JPS5943525Y2 - Optical path movement mechanism - Google Patents

Optical path movement mechanism

Info

Publication number
JPS5943525Y2
JPS5943525Y2 JP18858883U JP18858883U JPS5943525Y2 JP S5943525 Y2 JPS5943525 Y2 JP S5943525Y2 JP 18858883 U JP18858883 U JP 18858883U JP 18858883 U JP18858883 U JP 18858883U JP S5943525 Y2 JPS5943525 Y2 JP S5943525Y2
Authority
JP
Japan
Prior art keywords
pillar
column member
plane mirror
point
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18858883U
Other languages
Japanese (ja)
Other versions
JPS59112208U (en
Inventor
信芳 木村
Original Assignee
日本電気精器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気精器株式会社 filed Critical 日本電気精器株式会社
Priority to JP18858883U priority Critical patent/JPS5943525Y2/en
Publication of JPS59112208U publication Critical patent/JPS59112208U/en
Application granted granted Critical
Publication of JPS5943525Y2 publication Critical patent/JPS5943525Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

【考案の詳細な説明】 本考案は光学装置における光路移動機構に関するもので
ある。
[Detailed Description of the Invention] The present invention relates to an optical path moving mechanism in an optical device.

従来、このような光路移動機構の代表的なものとして、
第1図に示すように光学繊維を用いたライトガイド1に
より光路の移動を行なうものがある。
Conventionally, as a typical example of such an optical path moving mechanism,
As shown in FIG. 1, there is a light guide 1 that uses optical fibers to move the optical path.

この第1図の光路移動機構はライトガイド1を曲げるこ
とにより任意の方向や狭い所にも光を移送でき便利であ
るが、入力光4としてレーザ光線を用いた場合にはライ
トガイド1からの出力光5はコヒーレントであるという
レーザ光の特徴を失ってしまうし、出力光5の光量もラ
イトガイド1の途中の減衰で弱くなってしまうという欠
点がある。
The optical path moving mechanism shown in FIG. 1 is convenient because it can transport light in any direction or even into a narrow space by bending the light guide 1. However, when a laser beam is used as the input light 4, the light path moving mechanism from the light guide 1 The disadvantage is that the output light 5 loses the characteristic of a laser beam that it is coherent, and the quantity of the output light 5 also becomes weak due to attenuation along the way in the light guide 1.

また従来、第2図に示すように反射鏡2およびプリズム
3を用いて入力光4を必要な場所へ移送する方法がある
Also, conventionally, there is a method of transporting input light 4 to a required location using a reflecting mirror 2 and a prism 3, as shown in FIG.

この場合には入力光4としてレーザ光線を用いた場合、
出力光5には光の平行性などレーザ光の特徴は失われな
いが、入力光4と出力光5との関係が反射鏡2およびプ
リズム3により決定されるため光路の移動および光の移
動先が極度に限定されてしまうという欠点がある。
In this case, when a laser beam is used as the input light 4,
The characteristics of laser light such as parallelism of light are not lost in the output light 5, but since the relationship between the input light 4 and the output light 5 is determined by the reflecting mirror 2 and the prism 3, the movement of the optical path and the destination of the light are affected. The disadvantage is that it is extremely limited.

本考案の目的は、入力光としてレーザ光線を用いた場合
においてもレーザ光としてのコヒーレント性を失うこと
なく、また光量を大きく減じることなく、広範囲の場所
に光を移送し得る光路移動機構を提供することにある。
The purpose of this invention is to provide an optical path moving mechanism that can transport light to a wide range of locations without losing the coherence of the laser beam or significantly reducing the amount of light even when a laser beam is used as input light. It's about doing.

以下、図面を参照して本考案の実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は本考案の一実施例による光路移動機構6を用い
た光学装置である。
FIG. 3 shows an optical device using an optical path moving mechanism 6 according to an embodiment of the present invention.

この光学装置は本考案の一実施例による光路移動機構6
と、この光路移動機構6に取付けられた光学走査装置I
と、固定された発光源であるレーザ発振器8とを有し、
レーザ発振器8から出た光9が光路移動機構6の中の反
射鏡10および11によって光学走査装置7に導かれる
ようになっている。
This optical device is an optical path moving mechanism 6 according to an embodiment of the present invention.
and an optical scanning device I attached to this optical path moving mechanism 6.
and a laser oscillator 8 which is a fixed light emitting source,
Light 9 emitted from the laser oscillator 8 is guided to the optical scanning device 7 by reflecting mirrors 10 and 11 in the optical path moving mechanism 6.

