JPS5943531B2 - Manufacturing method for high-strength cold-rolled steel sheets with excellent workability - Google Patents

Manufacturing method for high-strength cold-rolled steel sheets with excellent workability

Info

Publication number
JPS5943531B2
JPS5943531B2 JP9747776A JP9747776A JPS5943531B2 JP S5943531 B2 JPS5943531 B2 JP S5943531B2 JP 9747776 A JP9747776 A JP 9747776A JP 9747776 A JP9747776 A JP 9747776A JP S5943531 B2 JPS5943531 B2 JP S5943531B2
Authority
JP
Japan
Prior art keywords
transformation point
phase
strength
rolled
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9747776A
Other languages
Japanese (ja)
Other versions
JPS5322812A (en
Inventor
哲博 速水
敬 古川
長靖 竹本
之夫 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9747776A priority Critical patent/JPS5943531B2/en
Publication of JPS5322812A publication Critical patent/JPS5322812A/en
Publication of JPS5943531B2 publication Critical patent/JPS5943531B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は引張り強さが40kg/−以上の加工性に優れ
た高強度冷延鋼板の製造に関するものであり、熱間圧延
後A1変態点〜A3変態点の間の温度範囲で捲き取るこ
とにより、Si、Cr、Ti、V。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of a high-strength cold-rolled steel sheet with a tensile strength of 40 kg/- or more and excellent workability, and which has a tensile strength of 40 kg/- or more and a temperature between A1 transformation point and A3 transformation point after hot rolling. Si, Cr, Ti, and V can be removed by rolling it over a temperature range.

Mo等の高価な元素を多量に使用することなく、加工性
に優れた高強度冷延鋼板を提供するものである。
The present invention provides a high-strength cold-rolled steel sheet with excellent workability without using large amounts of expensive elements such as Mo.

近時省資源、省エネルギーあるいは環境保全の立場から
高強度冷延鋼板の必要性が認識されつつある。
Recently, the necessity of high-strength cold-rolled steel sheets has been recognized from the standpoint of resource saving, energy saving, and environmental protection.

たとえば、自動車の排ガス成分規制と燃比低減等を両立
させるために車体の軽量化が計られているが軽量化のた
めに材料の板厚を減少させてもなおかつ十分な車体強度
を確保するためには高強度鋼板がぜひとも必要である。
For example, efforts are being made to reduce the weight of car bodies in order to meet both exhaust gas component regulations and fuel ratio reductions, but it is necessary to reduce the thickness of the material to reduce the weight while still ensuring sufficient car body strength. High-strength steel plates are absolutely necessary.

しかしながら、鋼板の引張り強さが増加すれば伸びが低
下するためその用途は限られたものとなる。
However, as the tensile strength of a steel plate increases, its elongation decreases, so its uses are limited.

したがって、強度と同時に加工性に優れた鋼板の製造が
望ましい。
Therefore, it is desirable to produce a steel plate that has both strength and workability.

このような鋼板としてはSi、Cr、Ti等の合金元素
を多量に使用し強度と同時に延性の向上を狙ったもの、
あるいは連続焼鈍法の冷却速度の速いことを利用して連
続焼鈍時A1変態点〜A3変態点の間の温度範囲で焼鈍
しフェライト相とマルテンサイト相、ベイナイト相、ソ
ルバイト相あるいはトルースタイト相との複合組織とす
ることによって強度と延性の向上を狙ったものがある。
Such steel plates use large amounts of alloying elements such as Si, Cr, and Ti to improve both strength and ductility.
Alternatively, by taking advantage of the fast cooling rate of continuous annealing, annealing is performed in the temperature range between A1 transformation point and A3 transformation point during continuous annealing to form a ferrite phase and a martensite phase, a bainite phase, a sorbite phase, or a troostite phase. Some aim to improve strength and ductility by creating a composite structure.

前者は特殊な合金元素を多量に使用するため高価である
ばかりでなく、脱スケール性も悪く、かつ圧延時には大
きな負荷がかかる等の問題がある。
The former is not only expensive because it uses a large amount of special alloying elements, but also has problems such as poor descaling properties and a large load being applied during rolling.

