度の蒸気となって、そ
の1グ中には沸点に至るまでの顕熱(100−25)X
I(比熱)−75cal・沸騰(相変化)時の潜熱53
8.8 cal、及び沸騰後の顕熱(110−100)
XI(比熱) = 1. Ocalの総和であるところ
の623.5 calもの熱量が蓄熱される結果となる
が、廃ガスの温度を例えば330℃、即ち3倍に増加さ
せたとしても蓄熱量の増加は蒸気となって以後の顕熱増
加分である2 20 calでしかなく、従って廃ガス
の温度を上昇させるに従って蓄熱効率は漸次低下してし
まうという問題があった。
That is, for example, water at about 25°C is used as the heat storage material,
If heat is exchanged with waste gas having a temperature of about 110℃, the water will eventually turn into steam at about 110℃, and one gram of water will contain sensible heat (100-25℃) up to the boiling point. )X
I (specific heat) - 75 cal・Latent heat at boiling (phase change) 53
8.8 cal, and sensible heat after boiling (110-100)
XI (specific heat) = 1. This results in heat storage of 623.5 cal, which is the sum of Ocal, but even if the temperature of the waste gas is increased to, for example, 330°C, or 3 times, the increase in heat storage will be due to the heat being converted into steam. Therefore, there was a problem in that the heat storage efficiency gradually decreased as the temperature of the waste gas was raised.

また、その反対に廃ガスの温度が蓄熱物質の相変化温度
よりも低い場合には、蓄熱される熱量は比熱と温度上昇
分との積に相当する僅かな熱量に過ぎず、蓄熱物質は短
時間のうちに廃ガスの温度にまで到達して熱飽和してし
まい、蓄熱に際して相変化時の潜熱を全く利用出来ない
とい5問題もあった。
On the other hand, if the temperature of the waste gas is lower than the phase change temperature of the heat storage material, the amount of heat stored is only a small amount of heat equivalent to the product of the specific heat and the temperature rise, and the heat storage material is short-lived. Another problem was that the temperature reached the temperature of the waste gas within a certain period of time, resulting in thermal saturation, and the latent heat during phase change could not be utilized at all for heat storage.

従って、先に提案された蓄熱装置にあっては、−伝いに
温度の異なる多数の廃熱発生源に対しては、発生源各々
にその温度に最適な蓄熱物質を選択せねばならないとい
う不都合があった。
Therefore, the previously proposed heat storage device has the disadvantage that, for a large number of waste heat generation sources with different temperatures, it is necessary to select a heat storage material that is optimal for each temperature of the generation source. there were.

ところが、先に提案された蓄熱装置の目的の一つには、
工場内に分散設置され且つ夫々間欠的にしか廃熱を発生
させることがないような廃熱発生源に対しても共通な−
sr蓄熱装置を備え、これを可搬式として廃熱発生源間
に移動させ、廃熱発生時にのみ使用ずれば廃熱回収を効
率よ(行なうことが出来ることでもあることから、前述
の!J、O<廃熱発生源の温度に応じて蓄熱体を選択せ
ねばならないことは極めて都合が悪かった。
However, one of the purposes of the heat storage device proposed earlier was to
This is also common to waste heat generation sources that are distributed throughout the factory and only generate waste heat intermittently.
If an SR heat storage device is installed, it is portable and moved between waste heat generation sources, and used only when waste heat is generated, waste heat recovery can be made more efficient. O<It is extremely inconvenient to have to select a heat storage body depending on the temperature of the waste heat generation source.

そこで、本発明者は先に本出願人が提案した蓄熱装置に
おける以上のごとき問題点に鑑み、これを有効に解決す
べく鋭意研究の結果この発明を創案するに至ったもので
ある。
Therefore, in view of the above-mentioned problems with the heat storage device previously proposed by the present applicant, the present inventor conducted intensive research to effectively solve the problems and came up with the present invention.