光学移動機構6は01,0゜、03,04を頂点とする
平行四辺形の各辺をそれぞれ構成する4本の支柱12,
13,14,15と、これら4本の支柱12,13,1
4,15を上記平行四辺形の4つの頂点に対応する4つ
の交点01,02,03゜04にて互に回転自在に連結
する手段である回転軸16,17,18,19と、支柱
13(第1の柱部材)の両交点01,02間の1点にあ
る第1の点(本実施例では中点O8)を中心軸として反
射鏡面が回転するように、支柱13(第1の柱部材)に
設置された第1の平面鏡10と、支柱13(第1の柱部
材)に隣接する支柱12(第2の柱部材)の両交点01
,03間の1点にあり、支柱13(第1の柱部材)と支
柱12(第2の柱部材)との交点01から第1の点(中
点)Ooまでの長さに等ししい長さだけ、交点Oから離
れた第2の点A1の方向に、常に第1の平面鏡10の反
射鏡面が延在するように、第1の平面鏡10を支柱12
(第2の柱部材)に連絡する手段であるばねやゴム等の
伸縮材20とを有し、支柱13(第1の柱部材)の両交
点01,02を結ぶ線に平行に例えばC1方向に第1の
平面鏡100反射鏡面に入射した光9が支柱12(第2
の柱部材)の両交点01,03を結ぶ方向に平行な方向
C2やC2′に常に反射されるようになっている。
The optical movement mechanism 6 has four pillars 12 forming each side of a parallelogram with vertices of 01,0°, 03,04,
13, 14, 15 and these four pillars 12, 13, 1
4 and 15 at four intersection points 01, 02, 03° 04 corresponding to the four vertices of the parallelogram, and rotary shafts 16, 17, 18, 19, and the support 13. The pillar 13 (first pillar member) is rotated so that the reflective mirror surface rotates around the first point (midpoint O8 in this example) located between both intersection points 01 and 02 of the pillar 13 (first pillar member). Intersection 01 of the first plane mirror 10 installed on the column (column member) and the column 12 (second column member) adjacent to the column 13 (first column member)
, 03, and is equal to the length from the intersection 01 of pillar 13 (first pillar member) and pillar 12 (second pillar member) to the first point (midpoint) Oo The first plane mirror 10 is attached to the support 12 so that the reflecting surface of the first plane mirror 10 always extends in the direction of the second point A1, which is away from the intersection O by the length.
(second pillar member), and extends parallel to the line connecting both intersection points 01 and 02 of the pillar 13 (first pillar member), for example in the C1 direction. The light 9 incident on the reflecting mirror surface of the first plane mirror 100 is reflected by the support 12 (second
The beam is always reflected in directions C2 and C2' parallel to the direction connecting the intersections 01 and 03 of the pillar members).

さらに、光路移動機構6は支柱12(第2の柱部材)に
対向する支柱14(第4の柱部材)の両交点02,04
を結ぶ線の支柱13と支柱14との交点02側への延長
線上の1点にあり、支柱13と支柱14との交点Oから
中点O8までの長さに等しい長さだけ、交点Oから離れ
た点A2の方向に、常に第1の平面鏡10の反射鏡面が
延在するように、第1の平面鏡10を支柱14(第4の
柱部材)に連絡する手段であるばねやゴム等の伸縮材2
1を有している。
Furthermore, the optical path moving mechanism 6 is located at the intersections 02 and 04 of the pillar 14 (fourth pillar member) that opposes the pillar 12 (second pillar member).
from the intersection O by a length equal to the length from the intersection O of the columns 13 and 14 to the midpoint O8. A spring, rubber, etc. is used to connect the first plane mirror 10 to the support column 14 (fourth column member) so that the reflective surface of the first plane mirror 10 always extends in the direction of the distant point A2. Elastic material 2
1.

