JPS5943507B2 - Method for manufacturing blue-emitting phosphor - Google Patents

Method for manufacturing blue-emitting phosphor

Info

Publication number
JPS5943507B2
JPS5943507B2 JP6151076A JP6151076A JPS5943507B2 JP S5943507 B2 JPS5943507 B2 JP S5943507B2 JP 6151076 A JP6151076 A JP 6151076A JP 6151076 A JP6151076 A JP 6151076A JP S5943507 B2 JPS5943507 B2 JP S5943507B2
Authority
JP
Japan
Prior art keywords
phosphor
europium
firing
alkaline earth
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6151076A
Other languages
Japanese (ja)
Other versions
JPS52144385A (en
Inventor
宏一 高橋
欽一郎 成田
昭行 鏡味
尭 長谷
義行 三村
明彦 善波
純郎 小池
隆弥 豊永
健博 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Japan Broadcasting Corp
Original Assignee
Dai Nippon Toryo KK
Nippon Hoso Kyokai NHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK, Nippon Hoso Kyokai NHK filed Critical Dai Nippon Toryo KK
Priority to JP6151076A priority Critical patent/JPS5943507B2/en
Publication of JPS52144385A publication Critical patent/JPS52144385A/en
Publication of JPS5943507B2 publication Critical patent/JPS5943507B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 本発明は青色発光螢光体の製造方法、詳しくは2価のユ
ーロピウムを付活したアルカリ土類金属アルミン酸塩螢
光体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a blue-emitting phosphor, and more particularly to a method for producing an alkaline earth metal aluminate phosphor activated with divalent europium.

最近200nmより短かい波長領域に放電放射スペクト
ルを有するガスと、螢光体と、放電電極とを容器に封入
してなる気体放電発光素子の開発がさかんに行なわれる
ようになつた。
Recently, gas discharge light-emitting devices have been actively developed in which a gas having a discharge emission spectrum in a wavelength region shorter than 200 nm, a phosphor, and a discharge electrode are sealed in a container.

この気体放電発光素子は、例えば豆ランプ状の小型光源
として、あるいはマトリツクス形あるいはセグメント形
に配置して文字、図形や図像の表示パネル等に使用され
るものである。従来気体放電によつて放射される紫外線
により螢光体を励起して発光させる光源としては螢光灯
がよく知られている。これは水銀蒸気の放電によつて2
53.7nmの紫外線が主として放射され、この紫外線
が螢光体を励起して発光させるものである。しかし豆ラ
ンプ状の小型光源や画像表示パネルでは、本来個々の気
体放電発光素子が小さいことに特徴があるため、放電間
隙が2〜3mm程度以下に制限される。この場合、放電
物理において周知のパツシエンの法則により封入ガスの
圧力は数10〜数100T0rrのかなり高い圧力を必
要とするが、例えば15℃では10″″3T0rr以下
、40℃でも10−2T0rr以下の飽和蒸気圧しか得
られない水銀とアルゴンガスの混合気体を用いても、水
銀気体原子の含有比がきわめて低く、その放射は有効に
利用し得ない。したがつて通常このような気体放電発光
素子には常温で数10〜数100T0rrの圧力が容易
に得られる希ガスやこれと水素、窒素等の適当な混合ガ
スを封入し、その放電放射を利用する場合が多かつた。
前記単体あるいは混合ガス中での放電によつて放射され
る紫外線は200nmより短かい波長領域の、いわゆる
真空紫外領域に強い放射スペクトルを有する場合が多い
。従来紫外線、陰極線あるいはX線の励起により青色発
光を示す螢光体として、例えば特開昭49ーJモV893
号に記載されている2価のユーロピウム付活アルカリ土
類金属アルミン酸塩発光体(BaO・6A!203:E
u2+,MgO−BaO,8Aノ,03:Eu2+,2
Mg0−BaO・7A1203:Eu2+等)がよく知
られている。
This gas discharge light emitting element is used, for example, as a miniature light source in the form of a miniature lamp, or arranged in a matrix or segment form for display panels for characters, figures, and images. Conventionally, a fluorescent lamp is well known as a light source that excites a fluorescent substance to emit light using ultraviolet rays emitted by a gas discharge. This is caused by the discharge of mercury vapor.
Ultraviolet light of 53.7 nm is mainly emitted, and this ultraviolet light excites the phosphor to emit light. However, small lamp-shaped light sources and image display panels are characterized by the fact that the individual gas discharge light emitting elements are small, so the discharge gap is limited to about 2 to 3 mm or less. In this case, according to Patsien's law, which is well known in discharge physics, the pressure of the sealed gas needs to be quite high, from several tens to several hundreds of T0rr, but for example, at 15°C, it is less than 10''3T0rr, and even at 40°C, it is less than 10-2T0rr. Even if a mixed gas of mercury and argon gas is used, which provides only a saturated vapor pressure, the content ratio of mercury gas atoms is extremely low, and its radiation cannot be used effectively. Therefore, such a gas discharge light emitting device is usually filled with a rare gas that can easily obtain a pressure of several tens to several hundreds of tons at room temperature, or a suitable mixed gas such as hydrogen or nitrogen with this gas, and utilizes the discharge radiation. There were many cases where I did so.
The ultraviolet rays emitted by discharge in the single gas or mixed gas often have a strong emission spectrum in the so-called vacuum ultraviolet region, which is a wavelength region shorter than 200 nm. Conventional phosphors that emit blue light when excited by ultraviolet rays, cathode rays, or
Divalent europium-activated alkaline earth metal aluminate phosphor (BaO.6A!203:E
u2+, MgO-BaO,8Aノ,03:Eu2+,2
Mg0-BaO.7A1203:Eu2+ etc.) are well known.