本発明の[]的とするところは、夫々様々な温度を呈す
る種々の加熱流体(廃ガス、温廃水等)からその有する
熱量を個々に有効に回収蓄熱するにおいて、加熱流体の
呈する温度の高低にかかわらずその含有する熱量を効率
よく回収蓄熱することを可能とするとともに、少量の蓄
熱物質で出来る限り多量の熱を蓄熱することが出来るよ
うにした装置を提供するものである。
The object of the present invention is to effectively collect and store heat from various heating fluids (waste gas, hot waste water, etc.) each exhibiting a variety of temperatures, by adjusting the temperature of the heating fluid. To provide a device that can efficiently recover and store the amount of heat it contains regardless of the amount of heat it contains, and can also store as much heat as possible with a small amount of heat storage material.

本発明は上記目的を達成するために、夫々様々な温度を
Vする種々の加熱流体からその有する熱量を回収蓄熱す
る蓄熱装置において、上記種々の加熱流体の通る加熱流
体通路と、該加熱流体通路に収容できる大きさに形成さ
れた密閉容器内にその種々の加熱流体の熱を回収蓄積す
べく互いに相変化温度の異なる複数の蓄熱物質を設ける
と共に密閉容器内にその蓄熱物と区画して加熱流体を流
す加熱流体通路を設けた蓄熱体と、該蓄熱体を複数個着
脱自在に収容すると共に、その蓄熱体を移動して蓄熱体
を選択的に上記加熱流体通路内に臨ませる収容体とを備
えたことを特徴とするものであり、蓄熱体にhqいに異
なる複数の相変化温度を付与することにより、以上の問
題を解決する。
In order to achieve the above object, the present invention provides a heat storage device for recovering and storing heat from various heating fluids having various temperatures, including a heating fluid passage through which the various heating fluids pass, and a heating fluid passage. In order to recover and store the heat of the various heating fluids, a plurality of heat storage materials having different phase change temperatures are provided in a closed container formed to a size that can accommodate the heat fluid, and the heat storage materials are separated from the heat storage materials in the closed container for heating. A heat storage body provided with a heated fluid passage through which a fluid flows, and a housing body that detachably accommodates a plurality of the heat storage bodies and moves the heat storage body to selectively expose the heat storage bodies to the heated fluid passage. The above-mentioned problems are solved by providing a plurality of phase change temperatures which are different in hq to the heat storage body.

即ち、物質は夫々固有の相変化温度を有し、一般に相変
化時に潜熱として吸収される熱量はいかなる物質におい
ても顕熱として吸収される熱量よりも著しく多く、従っ
てあらかじめ予想される廃熱発生源の温度範囲(Ta
−Tb ) を適当な間隔を置いて複数の温度範囲(
Ta=T、)、(T1〜T2)、(T3〜T4)・・・
・・・(Tn〜Tb )に分け、それぞれの範囲内に
おいて相変化温度を有する蓄熱物質を一つづつ選択し、
これらの夫々相変化温度を異とする複数の蓄熱物質によ
って蓄熱体を構成すればいかなる温度を肴する廃熱源に
対しても共通に使用することができ、且つ廃熱を」二記
蓄熱物質の夫々に主にそれぞれの温度における潜熱とj
〜て分散吸収させることによって多量の熱量を効率よ(
吸収させることが出来る蓄熱装置を提供することが出来
るわけである6、 次に本発明の蓄熱装置の好適一実施例を添付図面に従っ
て詳述する。
In other words, each substance has its own phase change temperature, and in general, the amount of heat absorbed as latent heat during a phase change is significantly greater than the amount of heat absorbed as sensible heat in any substance, and therefore, the amount of heat absorbed as sensible heat is significantly higher than the amount of heat absorbed as sensible heat. temperature range (Ta
-Tb) at appropriate intervals in multiple temperature ranges (
Ta=T, ), (T1-T2), (T3-T4)...
...(Tn to Tb), select one heat storage material having a phase change temperature within each range,
If a heat storage body is constituted by a plurality of heat storage materials having different phase change temperatures, it can be commonly used for waste heat sources at any temperature, and waste heat can be used as a heat storage material. The latent heat at each temperature and j
A large amount of heat can be efficiently used by dispersing and absorbing it.
Therefore, it is possible to provide a heat storage device that can absorb heat.6 Next, a preferred embodiment of the heat storage device of the present invention will be described in detail with reference to the accompanying drawings.