さらに光路移動機構6は支柱13(第1の柱部材)に対
向する支柱15(第3の柱部材)の両交点03゜04間
に1点にある第3の点(本実施例では中点05)を中心
軸として反射鏡面が回転するように支柱15(第3の柱
部材)に設置された第2の平面鏡11と、支柱12(第
2の柱部材)の両交点O□、03間の1点にあり、支柱
15(第3の柱部材)と支柱12(第2の柱部材)との
交点03から上記第3の点(中点)05までの長さに等
しい長さだけ、交点0から離れた第4の点B1の方向に
、常に第2の平面鏡110反射鏡面が延在するように、
第2の平面鏡11を支柱12(第2の柱部材)に連絡す
る手段であるばねやゴム等の伸縮材22と、支柱12(
第2の柱部材)に対向する支柱14(第4の柱部材)の
両交点02,04を結ぶ線の支柱15と支柱14との交
点04側−\の延長線上の1点にあり、支柱15と支柱
14との交点04から中点Oまでの長さに等しい長さだ
け交点04から離れた点Bの方向に常に第2の平面鏡1
10反射鏡面が延在するように、第2の平面鏡11を支
柱14に連絡する手段であるばねやゴム等の伸縮材23
とを有し、第1の平面鏡10から支柱12(第2の柱部
材)の両交点01,03を結ぶ線(すなわち支柱14の
両交点02,04を結ぶ線)に平行に、例えばC2やC
2′方向に、第2の平面鏡110反射鏡面に入射した光
24や24 か、支柱15(第3の柱部材)の両交点0
3,04を結ぶ線に平行な方向C3や03′に常に反射
されるようになっている。
Furthermore, the optical path moving mechanism 6 moves to a third point (in this embodiment, the midpoint The second plane mirror 11 installed on the pillar 15 (third pillar member) so that the reflecting mirror surface rotates around the center axis 05) and the intersection point O□, 03 between the pillar 12 (second pillar member) and has a length equal to the length from the intersection 03 of the pillar 15 (third pillar member) and the pillar 12 (second pillar member) to the third point (midpoint) 05, so that the reflective mirror surface of the second plane mirror 110 always extends in the direction of the fourth point B1 away from the intersection 0,
An elastic member 22 such as a spring or rubber, which is a means for connecting the second plane mirror 11 to the support 12 (second pillar member), and a support 12 (
It is located at one point on the extension line of the intersection 04 side -\ between the pillar 15 and the pillar 14 of the line connecting both the intersections 02 and 04 of the pillar 14 (fourth pillar member) facing the pillar 14 (the fourth pillar member), and The second plane mirror 1 is always moved in the direction of a point B that is away from the intersection 04 by a length equal to the length from the intersection 04 of the support 15 and the support 14 to the midpoint O.
10 An elastic material 23 such as a spring or rubber that is a means of connecting the second plane mirror 11 to the support column 14 so that the reflecting mirror surface extends.
For example, C2 or C
In the 2' direction, the light 24 and 24 incident on the reflecting mirror surface of the second plane mirror 110 or the intersection point 0 of the pillar 15 (third pillar member)
The light is always reflected in directions C3 and 03' parallel to the line connecting lines 3 and 04.

このように、光路移動機構6が横支柱12および14と
縦支柱13および15とが常に四辺の長さを変えること
なく形の異なる平行四辺形を形成するように縦支柱13
を中心として回動できるようになっているので、縦支柱
15に平面鏡110反射光を受は得るように固定された
光学走査装置7は任意の場所に移動され得るとともにこ
の光路移動機構6によりどの場所へ移動しても常に一定
の方向から光軸の狂いもなくレーザ光の供給を受けるこ
とができる。
In this way, the optical path moving mechanism 6 moves the vertical support 13 so that the horizontal support 12 and 14 and the vertical support 13 and 15 always form a parallelogram with different shapes without changing the lengths of the four sides.
Since the optical scanning device 7 is fixed to the vertical support 15 so as to receive the reflected light from the plane mirror 110, it can be moved to any desired location, and the optical scanning device 7 can be moved to any desired location by the optical path moving mechanism 6. Even when moving from place to place, laser light can always be supplied from a fixed direction without deviation of the optical axis.

このように光路移動機構6は光学走査装置7の行動範囲
の拡大に犬なる効果をもたらすものである。
In this way, the optical path moving mechanism 6 has a significant effect on expanding the action range of the optical scanning device 7.

以下、光路移動機構6の動作を説明する。The operation of the optical path moving mechanism 6 will be explained below.