しかしこの螢光体は水銀蒸気の放電によつて放射される
紫外線、すなわち253.7nm(低圧水銀灯の場合)
あるいは365nm(高圧水銀灯の場合)の励起下にお
ける発光特性を基準として優れた螢光体とされており、
200nm以下の真空紫外線励起下での発光特性につい
ては全く調べられていない。すなわち従来公知の上記螢
光体は253.7nmあるいは365nmの紫外線励起
下において比較的高い放射効率(発光強度/励起強度)
を有するにもかかわらず、200nm以下の波長領域の
真空紫外線励起の場合については殆んど知られていなか
つた。本発明者等の実験によれば、その組成式がAMg
O−BBaO−CAl2O3・DEuO(但しA,b,
clおよびdはそれぞれa+b+c+d=10としたと
き、0くa≦2.00,0.25≦b≦2.00,6.
0≦c≦8.5および0.05≦d≦0.30なる条件
を満たす数である)で表わされる2価のユーロピウム付
活アルカリ土類金属アルミン酸塩螢光体は200nm以
下の真空紫外線励起の場合も比較的高い放射効率を有し
ていることが判明した。
However, this phosphor emits ultraviolet light emitted by a discharge of mercury vapor, that is, 253.7 nm (in the case of a low-pressure mercury lamp).
Alternatively, it is considered to be an excellent phosphor based on its emission characteristics under excitation of 365 nm (in the case of high-pressure mercury lamps).
The emission characteristics under vacuum ultraviolet excitation of 200 nm or less have not been investigated at all. In other words, the conventionally known phosphors have relatively high radiation efficiency (emission intensity/excitation intensity) under excitation of ultraviolet rays of 253.7 nm or 365 nm.
However, little is known about vacuum ultraviolet excitation in the wavelength region of 200 nm or less. According to experiments conducted by the present inventors, the compositional formula is AMg
O-BBaO-CAl2O3・DEuO (However, A, b,
When cl and d are respectively a+b+c+d=10, 0×a≦2.00, 0.25≦b≦2.00, 6.
The divalent europium-activated alkaline earth metal aluminate phosphor is a number that satisfies the following conditions: 0≦c≦8.5 and 0.05≦d≦0.30. It was found that the excitation also has a relatively high radiation efficiency.

本発明者等は上記組成式で表わされる2価のユーロピウ
ムを付活したアルカリ土類金属アルミン酸塩螢光体の2
00nm以下の真空紫外線励起下での放射効率をさらに
向上させることを目的として、その製造方法に関して種
々の実験を行なつてきた。その結果、上記螢光体を製造
するに際して、特殊な添加剤を用い、かつ焼成条件を厳
密に規定すれば放射効率が向上することを見出し、上記
本発明の目的を達成するに至つた。本発明はとくに20
0nm以下の真空紫外線励起下における放射効率が高く
、発光輝度の高い2価のユーロピウム付活アルカリ土類
金属アルミン酸塩螢光体の製造方法を提供するものであ
る。
The present inventors have developed a divalent europium-activated alkaline earth metal aluminate phosphor represented by the above composition formula.
Various experiments have been conducted regarding the manufacturing method for the purpose of further improving the radiation efficiency under vacuum ultraviolet excitation of 00 nm or less. As a result, it was discovered that when producing the above-mentioned phosphor, the radiation efficiency can be improved by using special additives and strictly specifying the firing conditions, and the above-mentioned object of the present invention has been achieved. The present invention particularly applies to 20
The present invention provides a method for producing a divalent europium-activated alkaline earth metal aluminate phosphor that has high radiation efficiency and high emission brightness under vacuum ultraviolet excitation of 0 nm or less.

なお本発明者等の実験によれば本発明の製造方法によつ
て得られる2価のユーロピウム付活アルカリ土類金属ア
ルミン酸塩螢発体は、200nm以下の真空紫外線励起
下のみならず、紫外線、陰極線あるいはX線励起下にお
いてもまた高輝度の発光を示すことが判明した。すなわ
ち本発明は紫外線、陰極線あるいはX線励起下において
も放射効率が高く、発光輝度の高い2価のユーロピウム
付活アルカリ土類金属アルミン酸塩螢光体の製造方法を
提供するものである。以下本発明の製造方法を詳しく説
明する。
According to experiments conducted by the present inventors, the divalent europium-activated alkaline earth metal aluminate fluorophore obtained by the production method of the present invention can be used not only under vacuum ultraviolet light excitation of 200 nm or less, but also under ultraviolet light excitation. It was found that the material also emitted high-intensity light under cathode ray or X-ray excitation. That is, the present invention provides a method for producing a divalent europium-activated alkaline earth metal aluminate phosphor that has high radiation efficiency and high luminance even under ultraviolet, cathode, or X-ray excitation. The manufacturing method of the present invention will be explained in detail below.