後者は複合組織鋼を利用したものであるが、このような
組織とするためには種々の条件が必要であり、通常の熱
間圧延、連続焼鈍プロセスで複合組織鋼をつるためには
Si、V、Mo等の元素を多く添加し、連続焼鈍時A1
変態点〜A3変態点の間の温度で数分以上保持する必要
がある。
The latter uses composite structure steel, but various conditions are required to create such a structure, and in order to make composite structure steel through normal hot rolling and continuous annealing processes, Si, Si, A1 during continuous annealing by adding a large amount of elements such as V and Mo
It is necessary to maintain the temperature between the transformation point and the A3 transformation point for several minutes or more.

あるいはこれらの元素を添加しない場合、通常の連続焼
鈍プロセスでは不可能なほど速い冷却速度とする必要が
あり、このような速い冷却速度とするには連続焼鈍プロ
セスの中に水冷の設備を設けることが必要となるが、こ
のような水冷方式を採用しているプロセスは一般的では
ない。
Alternatively, if these elements are not added, it is necessary to achieve a cooling rate that is impossible in a normal continuous annealing process, and in order to achieve such a fast cooling rate, water cooling equipment must be installed in the continuous annealing process. However, processes that use water cooling are not common.

本発明は上記の種々の欠点を克服するため研究し開発さ
れたもので、その特徴とするところはC:0.03〜0
.30%、Mn : 0.7〜3.0%、Si:0.5
%以下、5olAl: 0.1%以下、残部鉄および
不可避的不純物からなる鋼を溶製し、熱間圧延後A1変
態点〜A3変態点の間の温度で捲き取り、焼鈍プロセス
はA1変態点〜A3変態点の間で15秒〜30分保持後
1℃/5ecll上の速度で冷却することによって強度
が高く、伸びが優れ、かつ降伏比の低い加工性に優れた
鋼板を製造するにある。
The present invention was researched and developed in order to overcome the various drawbacks mentioned above, and is characterized by C: 0.03 to 0.
.. 30%, Mn: 0.7-3.0%, Si: 0.5
% or less, 5olAl: 0.1% or less, the balance consists of iron and unavoidable impurities. Steel is melted and rolled at a temperature between A1 transformation point and A3 transformation point after hot rolling, and the annealing process is performed at A1 transformation point. To produce a steel plate with high strength, excellent elongation, and excellent workability with a low yield ratio by holding the steel plate between the A3 transformation point for 15 seconds to 30 minutes and then cooling at a rate of 1°C/5 ecll. .

上記の方法によって、強度が高くかつ加工性に優れた鋼
板かえられる理由は、マルテンサイト相、ベイナイト相
、ソルバイト相あるいはトルースタイト相のごとき第2
相の分散によって強度の増加が達成され、この第2相中
にCが濃化されることによって、フェライト相中のC量
が低下し、したがって加工性が向上しているものと推測
される。
The reason why steel sheets with high strength and excellent workability can be obtained by the above method is that the secondary phase such as martensite phase, bainite phase, sorbite phase or troostite phase
It is presumed that an increase in strength is achieved through phase dispersion, and that the concentration of C in this second phase reduces the amount of C in the ferrite phase, thereby improving workability.

すなわち、熱間圧延後A1変態点〜A3変態点の範囲の
温度で捲き取るときその時点においてすでにMnおよび
Cが十分に濃化されたオーステナイト相が適宜に分散さ
れているため、そののちの連続焼鈍の加熱保定において
、オーステナイト相中へMnおよびCを拡散させ濃化を
計る必要がなく、したがって焼鈍時間の短縮が計れるば
かりでなく、通常の連続焼鈍程度の冷却速度でも容易に
マルテンサイト相、ベイナイト相、ソルバイト相あるい
はトルースタイト相となしうる。
That is, when rolling at a temperature in the range of A1 transformation point to A3 transformation point after hot rolling, the austenite phase in which Mn and C are sufficiently enriched is already appropriately dispersed, so that the subsequent continuous During heat retention during annealing, there is no need to diffuse and concentrate Mn and C into the austenite phase. Therefore, not only can the annealing time be shortened, but also the martensitic phase and It can be a bainite phase, a sorbite phase, or a troostite phase.