。第1図は本発明に用いる蓄熱体の一例を示す斜視図、
第2図は同地の実施例を示す斜視図、第3図は同地の実
施例を示す斜視図、第4図は第1図の蓄熱体を収容した
本発明の蓄熱装置の概略斜視図、第5図は第2図及び第
3図に示した蓄熱体を収容した本発明の蓄熱装置の概略
斜視図である3゜第1図に示す如く、1は後述する本発
明の蓄熱装置に用いる蓄熱体の一実R列を示すもので、
図示蓄熱体1は断面略扇状の密閉容器2からなり、その
内部は互いに平行な隔壁3 a y 3 b 、3 C
によって区画されて、夫々密封された室4a、4by4
c t 4 dが形成されている。
. FIG. 1 is a perspective view showing an example of a heat storage body used in the present invention;
FIG. 2 is a perspective view showing an embodiment of the same location, FIG. 3 is a perspective view of an embodiment of the same location, and FIG. 4 is a schematic perspective view of a heat storage device of the present invention accommodating the heat storage body of FIG. 1. , FIG. 5 is a schematic perspective view of the heat storage device of the present invention that accommodates the heat storage bodies shown in FIGS. 2 and 3.As shown in FIG. It shows one solid R row of heat storage bodies to be used,
The illustrated heat storage body 1 consists of an airtight container 2 with a substantially fan-shaped cross section, and the interior thereof includes partition walls 3 a y 3 b and 3 C that are parallel to each other.
The chambers 4a, 4by4 are partitioned by and sealed respectively.
c t 4 d is formed.

また、密閉容器2内には上記4つの室4a、4b、4c
、4dを順に貫通させて多数の管体5,5・・・・・・
が挿入されており、その入口及び出口5a、5bは容器
2の外部へ開放されている。
In addition, the above-mentioned four chambers 4a, 4b, 4c are inside the airtight container 2.
, 4d are sequentially penetrated to form a large number of tube bodies 5, 5...
is inserted, and its inlet and outlet 5a, 5b are open to the outside of the container 2.

尚、図示例にあっては容器2内の管体5はその一部のみ
を示している。
In the illustrated example, only a portion of the tube body 5 inside the container 2 is shown.

以−にの構成、よりなる密閉容器2内に、すなわち上記
4つの室の夫々4a、4b、4c、4dに互いに相変化
温度の異なる蓄熱物16a、6bt6c。
In the closed container 2 having the following configuration, that is, in the four chambers 4a, 4b, 4c, and 4d, there are heat storage materials 16a, 6bt6c having mutually different phase change temperatures.

6dが満される。6d is satisfied.

これらの蓄熱物質5a、6b。6 c 、6 dとして
は、この蓄熱体1は使用されるであろう廃熱発生源の温
度範囲を考慮して決定され、例えば、あらかじめ予想さ
れる廃熱発生源の温度範囲(Ta=Tb) を適当な
間隔を置いて複数(この実施例では4つ)の温度範囲(
Ta−T1)、(T1へ−T2)、(T3〜T4)、(
T4〜Tb )に分け、夫々の範囲内において相変化温
度を有する蓄熱物質を選択して6a、6b、5c 。
These heat storage substances 5a, 6b. 6 c and 6 d are determined by considering the temperature range of the waste heat generation source that will be used in the heat storage body 1, for example, the temperature range of the waste heat generation source expected in advance (Ta=Tb ) in multiple (four in this example) temperature ranges (
Ta-T1), (to T1-T2), (T3-T4), (
6a, 6b, 5c by selecting a heat storage material having a phase change temperature within each range.