まず螢光体原料としては酸化マグネシウム(MgO)も
しくは炭酸塩、硝酸塩、硫酸塩等の高温で容易にMgO
に変わりうるマグネシウム化合物、酸化バリウム(Ba
O)もしくは炭酸塩、硝酸塩、硫酸塩等の高温で容易に
BaOに変わりうるバリウム化合物、酸化アルミニウム
(Al2O3)もしくは水酸化物、硝酸塩、硫酸塩等の
高温で容易にAl2O3に変わりうるアルミニウム化合
物、酸化ユーロピウム(EU2O3)もしくは炭酸塩、
硝酸塩、硫酸塩等の高温で容易にEU2O3に変わりう
るユーロピウム化合物が用いられる。
First, as a raw material for the phosphor, magnesium oxide (MgO) or carbonate, nitrate, sulfate, etc. can be easily used at high temperatures.
Barium oxide (Ba
O) or barium compounds that can be easily converted to BaO at high temperatures such as carbonates, nitrates, and sulfates; aluminum compounds that can be easily converted to Al2O3 at high temperatures such as aluminum oxide (Al2O3) or hydroxides, nitrates, and sulfates; europium oxide (EU2O3) or carbonate,
Europium compounds that can be easily converted to EU2O3 at high temperatures, such as nitrates and sulfates, are used.

また添加剤としてはアルカリ金属ハロゲン化物が用いら
れる。すなわち添加剤としてはLiCl,NaCl,K
CI,NaF,KF,RbFおよびCsFのうちの少な
くとも1つが用いられる。上記各螢光体原料を、これら
をすべて酸化物(但しユーロピウムについて2価の酸化
物)に換算したとき、その組成式が但し、A,b,cお
よびdはそれぞれa+b十c+d=10としたとき、0
くa≦2.00,0.25≦b≦2.00,6.0≦c
≦8.5および0.05≦d≦0.30なる条件を満た
す数である)となるような割合で混合し、さらにこれに
上記アルカリ金属ハロゲン化物添加剤を適当量添加混合
し、得られる混合物をルツボ等の耐熱性容器に入れて焼
成を行なう。
Moreover, an alkali metal halide is used as an additive. That is, additives such as LiCl, NaCl, K
At least one of CI, NaF, KF, RbF and CsF is used. When all of the above-mentioned phosphor raw materials are converted into oxides (however, divalent oxides for europium), the composition formula is as follows: A, b, c and d are respectively a + b + c + d = 10. Time, 0
a≦2.00, 0.25≦b≦2.00, 6.0≦c
≦8.5 and 0.05≦d≦0.30), and then an appropriate amount of the above alkali metal halide additive is added and mixed to obtain The mixture is placed in a heat-resistant container such as a crucible and fired.

焼成は2度行なわれる。すなわち空気中における一次焼
成と、例えば0.5〜5%の水素を含む窒素雰囲気等の
還元性雰囲気中における二次焼成である。空気中におけ
る一次焼成の焼成温度は1200℃ないし1600℃が
適当である。焼成温度が1200℃より低い場合には反
応が充分促進されず、また1600℃より高い場合には
焼結が起りはじめ、いずれの場合も放射効率が高く、発
光輝度の高い螢光体は得られない。より好ましい焼成温
度は1300℃ないし1500℃である。焼成時間は焼
成温度、充填量等によつて異なるが、上記焼成温度範囲
においては30分乃至5時間が適当である。上記一次焼
成の後、焼成物を一旦粉砕して充分混合し、再び耐熱性
容器に充填して還元性雰囲気中で二次焼成を行なう。二
次焼成の焼成温度は1000℃ないし1600℃、より
好ましくは1200℃ないし150『Cである。焼成温
度が1000℃より低い場合には反応が充分促進されず
、また1600℃より高い場合には焼結が起りはじめ、
いずれの場合も放射効率が高く、発光輝度の高い螢光体
は得られない。焼成時間は一次焼成と同じく30分ない
し5時間が適当である。この二次焼成によつて3価のユ
ーロピウムは2価に還元される。焼成終了後、焼成物は
水洗、乾燥され篩にかけられて分級される。このように
して粒子径のそろつた、とくに200nm以下の真空紫
外線励起下における放射効率が高く、発光輝度の高い、
その組成式が但しA,b,cおよびdは上記と同じ定義
を有する)で表わされる2価のユーロピウム付活アルカ
リ±類金属アルミン酸塩螢光体を得ることができる。
Firing is performed twice. That is, primary firing in air and secondary firing in a reducing atmosphere such as a nitrogen atmosphere containing, for example, 0.5 to 5% hydrogen. The firing temperature for the primary firing in air is suitably 1200°C to 1600°C. If the firing temperature is lower than 1200°C, the reaction will not be sufficiently promoted, and if it is higher than 1600°C, sintering will begin to occur, and in either case, a phosphor with high radiation efficiency and high luminance cannot be obtained. do not have. A more preferred firing temperature is 1300°C to 1500°C. The firing time varies depending on the firing temperature, filling amount, etc., but within the above firing temperature range, 30 minutes to 5 hours is appropriate. After the above-mentioned primary firing, the fired product is once pulverized and thoroughly mixed, and then filled into a heat-resistant container again and subjected to secondary firing in a reducing atmosphere. The firing temperature for the secondary firing is 1000°C to 1600°C, more preferably 1200°C to 150°C. If the firing temperature is lower than 1000°C, the reaction will not be sufficiently promoted, and if it is higher than 1600°C, sintering will begin to occur.
In either case, a phosphor with high radiation efficiency and high luminance cannot be obtained. The appropriate firing time is 30 minutes to 5 hours, same as the primary firing. By this secondary firing, trivalent europium is reduced to divalent europium. After firing, the fired product is washed with water, dried, passed through a sieve, and classified. In this way, particles with uniform particle diameters have high radiation efficiency under vacuum ultraviolet excitation of 200 nm or less, and high emission brightness.
It is possible to obtain a divalent europium-activated alkali metal aluminate phosphor whose composition formula is represented by A, b, c and d having the same definitions as above.