第2には熱間圧延捲き取り後の徐冷において、オーステ
ナイト相がMnおよびCを多量に含むためセメンタイト
+フェライト相へ変態する際、セメンタイト相の粗大化
が阻止され、緻密なパーライト組織となるが、冷間圧延
でのパーライト相への歪の導入を増加させ、焼鈍時パー
ライト相からオーステナイト相への逆変態が促進され、
短時間焼鈍で変態を完了させる効果を有しているものと
推定される。
Second, during slow cooling after hot rolling, the austenite phase contains a large amount of Mn and C, so when it transforms into a cementite + ferrite phase, the cementite phase is prevented from coarsening and becomes a dense pearlite structure. However, the introduction of strain into the pearlite phase during cold rolling increases, and the reverse transformation from pearlite phase to austenite phase during annealing is promoted.
It is estimated that it has the effect of completing the transformation in a short time annealing.

このように捲き取り温度をA1変態点〜A3変態点で捲
き取ることの意味は大きく、通常の連続焼鈍炉形式の焼
鈍では従来不可能であった強度および延性に優れ、加工
硬化能の大きな降伏比の低い鋼板を容易に製造すること
ができる。
The significance of winding the winding temperature between the A1 transformation point and the A3 transformation point in this way is significant; it has excellent strength and ductility, which was previously impossible with normal continuous annealing furnace type annealing, and has a large yield with work hardening ability. A steel plate with a low ratio can be easily produced.

このようにして製造された鋼板はスキンパス程度の加工
によって急激に硬化し降伏比の高い鋼板となしうる特徴
をも兼ね備えている。
The steel sheet manufactured in this manner has the characteristic that it can be rapidly hardened by skin pass processing and can be made into a steel sheet with a high yield ratio.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明はC二0.03〜0.30%、Mn:0.7〜3
.0%、Si0.5%以下、Sol、At : 0.1
%以下、残部鉄および不可避的不純物元素からなる鋼を
転炉、平炉あるいは電気炉で溶製し、鋼塊あるいは連続
鋳造法によってスラブとされる。
The present invention is C2 0.03-0.30%, Mn: 0.7-3
.. 0%, Si0.5% or less, Sol, At: 0.1
% or less, the balance iron and unavoidable impurity elements are melted in a converter, open hearth, or electric furnace, and made into steel ingots or slabs by continuous casting.

C量の下限を0.03%としたのは、これ未満では必要
とする強度をうることが不可能なためであり、上限を0
.30%としたのはこれを超えると加工性に優れた鋼板
をうろことができないためである。
The reason why the lower limit of the amount of C was set at 0.03% is that it is impossible to obtain the required strength with less than this, so the upper limit was set at 0.03%.
.. The reason why it is set at 30% is that if it exceeds this value, it will not be possible to form a steel plate with excellent workability.

Mn量の下限を0.7%としたのはこれ未満では連続焼
鈍時A1変態点〜A3変態点の間の温度に保持後、通常
の冷却速度では強度および延性に優れた鋼板をうろこと
ができないためであり、上限を3.0%としたのはこれ
を超えるとMn量を増加させても強度の上昇が少いため
であり、また脱スケール性に劣り、鋼板表面の酸化も問
題となっているためである。
The lower limit of the Mn content was set at 0.7% because if it is less than this, a steel plate with excellent strength and ductility will not flow at a normal cooling rate after being maintained at a temperature between A1 transformation point and A3 transformation point during continuous annealing. The reason why the upper limit was set at 3.0% is because if the Mn content exceeds 3.0%, the increase in strength will be small even if the amount of Mn is increased, and descaling properties will be poor and oxidation of the steel plate surface will become a problem. This is because

Siは必ずしも含有する必要はないが、Siキルドある
いはSiセミキルド鋼でもよい。
Although Si does not necessarily need to be contained, Si-killed or Si-semi-killed steel may be used.

この場合には0.5%を超えて存在してもその効果は少
く、鋼板の価格が高価となるのみであり、脱スケール性
および鋼板表面の酸化も問題となるため0.5%を超え
て含有する必要はない。
In this case, even if it is present in an amount exceeding 0.5%, the effect will be small and the price of the steel sheet will only increase, and descaling properties and oxidation on the surface of the steel sheet will also become a problem. There is no need to include it.