レーザ発振器8からの光線9を縦支柱13の延在方向に
平行に平面鏡10の反射鏡面に入射すると、例えば第3
図に実線で示したように縦支柱13と横支柱12および
14とが直角の状態にあれば、平面鏡100反射鏡面は
縦支柱13に対して45°の角度をもつので、入射光9
は横支柱12゜14に平行な方向C2へ曲げられる。
When the light beam 9 from the laser oscillator 8 is incident on the reflecting mirror surface of the plane mirror 10 in parallel to the extending direction of the vertical support 13, for example, the third
If the vertical strut 13 and the horizontal struts 12 and 14 are at right angles as shown by the solid line in the figure, the reflecting surface of the plane mirror 100 has an angle of 45° with respect to the vertical strut 13, so the incident light 9
is bent in a direction C2 parallel to the transverse struts 12°14.

この反射光24は更に平面鏡11により縦支柱13.1
5に平行な方向C3へ曲げられ、レーザ光線9を平行移
動させたことになり、光学走査装置7に導かれる。
This reflected light 24 is further reflected by the vertical support 13.1 by the plane mirror 11.
5, the laser beam 9 is moved in parallel and guided to the optical scanning device 7.

次に第3図に仮想線で示したごとく、横支柱12および
14を回転軸16,17を中心に2α度回転させた場合
を考えると、上記同様に光線9を平面鏡10により横支
柱12.14に平行な方向C2′へ曲げることができる
Next, consider the case where the horizontal struts 12 and 14 are rotated by 2α degrees about the rotation axes 16 and 17, as shown by the imaginary lines in FIG. It can be bent in the direction C2' parallel to 14.

つまり、光路移動機6は光が縦支柱13の延在方向に平
行に平面鏡100反射鏡面に入射した時、平面鏡10に
よる反射光を常に横支柱12.14の移動方向に一致さ
せることができる。
In other words, the optical path shifter 6 can always make the light reflected by the plane mirror 10 coincide with the moving direction of the horizontal columns 12 and 14 when the light is incident on the reflecting mirror surface of the plane mirror 100 in parallel to the extending direction of the vertical columns 13.

以下にこの証明をおこなうと、支柱12および14を第
3図に仮想線で示したように2α度だけ回転させると、
A□はA1′に、A2はA2′にそれぞれ移動し、それ
に伴って平面鏡10の反射鏡面もOoを中心に回転する
To prove this below, if the columns 12 and 14 are rotated by 2α degrees as shown by the imaginary lines in FIG.
A□ moves to A1', and A2 moves to A2', and accordingly, the reflecting mirror surface of the plane mirror 10 also rotates around Oo.

この平面鏡10の反射鏡面の回転角をβとすると、β=
1010oA1−10100A1’となる。
If the rotation angle of the reflective mirror surface of this plane mirror 10 is β, then β=
1010oA1-10100A1'.

△010oA□′はO80に〇1A1′に構成されてい
るので二等辺三角形である。
△010oA□' is configured as O80 and 01A1', so it is an isosceles triangle.

従ってZO1ooA1′=45°−α となる。移動前
のzOlooAlは横支柱12と縦支柱13との角度が
直角であることからZO□0oA1=45°である。
Therefore, ZO1ooA1'=45°-α. Since the angle between the horizontal support 12 and the vertical support 13 is a right angle, zOlooAl before movement is ZO□0oA1=45°.

以上のことからβ二αすな、わち構文・柱、1.2およ
び14を2α度回転させると平面鏡10の反射鏡面は0
゜を中心に半分のα度だけ回転することになる。
From the above, β2α, that is, syntax/column 1. If 2 and 14 are rotated by 2α degrees, the reflective surface of plane mirror 10 becomes 0.
It will rotate by half α degrees around °.

=般に平面鏡に光線を入射してその反射光を見る場合、
平面鏡をα度回転させると反射光は2倍の2α度回転す
ることは反射の法則から公知の事実である。
=Generally, when a ray of light enters a plane mirror and the reflected light is seen,
It is a well-known fact from the law of reflection that when a plane mirror is rotated by α degrees, the reflected light is rotated twice by 2α degrees.

従って横支柱12および14を2α度回転した時には平
面鏡10の反射鏡面α度だけ回転し、その回転角は構文
el 2 、14の回転角と等しくなり、常に横支柱1
2,14に平行なC2′方向にレーザ反射光9′を得る
ことができる。
Therefore, when the horizontal struts 12 and 14 are rotated by 2α degrees, the reflecting surface of the plane mirror 10 is rotated by α degrees, and the rotation angle is equal to the rotation angle of the syntax el 2 and 14, and the horizontal strut 1 is always rotated by α degrees.
Laser reflected light 9' can be obtained in the C2' direction parallel to 2 and 14.