なお上述本発明の説明において、アルカリ金属ハロゲン
化物添加剤は一次焼成前に螢光体原料に添加混合された
が、アルカリ金属ハロゲン化物添加剤の添加時筋はこれ
に限るものではなく、二次焼成前に添カロされてもよく
、また一次焼成前および二次焼成前の両方において添加
されてもよい。すなわち本発明の製造方法においてアル
カリ金属ハロゲン化物添加剤は、一次焼成前および二次
焼成前のうちの少なくとも一方において添加されるが、
いずれの時期に添加されてもその添加量には以下に述べ
るように限度がある。第1図は本発明の製造方法におけ
るアルカリ金属ハロゲン化物添加剤がNaFである場合
の添加量と得られた螢光体の200nm以下の真空紫外
線(ヘリウム−キセノン混合ガス申での放電によつて放
射される147nmの輝線)励起下における発光輝度と
の関係を示すグラフである。
In the above description of the present invention, the alkali metal halide additive was added to and mixed with the phosphor raw material before the primary firing, but the timing of addition of the alkali metal halide additive is not limited to this. It may be added before firing, or it may be added both before primary firing and before secondary firing. That is, in the production method of the present invention, the alkali metal halide additive is added at least one of before primary firing and before secondary firing, but
There is a limit to the amount added at any time as described below. Figure 1 shows the amount of addition when the alkali metal halide additive in the production method of the present invention is NaF and the amount of addition of the obtained phosphor by vacuum ultraviolet rays of 200 nm or less (discharge with helium-xenon mixed gas). This is a graph showing the relationship between the emission brightness under excitation (emitted 147 nm bright line).

NaF添加量(横軸)は、各螢光体原料をすべて酸化物
(但しユーロピウムについては2価の酸化物)に換算し
たとき、その組成式が(但しA,b,cおよびdは上記
と同じ定義を有する)で表わされる混合酸化物に対する
重量?で示してあり、また発光輝度(縦軸)はアルカリ
金属ハロゲン化物無添加の場合の発光輝度を100とし
た相対値で示してある。
The amount of NaF added (horizontal axis) is calculated based on the composition formula (where A, b, c, and d are as above) when all of the raw materials for each phosphor are converted into oxides (however, divalent oxides for europium). weight for mixed oxides (with the same definition)? The luminance (vertical axis) is expressed as a relative value, with the luminance when no alkali metal halide is added as 100.

なお縦軸上の点Aは、例えば特公昭49−JモV893号
公報実施例1に記載されているような、アルカリ金属ハ
ロゲン化物添加剤を用いずかつ一次、二次焼成共還元性
雰囲気(数パーセントの水素を含む窒素気流)中で行な
うことを特徴とする、211fiのユーロピウム付活ア
ルカリ土類金属アルミン酸塩螢光体の製造において従来
から採用されている製造方法によつて得た螢光体の発光
輝度を示す。第1図から明らかなように、NaF添加量
が20重量%以下において無添加の場合よりも発光輝度
の高い螢光体を得ることができる。より好ましい添加量
範囲は1ないし10重量%であり、さらに好ましい添加
量範囲は2ないし8重量?である。なお第1図は添力D
剤としてNaFを用い、該添加剤を一次焼成前に添カロ
した場合の添加量と発光輝度との関係を示すグラフであ
るが、NaFのかわりに他のアルカリ金属ハロゲン化物
を用いた場合あるいはアルカリ金属ハロゲン化物の2種
以一トを併用した場合およびアルカリ金属ハロゲン化物
添加剤を二次焼成前に添加した場合あるいは一次焼成前
と二次焼成前の両方にわけて添加した場合も添加量と発
光輝,度との関係は第1図と同じような結果が得られた
。以上のことから、本発明の製造方法において用いられ
るアルカリ金属ハロゲン化物添加剤の添加量は、各螢光
体原料をすべて酸化物(但しユーロピウムについては2
価の酸化物)に換算したときその組成式がAMgO−B
BaO−CAl2O3・DEuO(但しA,b,cおよ
びdは上記と同じ定義を有する)で表わされる混合酸化
物の20重量%以下である。
Note that point A on the vertical axis is a co-reducing atmosphere ( 211fi europium-activated alkaline earth metal aluminate phosphor, characterized in that the process is carried out in a nitrogen stream containing several percent hydrogen. Indicates the luminance of the light object. As is clear from FIG. 1, when the amount of NaF added is 20% by weight or less, a phosphor with higher luminance can be obtained than when no NaF is added. A more preferable addition amount range is 1 to 10% by weight, and an even more preferable addition amount range is 2 to 8% by weight. It is. In addition, Figure 1 shows the force D
This is a graph showing the relationship between the amount of addition and the luminance when NaF is used as the additive and the additive is added before primary firing. When two or more types of metal halides are used together, and when an alkali metal halide additive is added before secondary firing, or when added separately both before primary firing and before secondary firing, the amount of addition Regarding the relationship between luminance and power, results similar to those shown in Figure 1 were obtained. Based on the above, the amount of the alkali metal halide additive used in the production method of the present invention is determined based on the amount of the alkali metal halide additive used in the production method of the present invention.
The compositional formula is AMgO-B when converted to
It is not more than 20% by weight of the mixed oxide represented by BaO--CAl2O3.DEuO (where A, b, c and d have the same definitions as above).