6dを決定する。Determine 6d.

相変化温度としては融点、沸点、昇華点管種々のものが
採用し得るが、相変化前後ニオいて蓄熱物質の体積があ
まり変わらない融点ヲ利用することが最も好適である。
As the phase change temperature, various temperatures such as melting point, boiling point, and sublimation point can be used, but it is most suitable to use the melting point where the volume of the heat storage material does not change much before and after the phase change.

第2図に示す蓄熱体1は密閉容器2の形状を直方体とし
、ただけで他は全て第1L図の例と全く同様である。
The heat storage body 1 shown in FIG. 2 is completely the same as the example shown in FIG. 1L except that the shape of the closed container 2 is a rectangular parallelepiped.

第3図に示す蓄熱体1は密閉容器2内に隔壁を設けるこ
となく、単に管体5を挿通させただけのもので、この密
閉容器2内には互いに反応することなく、且つ相変化温
度の異なる種々の蓄熱物質13a ) 13 b t
13 e・・・・・・がイ昆入されている。
The heat storage body 1 shown in FIG. 3 is made by simply inserting a tube body 5 into a closed container 2 without providing a partition wall, and there is a temperature inside the closed container 2 that does not react with each other and has a phase change temperature. Various heat storage substances 13a) 13b t
13 e... is included.

、このように、げ、いに反応することがなく、且つ相変
化温度の異なる蓄熱物質どうしであれば、あえ−(第1
[71、第2図の例の如く隔壁は設ける心安がない。
, In this way, if the heat storage materials do not react with each other and have different phase change temperatures, then
[71, There is no sense of security in providing a partition wall as in the example shown in FIG.

次に第1〜3図に示した蓄熱体を用いた本発明の蓄熱装
置を第4図、第5図により説明する。
Next, a heat storage device of the present invention using the heat storage bodies shown in FIGS. 1 to 3 will be explained with reference to FIGS. 4 and 5.

第4図は第1図に示した扇状蓄熱体1を用いて熱回収す
る例なボし、円面1状のクーシングγ内に放射状に隔壁
8,8を設けて各室内に蓄熱体1を着脱自在に収容する
と共にその中心を軸10で回転自r[−に支4にシて収
容体9を形成したもので、収容体90前後に蓄熱体10
1つまたは複数個をコ1n過すべく加熱流体通路Aが形
成される3゜第5図は、第2図、第3図に示した直方体
状の蓄熱体1を用いて熱回収する例を示し、加熱流体通
路Aを形成するダクト11と交叉して複数個の直方体状
の蓄熱体1を収容する収容体12を形成し、その収容体
12の左右にシリンダ等の移動装置14を設けたもので
、移動装置14にて交互に往復移動り、て左右の蓄熱体
1な加熱流体通路A内に臨ませるもので、例えば左側の
収容体12bがら矢印のように蓄熱体1を取り出したの
ち右側の収容体12aに矢印に示すように蓄熱体1を収
容し2、その蓄熱体1を右側の移動装置14で〃゛クト
11内入るように移動させるものである。
FIG. 4 shows an example of heat recovery using the fan-shaped heat storage body 1 shown in FIG. The housing body 9 is housed in a removable manner and rotates about its center around a shaft 10.
FIG. 5 shows an example of heat recovery using the rectangular parallelepiped heat storage body 1 shown in FIGS. 2 and 3. , a container 12 for accommodating a plurality of rectangular parallelepiped-shaped heat storage bodies 1 intersects with a duct 11 forming a heating fluid passage A, and a moving device 14 such as a cylinder is provided on the left and right sides of the container 12. The movement device 14 moves the heat storage bodies 1 alternately back and forth to expose the left and right heat storage bodies 1 into the heating fluid passage A. For example, after taking out the heat storage body 1 from the left storage body 12b as shown by the arrow, the right side The heat storage body 1 is housed in the storage body 12a as shown by the arrow 2, and the heat storage body 1 is moved into the object 11 by the moving device 14 on the right side.