A/、含有量についてもSiと同様であり必ずしもAt
を含有する必要はないが、Atキルド鋼としてもよい。
A/, the content is also the same as Si and is not necessarily At.
Although it is not necessary to contain At-killed steel, it may be used.

A4キルド鋼の場合0.1%を超えて含有しても強度お
よび延性には影響なく、脱スケール性および鋼板表面の
酸化の点から問題を生ずるため、上限を0.1%とした
In the case of A4 killed steel, even if the content exceeds 0.1%, it will not affect the strength and ductility, but it will cause problems in terms of descaling and oxidation of the steel plate surface, so the upper limit was set at 0.1%.

上記成分のスラブは熱間圧延後A1変態点〜A3変態点
の間の温度で捲き取られる。
After hot rolling, the slab of the above components is rolled up at a temperature between the A1 transformation point and the A3 transformation point.

捲取温度をA1変態点〜A3変態点としたのはこの範囲
の温度で捲き取ることによってオーステナイト領域にM
nおよびCを偏析させ、以後の焼鈍工程で複合組織を安
定しうることが可能となる。
The reason why the winding temperature is set to A1 transformation point to A3 transformation point is that by winding at this temperature, M
It becomes possible to segregate n and C and stabilize the composite structure in the subsequent annealing process.

このほか冷間圧延時の圧延負荷を軽減させ冷間圧延を安
定して行うことができるようになる。
In addition, the rolling load during cold rolling can be reduced and cold rolling can be stably performed.

A1変態点〜A3変態点の間で捲き取られた熱延板は脱
スケール後冷間圧延を施される。
The hot-rolled sheet rolled up between the A1 transformation point and the A3 transformation point is subjected to cold rolling after descaling.

つぎに急熱短時間急冷の焼鈍が施される焼鈍時A1変態
点〜A3変態点の間の範囲の温度で15秒以上保持する
のはフェライト相中にオーステナイト相をうるためであ
り、15秒未満では鉄炭化物相がオーステナイト相に完
全に変態し終らない。
Next, rapid heating and short-time rapid cooling annealing is performed.The reason why the annealing is held at a temperature in the range between A1 transformation point and A3 transformation point for 15 seconds or more is to obtain an austenite phase in the ferrite phase. If it is less than that, the iron carbide phase will not completely transform into the austenite phase.

焼鈍時間の上限を30分としたのは、オーステナイト相
中に鉄炭化物相を得るためには十分であり、それ以上の
時間は無意味であり、かつ工業的にもそれ以上の時間を
とることは困難なためである。
The upper limit of the annealing time is set at 30 minutes because it is sufficient to obtain an iron carbide phase in the austenite phase, and any longer time is meaningless, and industrially, it is necessary to take a longer time. This is because it is difficult.

このようにして生成したオーステナイト相は1°C/S
ec以上の冷却速度によってマルテンサイト相、ベイナ
イト相、ソルバイト相あるいはトルースタイト相に変化
し、フェライト相とともに複合組織を形成する。
The austenite phase generated in this way is 1°C/S
At a cooling rate of ec or higher, it changes to a martensite phase, a bainite phase, a sorbite phase, or a troostite phase, forming a composite structure together with a ferrite phase.

このようにして製造された鋼はそのままあるいは必要に
応じて軽度の調質圧延を施される。
The steel produced in this manner may be treated as it is or may be subjected to light temper rolling if necessary.

さらにこのようにして製造された鋼はZn、Sn、Cr
めつき等の表面処理を施されてもよく、連続焼鈍時Zn
めつきを施されてもよい。
Furthermore, the steel produced in this way contains Zn, Sn, and Cr.
Surface treatment such as plating may be applied, and Zn during continuous annealing.
It may be plated.

以下実施例について説明する。Examples will be described below.

実施例 A 転炉にて溶製したC:0.11%、Si:0.05%、
Mn : 1.52%、P:0.015%、S:0.0
16%、5o4At:0.034%の成分のスラブを2
.3 mmまで熱間圧延後750℃および600℃にて
捲き取り、酸洗後タンデム式冷間圧延機にて0.7 m
mまで圧延した。
Example A C: 0.11%, Si: 0.05%, melted in a converter
Mn: 1.52%, P: 0.015%, S: 0.0
16%, 5o4At: 0.034% slab
.. After hot rolling to 3 mm, it was rolled up at 750°C and 600°C, and after pickling, it was rolled to 0.7 m using a tandem cold rolling mill.
It was rolled to m.