より好ましい添加量範囲は1ないし10重量%であり、
さらに好ましくは2ないし8重量%である。下記第1表
は本発明の製造方法において用いられるアルカリ金属ハ
ロゲン化物添加剤を種々変えた場合に得られる螢光体の
200nm以下の真空柴外線(ヘリウム−キセノン混合
ガス中での放電によつて放射される147nmの輝線)
励起下における発光輝度を示す表である。発光輝度はア
ルカリ金属ハロゲン化物無添加の場合の発光輝度を10
0とした相対値で示してある。上記第1表の螢光体の組
成は MgO・0.8Ba0・8A1203・0.2Eu0で
あり、アルカリ金属ハロゲン化物添加剤は5重量?を一
次焼成前に添加した。
A more preferable addition amount range is 1 to 10% by weight,
More preferably, it is 2 to 8% by weight. Table 1 below shows the phosphors obtained when the alkali metal halide additives used in the production method of the present invention are variously changed. 147 nm emission line)
It is a table showing luminescence brightness under excitation. The luminance is 10% the luminance when no alkali metal halide is added.
It is shown as a relative value set to 0. The composition of the phosphor in Table 1 above is MgO.0.8Ba0.8A1203.0.2Eu0, and the alkali metal halide additive is 5% by weight. was added before primary firing.

また焼成は一次焼成が空気中で1500℃で2時間であ
り、二次焼成が5%の水素を含む窒素気流中で1400
℃で2時間である。なお、一次焼成を還元性雰囲気中(
5%の水素を含む窒素気流中)で行なう以外は、上記と
全く同じ条件で螢光体を製造したところ、発光輝度が著
しく低下(10〜30%)した。この原因は第2図の励
起スペクトルに示される如く、空気中で一次焼成を行な
つた場合(曲線a)の方が、還元性雰囲気中で一次焼成
を行なつた場合(曲線b)よりも200nm以下の真空
紫外領域における励起効率がはるかに優れているためで
ある。このように本発明の製造方法において一次焼成を
空気中で行なうことは必須条件であつて、一次焼成の雰
囲気を従来法のように還元性にした場合には本発明の製
造方法によつて得られるような200nm以下の真空紫
外線励起下における放射効率が向−Eした発光輝度の高
い螢光体は,得られない。以−ヒ述べたように本発明の
製造方法によれば、200nm以下の真空紫外線励起下
における放射効率が向上した高輝度の青色発光螢光体を
得ることができるが、本発明の製造方法によつて得られ
る螢光体はまた紫外線、陰極線あるいはX線励起下にお
いても同様に放射効率の向上した高輝,度の青色発光を
示す。
In addition, the primary firing was performed in air at 1500°C for 2 hours, and the secondary firing was performed at 1400°C in a nitrogen stream containing 5% hydrogen.
℃ for 2 hours. Note that the primary firing is performed in a reducing atmosphere (
When a phosphor was produced under exactly the same conditions as above, except that it was carried out in a nitrogen stream containing 5% hydrogen, the luminance was significantly reduced (10-30%). The reason for this is that, as shown in the excitation spectrum in Figure 2, the primary firing in air (curve a) is better than the primary firing in a reducing atmosphere (curve b). This is because the excitation efficiency in the vacuum ultraviolet region of 200 nm or less is far superior. As described above, in the production method of the present invention, it is an essential condition that the primary firing is performed in air, and if the atmosphere for the primary firing is made reducing like in the conventional method, the production method of the present invention can reduce the It is not possible to obtain a phosphor with high emission brightness and improved radiation efficiency under vacuum ultraviolet excitation of 200 nm or less as shown in FIG. As described below, according to the manufacturing method of the present invention, a high-brightness blue-emitting phosphor with improved radiation efficiency under vacuum ultraviolet excitation of 200 nm or less can be obtained. The thus obtained phosphor also exhibits high brightness and intense blue luminescence with improved radiation efficiency even under ultraviolet, cathode, or X-ray excitation.

すなわち本発明の製造方法によつて得られた螢光体を2
53.7nmもしくは365nmの紫外線、陰極線ある
いはX線にて励起した場合も第1図および第1表に示さ
れるような発光輝度の向上が見られた。本発明の製造方
法は2gHのユーロピウム付活アルカリ土類金属アルミ
ン酸塩螢光体の気体放電発光素子用螢光体としての実用
性を高めるばかりでなく、低圧水銀灯、高圧水銀灯、陰
極線管、X線像増強管等用螢光体としての実用性を高め
るものであつて、本発明の工業的利用価値は非常に大き
い。
That is, the phosphor obtained by the production method of the present invention is
Also when excited with 53.7 nm or 365 nm ultraviolet rays, cathode rays, or X-rays, the luminance was improved as shown in FIG. 1 and Table 1. The manufacturing method of the present invention not only improves the practicality of the 2gH europium-activated alkaline earth metal aluminate phosphor as a phosphor for gas discharge light emitting devices, but also improves the practicality of the 2gH europium-activated alkaline earth metal aluminate phosphor, as well as for low-pressure mercury lamps, high-pressure mercury lamps, cathode ray tubes, and X-ray tubes. The present invention has great industrial utility value as it improves its practicality as a phosphor for line image intensifier tubes and the like.