次に横支柱12および14を2α度回転させたとき、も
う一方の平面鏡11について考えると、横支柱12およ
び14h;2α度回転すると、B□はB11に、B2は
82′に、それぞれ移動しそれに伴って平面鏡110反
射鏡面も05を中心に回転する。
Next, when the horizontal struts 12 and 14 are rotated by 2α degrees, considering the other plane mirror 11, the horizontal struts 12 and 14h are rotated by 2α degrees, B□ moves to B11, and B2 moves to 82'. Along with this, the reflecting mirror surface of the plane mirror 110 also rotates around 05.

なお、第3図において、03′、04′、05′は横支
柱12および14を2α度回転した後の03゜04.0
5の位置をそれぞれ示す。
In addition, in Fig. 3, 03', 04', and 05' are 03°04.0 after rotating the horizontal struts 12 and 14 by 2α degrees.
5 positions are shown respectively.

△0503B1および△05′04′B2′は二等辺三
角形であるから平面鏡10の場合と同様に平面鏡110
反射鏡面の回転角度が支柱120回転角度2α度の半分
のα度だけ回転することは容易に理解できる。
Since △0503B1 and △05'04'B2' are isosceles triangles, the plane mirror 110 is similar to the case of the plane mirror 10.
It can be easily understood that the rotation angle of the reflecting mirror surface is rotated by α degrees, which is half of the rotation angle of the support 120, 2α degrees.

従って02′方向からの反射光24′は平面鏡110反
射鏡面により再び反射されて03′方向に曲げられるが
、010203′044ま平行四辺形の頂点を形成して
いるので、C3′は移動前のC3やレーザ照射方向Cに
平行になる。
Therefore, the reflected light 24' from the 02' direction is reflected again by the reflective surface of the plane mirror 110 and bent in the 03' direction, but since 010203'044 forms the apex of the parallelogram, C3' is It becomes parallel to C3 and the laser irradiation direction C.

C3およびC3′の途中に光学走査装置Iが設けられて
いるので、光学走査装置7には横支柱12および14を
いかに移動させても光軸の狂いを生じることなく常に一
定の方向からレーザ光を入射させることができる。
Since the optical scanning device I is provided in the middle of C3 and C3', the optical scanning device 7 always receives the laser beam from a constant direction without causing deviation of the optical axis no matter how the horizontal columns 12 and 14 are moved. can be made incident.

また平面鏡10にレーザ光9が入る前にこの光路移動機
構6全体をレーザ光9を中心軸として回転させる機構2
5を使用すれば、更に光路移動の可能な範囲が大きくt
より、光学走査装置Iの走査可能な範囲も大きくなる。
Also, before the laser beam 9 enters the plane mirror 10, a mechanism 2 for rotating the entire optical path moving mechanism 6 around the laser beam 9 as a central axis.
If 5 is used, the possible range of optical path movement is further increased.
Therefore, the scannable range of the optical scanning device I also becomes larger.

更に横支柱12および14のA181問およびA2B2
間を同一の長さだけ同時に伸縮できるような構造にすれ
ば、尚一層広範囲の任意の場所に光学走査装置7を移動
させることが可能となる。
Furthermore, questions A181 and A2B2 for horizontal columns 12 and 14
If the optical scanning device 7 is constructed so that it can be expanded and contracted by the same length at the same time, it becomes possible to move the optical scanning device 7 to any desired location over a wider range.

また、伸縮材21や23(又は20や22)を省略して
もよいことはもちろんである。
Moreover, it goes without saying that the elastic members 21 and 23 (or 20 and 22) may be omitted.

さらに上記実施例では平面鏡10や11を伸縮材20.
21や22.23によって横支柱および14に連絡した
が、上記伸縮材以外の連絡手段を用いてもよい。
Furthermore, in the above embodiment, the plane mirrors 10 and 11 are made of elastic material 20.
21, 22, and 23 are used to communicate with the horizontal struts and 14, however, communication means other than the above-mentioned elastic members may be used.

例えば第4図に示すように、横支柱1・2および14の
点A1およびA2に設けたスリン)26.27間に平面
鏡取付板28を通し、平面鏡10とこの取付板28とを
軸で結合しこの軸を縦支柱13の中点0゜に設げた穴で
軸支するようにしてもよい。
For example, as shown in FIG. 4, a plane mirror mounting plate 28 is passed between the sills 26 and 27 provided at points A1 and A2 of the horizontal struts 1, 2 and 14, and the plane mirror 10 and this mounting plate 28 are connected by a shaft. The shaft may be supported by a hole provided at the midpoint of the vertical support 13 at 0°.