次に本発明の詳細な説明する1、 先ず廃ガスなどの加熱流体が第1図に示寸ように蓄熱体
1の管体5,5内を流れると、その管体5.5、の管壁
を介して加熱流体と蓄熱物質6a。
Next, the present invention will be explained in detail. 1. First, when a heating fluid such as waste gas flows through the tubes 5, 5 of the heat storage body 1 as shown in FIG. Heating fluid and heat storage material 6a through the wall.

6b、6c、6dとの間に熱交換が行なわれる。Heat exchange is performed between 6b, 6c, and 6d.

3管体5,5・・・・・・内に加熱流体が通過すると、
蓄熱物16a、6b、6c、6dは夫々蓄熱体1内にお
けるこれらの配列及び個々の比熱等によって定まる速度
で順次加熱され、その温度は上昇する。
3 When the heating fluid passes through the pipes 5, 5......
The heat storage objects 16a, 6b, 6c, and 6d are sequentially heated at a rate determined by their arrangement within the heat storage object 1 and their individual specific heats, and their temperatures rise.

ここで、例え&Qo熱流体の温度tgが極めて高く例え
ば蓄熱物質6 a 、6 b y 6 e 、6 dの
中でも最も相変化温度の高い蓄熱物質6dよりも高けれ
ば、加熱流体の有する熱量は蓄熱物質6a y 6b。
Here, for example, if the temperature tg of &Qo thermal fluid is extremely high and higher than the heat storage material 6d which has the highest phase change temperature among the heat storage materials 6a, 6b y 6e, and 6d, the amount of heat possessed by the heating fluid is Substance 6a y 6b.

6cy6d中に主に潜熱として分散蓄熱される。Heat is dispersed and stored mainly as latent heat during 6cy6d.

即ち、蓄熱物質6 aj 6b、5c 7 e(10人
々は加熱流体により加熱さねていくにつれて順次大々の
相変化温度に達し、その時点において多量の熱量を潜熱
として吸収1〜つつ最終的に加熱流体の温度により定ま
る高温に達するのである。
That is, as heat storage materials 6 aj 6 b, 5 c 7 e (10) people gradually reach a large phase change temperature as they are heated by a heating fluid, at that point they absorb a large amount of heat as latent heat and finally A high temperature determined by the temperature of the heating fluid is reached.

従って、先に本出願人により提供された単一 蓄熱物質
によりなる蓄熱体に比べその蓄熱される熱量は著しく多
い3、一方、加熱流体の温度が著しく低い場合でも、例
えば蓄熱物質5 a = 5 b t 5 e −5d
の中でも最も相変化温度の低い蓄熱体6aの相変化温度
を予想される最も低い加熱流体の温度よりも低くなるよ
うに設定1〜ておけば、加熱流体の有する熱量は主に蓄
熱体6a内に潜熱として蓄熱されることになる。
Therefore, the amount of heat stored in the heat storage body is significantly larger than that of the heat storage body made of a single heat storage material previously provided by the present applicant. b t 5 e -5d
If the phase change temperature of the heat storage body 6a, which has the lowest phase change temperature among the heat storage bodies 6a, is set to be lower than the expected lowest temperature of the heating fluid, the amount of heat held by the heating fluid is mainly transferred to the heat storage body 6a. The heat will be stored as latent heat.

この蓄熱体1を第4図、第5図に示した収容イ本9,1
2に収容1−て熱回収するにおいて、例えば第4図の収
容体9内に扇状。
This heat storage body 1 is housed in a housing case 9, 1 shown in FIGS. 4 and 5.
2. For heat recovery, for example, in a fan-shaped container 9 in FIG.

蓄熱体1を収容してその1つ又は複数個を加熱流体通路
A内に臨ませて加熱流体と熱交換させ、蓄熱体1の温度
が所定の値に達した時点で収容体9を回転させれば加熱
流体の流れを止めることなく新たな蓄熱体1を加熱流体
通路A内に臨ませることができる。
The heat storage body 1 is housed and one or more of them are exposed to the heating fluid passage A to exchange heat with the heating fluid, and when the temperature of the heat storage body 1 reaches a predetermined value, the housing body 9 is rotated. If so, a new heat storage body 1 can be brought into the heating fluid passage A without stopping the flow of the heating fluid.