次に実施例によつて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例 1 上記各螢光体原料および添力u剤を充分混合し、得られ
る混合物を501のアルミナルツボに充填して空気中で
1500℃の温度で2時間焼成した。
Example 1 The above-mentioned phosphor raw materials and additives were thoroughly mixed, and the resulting mixture was filled into a 501 aluminum crucible and fired in air at a temperature of 1500° C. for 2 hours.

焼成物を充分粉砕混合した後、再びアルミナルツボに充
填して2%の水素を含む窒素気流中で1300℃の温度
で2時間焼成を行なつた。焼成後、焼成物を水洗乾燥し
篩にかけて分級した。このようにして粒子径のそろつた
、その組成式がMgO・0.8Ba0・8A1203・
0.2Eu0で表わされる2価のユーロピウム付活アル
カリ土類金属アルミン酸塩螢光体を得た。この螢光体を
ヘリウム−キセノン混合ガス中での放電によつて放射さ
れる147nmの輝線によつて励起した場合、従来の製
造方法(アルカリ金属ハロゲン化物添加剤を用いず、一
次、二次焼成共還元性雰囲気中で行なう製造方法。実施
例2以下同様である。)によつて得られた同一組成の螢
光体の170%の高輝度の青色発光を示した。なおこの
螢光体を253.7nmもしくは365nmの紫外線、
陰極線あるいはX線にて励起した場合も上記真空紫外線
励起の場合と同じく高輝度の青色発光を示した。実施例
2上記各螢光体原料および添加剤を充分混合し、得ら
れる混合物を50CCのアルミナルツボに充填して空気
中で1500℃の温度で2時間焼成した。
After thoroughly pulverizing and mixing the fired product, it was again filled into an alumina crucible and fired at a temperature of 1300° C. for 2 hours in a nitrogen stream containing 2% hydrogen. After firing, the fired product was washed with water, dried, passed through a sieve, and classified. In this way, the particle size was uniform, and the composition formula was MgO・0.8Ba0・8A1203・
A divalent europium-activated alkaline earth metal aluminate phosphor represented by 0.2Eu0 was obtained. When this phosphor is excited by a 147 nm emission line emitted by a discharge in a helium-xenon mixed gas, it can be produced using the conventional manufacturing method (without using an alkali metal halide additive, by primary and secondary firing). The phosphor of the same composition obtained by the manufacturing method carried out in a co-reducing atmosphere (the same applies to Example 2 and below) exhibited blue light emission with a high brightness of 170%. In addition, this phosphor can be used for 253.7 nm or 365 nm ultraviolet rays,
When excited with cathode rays or X-rays, high-intensity blue light emission was also exhibited as in the case of vacuum ultraviolet ray excitation. Example 2 The above-mentioned phosphor raw materials and additives were thoroughly mixed, and the resulting mixture was filled into a 50 cc aluminum crucible and fired in air at a temperature of 1500° C. for 2 hours.

焼成物を充分粉砕混合した後、再びアルミナルツボに充
填して2%の水素を含む窒素気流中で1400℃の温度
で2時間焼成を行なつた。焼成後、焼成物を水洗乾燥し
篩にかけて分級した。このようにして粒子径のそろつた
、その組成式がMgO−0.93Ba0・8A1203
・0.17Eu0で表わされる2価のユーロピウム付活
アルカリ土類金属アルミン酸塩螢光体を得た。この螢光
体をヘリウム−キセノン混合ガス中での放電によつて放
射される147nmの輝線によつて励起した場合、従来
の製造方法によつて得られた同一組成の螢光体の160
%の高輝度の青色発光を示した。なおこの螢光体を25
3.7nmもしくは365nmの紫外線、陰極線あるい
はX線にて励起した場合も上記真空紫外線励起の場合と
同じく高輝度の青色発光を示した。実施例 3 ノ 上記各螢光体原料および添加剤を充分混合し、得られる
混合物を50CCのアルミナルツボに充填して空気中で
1400℃の温度で2時間焼成した。
After thoroughly pulverizing and mixing the fired product, it was again filled into an alumina crucible and fired at a temperature of 1400° C. for 2 hours in a nitrogen stream containing 2% hydrogen. After firing, the fired product was washed with water, dried, passed through a sieve, and classified. In this way, the particle size was uniform, and the composition formula was MgO-0.93Ba0.8A1203
- A divalent europium-activated alkaline earth metal aluminate phosphor represented by 0.17Eu0 was obtained. When this phosphor is excited by a 147 nm emission line emitted by a discharge in a helium-xenon mixed gas, the phosphor of the same composition obtained by the conventional manufacturing method has a
% of high-intensity blue light emission. In addition, this phosphor is 25
When excited with 3.7 nm or 365 nm ultraviolet rays, cathode rays, or X-rays, high-intensity blue light emission was also exhibited as in the case of vacuum ultraviolet ray excitation. Example 3 The above-mentioned phosphor raw materials and additives were thoroughly mixed, and the resulting mixture was filled into a 50 cc aluminum crucible and fired in air at a temperature of 1400° C. for 2 hours.