なお、平面鏡100回転中心は、縦支柱13の01,0
2間の中点O8以外のO□。
The center of rotation of the plane mirror 100 is 01,0 of the vertical support 13.
O□ other than the midpoint O8 between 2.

02間の1点にとってもよい。It may also be a point between 02 and 02.

この場合、平面鏡110回転中心も、平面鏡100回転
中心に対応して縦支柱15の03,04間の1点に移し
た方がよいことはもちろんである。
In this case, it goes without saying that it is better to move the rotation center of the plane mirror 110 to a point between 03 and 04 of the vertical support 15, corresponding to the rotation center of the plane mirror 100.

また支柱12,13゜14.15が直線的に延在する棒
状のものに限定されないことは言うまでもない。
Furthermore, it goes without saying that the supports 12, 13, 14, 15 are not limited to linearly extending bar-like structures.

以上説明したように本考案によれば、入力光としてレー
ザ光線を用いた場合でもレーザ光としてのコヒーレント
性を失うことなくまた光量も大きく減じることなく広範
囲の場所に光を移送し得る光路移動機構が得られる。
As explained above, according to the present invention, even when a laser beam is used as input light, the optical path moving mechanism can transport the light to a wide range of locations without losing the coherence of the laser beam or significantly reducing the light intensity. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来の光路移動機構を示
した概略構成図、第3図は本考案の一実施例による光路
移動機構を用いた光学装置の正面図、第4図は平面鏡1
0の横支柱12および14への連絡手段の別の例を説明
するための部分正面図である。 6・・・・・・本考案の特徴とする光路移動機構、7・
・・・・・光学走査装置、8・・・・・・レーザ発振器
、10および11・・・・・平面鏡、12および14・
・・・・・横支柱、13および15・・・・・嬢支柱、
i6.i7.i8および19・・・・・・4本の支柱を
互いに回転自在に連結する回転軸、20,21.22お
よび23・・・・・伸縮材、28・・・・・:平面鏡取
付板。
1 and 2 are schematic configuration diagrams showing a conventional optical path moving mechanism, FIG. 3 is a front view of an optical device using an optical path moving mechanism according to an embodiment of the present invention, and FIG. 4 is a plane mirror 1.
FIG. 6 is a partial front view for explaining another example of communication means to the horizontal struts 12 and 14 of 0; 6... Optical path moving mechanism characterized by the present invention, 7.
. . . Optical scanning device, 8 . . . Laser oscillator, 10 and 11 . . . Plane mirror, 12 and 14.
...Horizontal struts, 13 and 15...Miss struts,
i6. i7. i8 and 19... Rotating shaft that rotatably connects the four pillars to each other, 20, 21, 22 and 23... Elastic material, 28...: Plane mirror mounting plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 平行四辺形の4辺をそれぞれ構成する4本の柱部材と、
該4本の柱部材を上記平行四辺形の各頂点に対応する各
交点にて互に回転自在に連結する手段と、上記4本の柱
部材のうちの1本である第1の柱部材の両受点間の1点
にある第1の点を中心軸として反射鏡面が回転するよう
に、該第1の柱部材に設置された第1の平面鏡と、該第
1の柱部材に隣接する柱部材の1本である第2の柱部材
の両受点間の1点にあり、上記第1の柱部材と上記第2
の柱部材との交点から上記第1の柱部材の上記第1の点
までの長さに等しい長さだけ、上記第1の柱部材と上記
第2の柱部材との交点から離れた第2の点の方向に、常
に上記第1の平面鏡の上記反射鏡面が延在するように、
上記第1の平面鏡を上記第2の柱部材に連絡する手段と
、上記第1の柱部材に対向する第3の柱部材の両受点間
の1点にある第3の点を中心軸と、して反射鏡面が回転
するように、該第3の柱部材べ設置された第2の平面鏡
と、上記第2の柱部材の両受点間の1点にあり、上記第
3の柱部材と上記第2の柱部材との交点から上記第3の
柱部材の上記第3の点までの長さに等しい長さだけ、上
記第3の柱部材と上記第2の柱部材との交点から離れた
第4の点の方向に、常に上記第2の平面鏡の上記反射鏡
面が延在するように、上記第2の平面鏡を上記第2の柱
部材に連絡する手段とを有し、上記第1の柱部材の両交
点を結ぶ線に平行に上記第1の平面鏡の上記反射鏡面に
入射した光が、上記第2の柱部材の両交点を結ぶ線に平
行な方向に常に反射されて、上記第2の平面鏡の上記反
射鏡面に入射し、上記第3の柱部材の両交点を結ぶ線に
平行な方向に常に反射されることを特徴とする光路移動
機構。
four pillar members each forming four sides of a parallelogram;
means for rotatably connecting the four pillar members to each other at each intersection corresponding to each vertex of the parallelogram; and a first pillar member that is one of the four pillar members. a first plane mirror installed on the first pillar member, and a mirror adjacent to the first pillar member so that the reflecting mirror surface rotates about a first point located between the two receiving points as a central axis; It is located at a point between both receiving points of a second pillar member, which is one of the pillar members, and is connected to the first pillar member and the second pillar member.
A second column member separated from the intersection of the first column member and the second column member by a length equal to the length from the intersection with the column member to the first point of the first column member. such that the reflective mirror surface of the first plane mirror always extends in the direction of the point,
means for connecting the first plane mirror to the second column member; and a third point located between both receiving points of the third column member facing the first column member as a central axis. , the second plane mirror installed on the third column member is located at a point between both receiving points of the second column member so that the reflecting mirror surface rotates, and the third column member and the second column member by a length equal to the length from the intersection of the third column member and the second column member to the third point of the third column member. means for connecting the second plane mirror to the second pillar member so that the reflective mirror surface of the second plane mirror always extends in the direction of a fourth point separated from the second point; Light incident on the reflecting mirror surface of the first plane mirror parallel to a line connecting both intersection points of the first column member is constantly reflected in a direction parallel to a line connecting both intersection points of the second column member, An optical path moving mechanism characterized in that the light is incident on the reflecting mirror surface of the second plane mirror and is always reflected in a direction parallel to a line connecting both intersection points of the third pillar member.
JP18858883U 1983-12-08 1983-12-08 Optical path movement mechanism Expired JPS5943525Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18858883U JPS5943525Y2 (en) 1983-12-08 1983-12-08 Optical path movement mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18858883U JPS5943525Y2 (en) 1983-12-08 1983-12-08 Optical path movement mechanism