この銅帯を連続焼鈍炉にて800℃×1分あるいは70
0℃×1分の焼鈍を施し、平均10℃/secの冷却速
度にて冷却した。
This copper strip was heated in a continuous annealing furnace at 800°C for 1 minute or at 70°C.
Annealing was performed at 0°C for 1 minute, and cooling was performed at an average cooling rate of 10°C/sec.

なお比較例2の冷却速度は0.5℃/secとした。Note that the cooling rate in Comparative Example 2 was 0.5° C./sec.

このようにして製造された試料の機械的特性を第1表に
示す。
The mechanical properties of the samples thus produced are shown in Table 1.

第1表から明らかなように熱間圧延後の捲取温度をA1
変態点以上750℃とし、連続焼鈍時の焼鈍温度をA1
変態点とA3変態点の間の800℃に15秒以上保持す
ることによって強度が高く伸びのよい降伏比の低い加工
性に優れた鋼板かえられる。
As is clear from Table 1, the winding temperature after hot rolling is A1
The annealing temperature during continuous annealing is set to 750°C above the transformation point and A1.
By holding the steel plate at 800° C. for 15 seconds or more, which is between the transformation point and the A3 transformation point, a steel plate with high strength, good elongation, low yield ratio, and excellent workability can be obtained.

なお焼鈍後の冷却速度を0.5℃/secとしたものは
良好な強度および延性かえられず、降伏比が低く加工硬
化能の高い鋼板かえられないことがわかる。
It can be seen that when the cooling rate after annealing was set to 0.5° C./sec, good strength and ductility could not be achieved, and a steel sheet with a low yield ratio and high work hardenability could not be obtained.

実施例 B Mn含有量の異なる第2表に示す成分の鋼を熱間圧延後
750℃で捲き取り、酸洗後、タンデム式冷間圧延機に
て0.7 mmまで冷間圧延を施した。
Example B Steels with different Mn contents shown in Table 2 were hot-rolled at 750°C, pickled, and then cold-rolled to a thickness of 0.7 mm using a tandem cold rolling mill. .

この銅帯を連続焼鈍炉にて800℃で1分保持後、平均
10℃/SeCの冷却速度で冷却した。
This copper strip was held at 800° C. for 1 minute in a continuous annealing furnace, and then cooled at an average cooling rate of 10° C./SeC.

この試料の機械的特性値を第2表に示す。The mechanical property values of this sample are shown in Table 2.

第2表から明らかなようにMn量が0.7%以上で強度
の上昇、降伏比の低下および強度延性バランスの向上が
認められ、強度が高く、かつ加工性に優れた鋼板の製造
が可能なことは明らかである。
As is clear from Table 2, when the Mn content is 0.7% or more, the strength increases, the yield ratio decreases, and the strength-ductility balance improves, making it possible to manufacture steel sheets with high strength and excellent workability. That is clear.

以上説明してきたように本発明は従来の高強度鋼板より
も安価にかつ従来の設備を使って容易に製造でき、しか
も強度が高く延性に優れた低降伏比の鋼板であり、その
工業的価値は極めて大きい。
As explained above, the present invention is a steel plate that can be produced more cheaply and easily using conventional equipment than conventional high-strength steel plates, has high strength, excellent ductility, and a low yield ratio, and has industrial value. is extremely large.

Claims (1)