焼成物を充分粉砕混合した後、再びアルミナルツボに充
填して2%の水素を含む窒素気流中で1400℃の温度
で2時間焼成を行なつた。焼成後、焼成物を水洗乾燥し
篩にかけて分級した。このようにして粒子径のそろつた
、その組成式がMgO−0.8Ba0・8A1203・
0.2Eu0で表わされる2価のユーロピウム付活アル
カリ土類金属アルミン酸塩螢光体を得た。この螢光体を
ヘリウム−キセノン混合ガス中での放電によつて放射さ
れる147nmの輝線によつて励起した場合、従来の製
造方法によつて得られた同一組成の螢光体の154%の
高輝度の青色発光を示した。なおこの螢光体を253.
7nmもしくは365nmの紫外線、陰極線あるいはX
線にて励起した場合も上記真空紫外線励起の場合と同じ
く高輝度の青色発光を示した。実施例 4 炭酸マグネシウム 4MgC03・Mg(0H)2上
記各螢光体原料および添加剤を充分混合し、得られる混
合物を50CCのアルミナルツボに充填して空気中で1
400℃の温度で2時間焼成した。
After thoroughly pulverizing and mixing the fired product, it was again filled into an alumina crucible and fired at a temperature of 1400° C. for 2 hours in a nitrogen stream containing 2% hydrogen. After firing, the fired product was washed with water, dried, passed through a sieve, and classified. In this way, the particle size was uniform, and the composition formula was MgO-0.8Ba0.8A1203.
A divalent europium-activated alkaline earth metal aluminate phosphor represented by 0.2Eu0 was obtained. When this phosphor is excited by a 147 nm emission line emitted by a discharge in a helium-xenon mixed gas, it is 154% more active than a phosphor of the same composition obtained by conventional manufacturing methods. It showed high brightness blue light emission. This phosphor is 253.
7nm or 365nm ultraviolet rays, cathode rays or X
When excited by UV rays, high-intensity blue light emission was also exhibited as in the case of vacuum ultraviolet ray excitation. Example 4 Magnesium carbonate 4MgC03・Mg(0H)2 The above phosphor raw materials and additives were thoroughly mixed, the resulting mixture was filled into a 50CC alumina crucible, and the mixture was heated in air for 1 hour.
It was baked at a temperature of 400°C for 2 hours.

焼成物を充分粉砕混合した後、再びアルミナルツボに充
填して2%の水素を含む窒素気流中で1400℃の温度
で2時間焼成を行なつた。焼成後、焼成物を水洗乾燥し
篩にかけて分級した。このようにして粒子径のそろつた
、その組成式が1.2Mg0−BaO・7.6A120
3・0.2Eu0で表わされる2価のユーロピウム付活
アルカリ土類金属アルミン酸塩螢光体を得た。この螢光
体をヘリウム−キセノン混合ガス中での放電によつて放
射される147nmの輝線によつて励起した場合、従来
の製造方法によつて得られた同一組成の螢光体の156
%の高輝度の青色発光を示した。なおこの螢光体を25
3.7nmもしくは365nmの紫外線、陰極線あるい
はX線にて励起した場合“も上記真空紫外線励起の場合
と同じく高輝度の青色発光を示した。実施例 5 上記各螢光体原料および添加剤を充分混合し、得られる
混合物を50CCのアルミナルツボに充填して空気中で
1300℃の温度で3時間焼成した。
After thoroughly pulverizing and mixing the fired product, it was again filled into an alumina crucible and fired at a temperature of 1400° C. for 2 hours in a nitrogen stream containing 2% hydrogen. After firing, the fired product was washed with water, dried, passed through a sieve, and classified. In this way, the particle size is uniform, and its composition formula is 1.2Mg0-BaO・7.6A120
A divalent europium-activated alkaline earth metal aluminate phosphor represented by 3.0.2Eu0 was obtained. When this phosphor is excited by a 147 nm emission line emitted by a discharge in a helium-xenon mixed gas, the phosphor of the same composition obtained by the conventional manufacturing method has 156
% of high-intensity blue light emission. In addition, this phosphor is 25
When excited with 3.7 nm or 365 nm ultraviolet rays, cathode rays, or X-rays, high-intensity blue light emission was also exhibited as in the case of vacuum ultraviolet ray excitation.Example 5 Each of the above phosphor raw materials and additives was sufficiently added The resulting mixture was filled into a 50 cc aluminum crucible and fired in air at a temperature of 1300° C. for 3 hours.

焼成物を充分粉砕し、さらに弗化ナトリウム(NaF)
0.90f7を添加し充分混合した後、再びアルミナル
ツボに充填して2%の水素を含む窒素気流中で1400
℃の温度で2時間焼成を行なつた。焼成後、焼成物を水
洗乾燥し篩にかけて分級した。このようにして粒子径の
そろつた、その組成式がで表わされる2価のユーロピウ
ム付活アルカリ土類金属アルミン酸塩螢光体を得た。
Thoroughly crush the fired product, and then add sodium fluoride (NaF)
After adding 0.90f7 and mixing thoroughly, the aluminum crucible was filled again and heated to 1400 ml in a nitrogen stream containing 2% hydrogen.
Firing was carried out for 2 hours at a temperature of .degree. After firing, the fired product was washed with water, dried, passed through a sieve, and classified. In this way, a divalent europium-activated alkaline earth metal aluminate phosphor having a uniform particle size and having the composition formula was obtained.