また回収蓄熱後の蓄熱体1は適宜取り出したのち新たに
蓄熱体1を収容すれば略々連続し7た熱回収が行なえる
こととなる。
In addition, if the heat storage body 1 after the heat storage has been recovered and stored is appropriately taken out and then a new heat storage body 1 is housed, almost continuous heat recovery can be performed.

また第5図の場合も同様に収容体12の左右の収容体1
2a、12bから交4I’−に蓄熱体1な移動すると共
に”11N、取り出しを行なえば連続的に熱回収が行な
える。
Similarly, in the case of FIG. 5, the containers 1 on the left and right of the container 12
Heat can be recovered continuously by moving the heat storage body 1 from 2a and 12b to the intersection 4I'- and taking it out at 11N.

また上述のようにして回収蓄熱した蓄熱体1から熱を取
り出す場合、回収蓄熱した蓄熱体1を熱を必要とする所
定の場所まで移送1〜、そこで第4図、第5図と同様の
装置を用い加熱流体通路Aに被加熱流体を流せばその被
加熱流体を蓄熱体1で加熱することができる。
In addition, when extracting heat from the heat storage body 1 that has recovered and stored heat as described above, the heat storage body 1 that has recovered and stored heat is transported to a predetermined place where heat is required. If the fluid to be heated is made to flow through the heating fluid passage A using the heat storage body 1, the fluid to be heated can be heated by the heat storage body 1.

尚、−1らボの実施例において番効目熱流体として廃ガ
スを用いる例を示したが、廃ガスだけでなく温廃水、蒸
気など種々の流体を使用シ、つろことは勿論である。
Incidentally, in the embodiment of the -1 lab, an example was shown in which waste gas was used as the thermal fluid, but it is of course possible to use not only waste gas but also various other fluids such as heated waste water and steam.

また蓄熱物質(iay6by6c、6d中に適菌不純物
を混入すれば、その相変化温度を微調整することができ
る。
Furthermore, if suitable bacteria impurities are mixed into the heat storage material (iay6by6c, 6d), the phase change temperature can be finely adjusted.

リ、L要するに本発明によれば次のごとき優れた効果を
発揮する。
In short, the present invention exhibits the following excellent effects.

(1)夫々様々な温度を呈する種々の加熱流体(廃ガス
、温廃水等)からその有する熱量を個々に回収蓄熱する
において、互いに相変化温度(融点、沸点、昇華点等)
の異なる複数の蓄熱物質を備えた蓄熱体で熱回収するの
で、上記流体の温度に応じて上記蓄熱物質を選択させて
、その有する熱量を主に潜熱として上記蓄熱物質の何個
に分散蓄熱するようになし、加熱流体の呈する温度の高
低に拘らずその含有する熱量を効率よく回収蓄熱するこ
とを可能とするとともに、少量の蓄熱物質で出来る限り
多量の熱を蓄熱することができる。
(1) In recovering and storing heat from various heating fluids (waste gas, hot waste water, etc.) each exhibiting a variety of temperatures, each fluid has a phase change temperature (melting point, boiling point, sublimation point, etc.).
Since heat is recovered by a heat storage body having a plurality of heat storage materials with different temperatures, the heat storage material is selected according to the temperature of the fluid, and the amount of heat it has is mainly used as latent heat to be distributed and stored in several of the heat storage materials. This makes it possible to efficiently recover and store the amount of heat contained in the heating fluid regardless of the temperature of the heating fluid, and to store as much heat as possible with a small amount of heat storage material.