Publications (2)

Publication Number Publication Date
JPS59112208U JPS59112208U (en) 1984-07-28
JPS5943525Y2 true JPS5943525Y2 (en) 1984-12-25

Family

ID=30406804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18858883U Expired JPS5943525Y2 (en) 1983-12-08 1983-12-08 Optical path movement mechanism

Country Status (1)

Country Link
JP (1) JPS5943525Y2 (en)

Also Published As

Publication number Publication date
JPS59112208U (en) 1984-07-28

Similar Documents

Publication Publication Date Title
JP2001511904A (en) Method and apparatus for drawing a grid
US5145756A (en) Method for making a holographic mirror
JPS6169021A (en) Optical device
JPH07506426A (en) Interferometer structure
JPS5943525Y2 (en) Optical path movement mechanism
JPH037901A (en) Constant flexing type optical reflector
US6243191B1 (en) Optical path length modulator
US4677641A (en) Simplified readout optics for a ring laser apparatus
JP3639655B2 (en) Differential optical path interferometer and Fourier transform spectrometer using the differential optical path interferometer
JPS61260689A (en) Reader for laser angular velocity sensor
JPH01317696A (en) Laser beam processing device
JPS61234311A (en) Cylindrical column type laser gyroscope
US3957356A (en) System for simulating missile target motion using steering mirrors
JPS5815768B2 (en) Sousakou Gakkei
JPH11257959A (en) Laser light projection optical system
US4482208A (en) Lateral transfer system for an optical beam
JPH0830664B2 (en) Two-beam interferometer for Fourier spectrometer
JPS6032651Y2 (en) Laser light introduction device
JPS63144890A (en) Laser beam processing device
JPH04318502A (en) Cube corner retroreflector
JPS6118491Y2 (en)
JP3049809B2 (en) Two-beam interferometer
SU1429084A1 (en) Device for recording interferograms
JP2000180140A (en) Micro rotational angle detector
SU1486792A1 (en) Device for recording interferograms