【特許請求の範囲】[Claims] I C:0.03〜0.30%、Mn : 0.7〜
3.0%、Si:0.5%以下、5olAl 二〇、1
%以下、残部鉄および不可避的不純物元素からなる鋼を
熱間圧延後A1変態点〜A3変態点の間の温度範囲で捲
き取り、冷間圧延を施し、ついでA1変態点〜A3変態
点で15秒〜30分の焼鈍を行ったのち、1℃/Sec
以上で冷却することを特徴とする加工性に優れた高強度
冷延鋼板の製造法。
IC: 0.03~0.30%, Mn: 0.7~
3.0%, Si: 0.5% or less, 5olAl 20, 1
% or less, the balance iron and unavoidable impurity elements are rolled after hot rolling at a temperature range between A1 transformation point and A3 transformation point, cold rolled, and then rolled at a temperature between A1 transformation point and A3 transformation point. After annealing for seconds to 30 minutes, 1℃/Sec
A method for producing a high-strength cold-rolled steel sheet with excellent workability, characterized by cooling at a temperature above.
JP9747776A 1976-08-17 1976-08-17 Manufacturing method for high-strength cold-rolled steel sheets with excellent workability Expired JPS5943531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9747776A JPS5943531B2 (en) 1976-08-17 1976-08-17 Manufacturing method for high-strength cold-rolled steel sheets with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9747776A JPS5943531B2 (en) 1976-08-17 1976-08-17 Manufacturing method for high-strength cold-rolled steel sheets with excellent workability

Publications (2)

Publication Number Publication Date
JPS5322812A JPS5322812A (en) 1978-03-02
JPS5943531B2 true JPS5943531B2 (en) 1984-10-23

Family

ID=14193364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9747776A Expired JPS5943531B2 (en) 1976-08-17 1976-08-17 Manufacturing method for high-strength cold-rolled steel sheets with excellent workability

Country Status (1)

Country Link
JP (1) JPS5943531B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836650B2 (en) * 1978-06-16 1983-08-10 新日本製鐵株式会社 Method for producing a composite cold-rolled steel sheet having a tensile strength of 35 to 50 Kg/mm↑2, a yield ratio of less than 60%, and high elongation
JPS5531159A (en) * 1978-08-26 1980-03-05 Sumitomo Metal Ind Ltd Manufacture of high strength cold rolled steel plate for press working
JPS56108831A (en) * 1980-02-04 1981-08-28 Nisshin Steel Co Ltd Manufacture of low yield ratio, high tensile strength steel sheet plated with molten aluminum
AU2009234667B2 (en) 2008-04-10 2012-03-08 Nippon Steel Corporation High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both

Also Published As

Publication number Publication date
JPS5322812A (en) 1978-03-02

Similar Documents

Publication Publication Date Title
JP6207621B2 (en) High-formability ultra-high-strength cold-rolled steel sheet and manufacturing method thereof
EP4317511A1 (en) Low-carbon low-alloy q&p steel or hot-dip galvanized q&p steel with tensile strength greater than or equal to 1180 mpa, and manufacturing method therefor
US4436561A (en) Press-formable high strength dual phase structure cold rolled steel sheet and process for producing the same
EP1512762A1 (en) Method for producing cold rolled steel plate of super high strength
JPS5850300B2 (en) Method for manufacturing a high strength, low yield ratio, high ductility composite steel sheet with excellent workability and high artificial age hardenability after processing
JPH07197183A (en) Ultra-high strength thin steel sheet without developing hydrogen brittleness and its production
JPH04154921A (en) Manufacture of high strength stainless steel strip having excellent shape
JPS5942742B2 (en) High strength cold rolled steel plate for deep drawing with low yield ratio
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JPS595649B2 (en) Method for manufacturing high-strength hot-dip galvanized steel sheet with excellent workability
JP3037767B2 (en) Low yield ratio high strength hot-dip galvanized steel sheet and method for producing the same
JPS5943531B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent workability
KR101403262B1 (en) Ultra high strength hot-dip plated steel sheet and method for manufacturing the same
JPH03294463A (en) Production of alloyed hot-galvanized steel sheet
JPS6199631A (en) Manufacture of thin steel sheet for deep drawing
JP2002226941A (en) Cold rolled steel sheet with composite structure having high-tensile strength and excellent deep drawability, and production method therefor
JPH0645827B2 (en) Method for manufacturing high strength steel sheet with excellent workability
KR100613472B1 (en) Method for producing cold-rolled bands or sheets
JPH0557332B2 (en)
JPH0321611B2 (en)
JPS5822333A (en) Production of high-strength cold-rolled steel sheet excellent in press-formability and baking-hardenability
JPH07126807A (en) Steel sheet excellent in formability and hardenability by high energy density beam irradiation and its production
JPS61170518A (en) Production of high-strength hot rolled steel sheet having excellent formability
JPS61246327A (en) Manufacture of cold rolled steel sheet for extremely deep drawing
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production