(2)蓄熱体を複数収容体に着脱旧作に収容し、そのI
l熱体を移動j〜で選択的に加熱流体通路に臨ませるこ
とにより加熱流体から連続的に熱回収ができる。
(2) The heat storage bodies are housed in multiple housing bodies in a removable manner, and the I
Heat can be continuously recovered from the heating fluid by selectively exposing the heating body to the heating fluid passage in the movement j~.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る蓄熱装置に用いる蓄熱体の−−−
−−例を示す胴祝図、第2図は同じく蓄熱体の他の例を
示す斜視図、第3図は同じく蓄熱体の他の例を示す斜視
図、第4図は本発明に係る蓄熱装置の−・実施例を示す
概略斜視図、第5図は本発明に係る蓄熱装置の他の実施
例を示す概略斜視図である。 尚、[劇中、1は蓄熱体、2は密閉容器、3a。 3 b 、3 eは隔壁、4a> 4b y 4e y
4dは室、5は流体の通路、6 a 、6 b )
6 cy 5 d yi3a 、i3b 、 13cは
蓄熱物質、9,12は収容体、Aは加熱流体通路である
1、
FIG. 1 shows a heat storage body used in a heat storage device according to the present invention.
-- Figure 2 is a perspective view showing another example of the heat storage body, Figure 3 is a perspective view showing another example of the heat storage body, and Figure 4 is a heat storage according to the present invention. FIG. 5 is a schematic perspective view showing another embodiment of the heat storage device according to the present invention. In addition, [in the play, 1 is a heat storage body, 2 is a closed container, and 3a. 3b, 3e are partition walls, 4a> 4b y 4e y
4d is a chamber, 5 is a fluid passage, 6a, 6b)
6 cy 5 d yi3a, i3b, 13c are heat storage materials, 9 and 12 are containers, A is a heated fluid passage 1,

Claims (1)

【特許請求の範囲】 1 夫々様々な温度を♀する種々の加熱流体からその有
する熱量を回収蓄熱する蓄熱装置において、上記種々の
加熱流体の通る加熱流体通路と、該加熱流体通路に収容
できる大きさに形成された密閉容器内にその種々の加熱
流体の熱を回収蓄熱すべく互いに相変化嵩度の異なる複
数の蓄熱物質を設けると共に密閉容器内にその蓄熱物質
と区画して加熱流体を流す流体通路を設けた蓄熱体と、
該蓄熱体を複数個着脱自在に収容すると共に、その蓄熱
体を移動させて選択的に上記加熱流体通路内に臨ませる
収容体とを備えたことを特徴とする蓄熱装置。 2 蓄熱体が、密閉容器内に障壁を設けて複数の室を形
成腰 それらの室内に、これらの室を順に経由する加熱
された流体の通路を区画し、上記各室に夫々相変化温度
の相異なる物質を封入して形成された−1−記特許請求
の範囲第1項に記載の蓄熱装置。 3 蓄熱体が、内部に加熱流体の密閉容器内に、互いに
反応することがなく且つ相変化温度の相異なる物質を混
入して形成された上記特許請求の範囲第1項に記載の蓄
熱装置。 4 収容体が回転自在な円筒状に形成され、蓄熱体がそ
の円筒状の収容体に着脱自在に収容すべく扇状に形成さ
れると共にその円筒状の収容体の回転に、より蓄熱体の
−っが加熱流体通路に臨む上記特許請求の範囲第1項に
記載の蓄熱装置、9 5 収容体が、直方体状の蓄熱体を収容すべく長方形状
に形成されると共にその蓄熱体を往復移動1〜て加熱流
体通路内に臨ませる上記特許請求の範囲第1項に記載の
蓄熱装置。
[Scope of Claims] 1. A heat storage device that recovers and stores heat from various heating fluids having various temperatures, including a heating fluid passage through which the various heating fluids pass, and a heating fluid passageway large enough to be accommodated in the heating fluid passage. In order to collect and store the heat of the various heating fluids, a plurality of heat storage materials having different phase change bulks are provided in the closed container formed in the airtight container, and the heating fluid is separated from the heat storage materials in the closed container. a heat storage body provided with a fluid passage;
A heat storage device characterized by comprising a housing body that detachably houses a plurality of heat storage bodies and that moves the heat storage bodies to selectively expose the heat storage bodies to the heating fluid passage. 2. The heat storage body forms a plurality of chambers by providing a barrier in the closed container. A passage for the heated fluid passing through these chambers in turn is divided into the chambers, and each of the above chambers has a phase change temperature. 1. The heat storage device according to claim 1, which is formed by enclosing different materials. 3. The heat storage device according to claim 1, wherein the heat storage body is formed by mixing substances that do not react with each other and have different phase change temperatures in a closed container containing a heating fluid. 4. The container is formed in a rotatable cylindrical shape, and the heat storage body is formed in a fan shape so as to be removably housed in the cylindrical container, and the rotation of the cylindrical container causes the - The heat storage device according to claim 1, wherein the housing body faces the heating fluid passage, and the housing body is formed in a rectangular shape to accommodate a rectangular parallelepiped heat storage body, and the heat storage body is reciprocated 1. The heat storage device according to claim 1, which is arranged so as to face the inside of the heating fluid passage.
JP52081753A 1977-07-08 1977-07-08 heat storage device Expired JPS5943719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52081753A JPS5943719B2 (en) 1977-07-08 1977-07-08 heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52081753A JPS5943719B2 (en) 1977-07-08 1977-07-08 heat storage device

Publications (2)

Publication Number Publication Date
JPS5416765A JPS5416765A (en) 1979-02-07
JPS5943719B2 true JPS5943719B2 (en) 1984-10-24

Family

ID=13755190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52081753A Expired JPS5943719B2 (en) 1977-07-08 1977-07-08 heat storage device

Country Status (1)

Country Link
JP (1) JPS5943719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345490B2 (en) 2017-10-23 2022-05-31 Blueprint Holding B.V. Compactor device and conveyer system comprising such compactor device, and corresponding compacting and packing methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144650A (en) * 1984-08-10 1986-03-04 Fujitsu Ltd System for printing standard characters of many languages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345490B2 (en) 2017-10-23 2022-05-31 Blueprint Holding B.V. Compactor device and conveyer system comprising such compactor device, and corresponding compacting and packing methods

Also Published As

Publication number Publication date
JPS5416765A (en) 1979-02-07

Similar Documents

Publication Publication Date Title
US6521026B1 (en) Regenerative type carbon dioxide separator and carbon dioxide separating system
JPS5679185A (en) Powdered coal gasification apparatus
US3996099A (en) Low temperature steam generator
CN105651091A (en) Heat transfer enhanced chemical heat storage device and heat storage system applying same
JP2023129516A (en) heat storage unit
JPS5943719B2 (en) heat storage device
Tayeb A simulation model for a phase-change energy storage system: experimental and verification
JPS57112692A (en) Multi-stage thermal accumulator
CN110131725B (en) Heating method, heating device and flue gas treatment method thereof
JPS5610694A (en) Hot-water boiler
Sun Designs of metal hydride reactors
JPS61205758A (en) Chemical heat accumulator
JPS5773076A (en) Thermal decomposition and gasification apparatus of combustible material with particulate and granular material circulating through fluidized bed
JPS60138394A (en) Heat storage type heat exchanger
SU932189A1 (en) Regenerative gas heater
Seki et al. Experiment of heat recovery from compost by a trial heat exchanger
JPS5836278B2 (en) Heat storage tank device
RU2190174C2 (en) Heat-exchange apparatus with solid fuel gas generator
Kato et al. A. 2 Li4SiO4/CO2 Chemical Heat Pump for High Temperature Gas Cooled Reactors
JPS563888A (en) Rotating regenerator
JPS5858594B2 (en) heat storage device
JP3098467B2 (en) Heat exchange type reactor
JP2006010297A (en) Solar heat collecting device
BALOH et al. Exergie//(German book)
JPS58205086A (en) Heat accumulating type heat exchanger