この螢光体をヘリウム−キセノン混合ガス中での放電に
よつて放射される147nmの輝線によつて励起した場
合、従来の製造方法によつて得られた同一組成の螢光体
の165%の高輝度の青色発光を示した。なおこの螢光
体を253.7nmもしくは365nmの紫外線、陰極
線あるいはX線にて励起した場合も上記真空紫外線励起
の場合と同じく高輝度の青色発光を示した。実施例 6 上記各螢光体原料および添加剤を充分混合し、得られる
混合物を50CCのアルミナルツボに充填して空気中で
1400℃の温度で1.5時間焼成した。
When this phosphor is excited by a 147 nm bright line emitted by a discharge in a helium-xenon mixed gas, it is 165% as bright as a phosphor of the same composition obtained by conventional manufacturing methods. It showed high brightness blue light emission. Note that when this phosphor was excited with 253.7 nm or 365 nm ultraviolet rays, cathode rays, or X-rays, it also exhibited high-intensity blue light emission as in the case of vacuum ultraviolet ray excitation. Example 6 The above-mentioned phosphor raw materials and additives were thoroughly mixed, and the resulting mixture was filled into a 50 cc aluminum crucible and fired in air at a temperature of 1400° C. for 1.5 hours.

焼成物を充分粉砕し、さらに弗化ナトリウム(NaF)
0.90yを添加し充分混合した後、再びアルミナルツ
ボに充填して2%の水素を含む窒素気流中で1500℃
の温度で1.5時間焼成を行なつた。焼成後、焼成物を
水洗乾燥し篩にかけて分級した。このようにして粒子径
のそろつた、その組成式がで表わされる2価のユーロピ
ウム付活アルカリ土類金属アルミン酸塩螢光体を得た。
Thoroughly crush the fired product, and then add sodium fluoride (NaF)
After adding 0.90y and mixing thoroughly, the aluminum crucible was filled again and heated to 1500°C in a nitrogen stream containing 2% hydrogen.
Firing was carried out at a temperature of 1.5 hours. After firing, the fired product was washed with water, dried, passed through a sieve, and classified. In this way, a divalent europium-activated alkaline earth metal aluminate phosphor having a uniform particle size and having the composition formula was obtained.

この螢光体をヘリウム−キセノン混合ガス中での放電に
よつて放射される147nmの輝線によつて励起した場
合、従来の製造方法によつて得られた同一組成の螢光体
の180%の高輝度の青色発光を示した。なおこの螢光
体を253.7nmもしくは365nmの紫外線、陰極
線あるいはX線にて励起した場合も上記真空紫外線励起
の場合と同じく高輝度の青色発光を示した。実施例 7 上記各螢発体原料を充分混合し、得られる混合1!,1
11..ぁ??\.1ぃBX.4.J−11.へ?――
―●ルi騙.嘉.I7」し?6,,二1300℃の温度
で3時間焼成した。
When this phosphor is excited by a 147 nm emission line emitted by a discharge in a helium-xenon mixed gas, it is 180% more active than a phosphor of the same composition obtained by conventional manufacturing methods. It showed high brightness blue light emission. Note that when this phosphor was excited with 253.7 nm or 365 nm ultraviolet rays, cathode rays, or X-rays, it also exhibited high-intensity blue light emission as in the case of vacuum ultraviolet ray excitation. Example 7 Mixture 1 obtained by thoroughly mixing each of the above-mentioned materials for fire extinguisher! ,1
11. .. ah? ? \. 1 BX. 4. J-11. fart? ---
―●Lei deception. Ka. I7”? 6, 2 It was fired at a temperature of 1300°C for 3 hours.

焼成物を充分粉砕し、沃化ナトリウム(Nal)2.1
41を添加し充分混合した後、再びアルミナルツボに充
填して2%の水素を含む窒素気流中で1400℃の温度
で2時間焼成を行なつた。焼成後、焼成物を水洗乾燥し
篩にかけて分級した。このようにして粒子径のそろつた
、その組成式がで表わされる2価のユーロピウム付活ア
ルカリ土類金属アルミン酸塩螢光体を得た。
Thoroughly crush the baked product and reduce sodium iodide (Nal) to 2.1
41 was added and thoroughly mixed, the mixture was again filled into an alumina crucible and fired at a temperature of 1400° C. for 2 hours in a nitrogen stream containing 2% hydrogen. After firing, the fired product was washed with water, dried, passed through a sieve, and classified. In this way, a divalent europium-activated alkaline earth metal aluminate phosphor having a uniform particle size and having the composition formula was obtained.

この螢光体をヘリウム−キセノン混合ガス中での放電に
よつて放射される147nmの輝線によつて励起した場
合、従来の製造方法によつて得られた同一組成の螢光体
の162%の高輝度の青色発光を示した。なおこの螢光
体を253.7nmもしくは365,nmの紫外線、陰
極線あるいはX線にて励起した場合も上記真空紫外線励
起の場合と同じく高輝度の青色発光を示した。実施例
8 上記各螢光体原料を充分混合し、得られる混合物を50
CCのアルミナルツボに充填して空気中で1500℃の
温度で1.5時間焼成した。
When this phosphor is excited by a 147 nm emission line emitted by a discharge in a helium-xenon mixed gas, it is 162% of the phosphor of the same composition obtained by the conventional manufacturing method. It showed high brightness blue light emission. When this phosphor was excited with ultraviolet rays of 253.7 nm or 365 nm, cathode rays, or X-rays, it also emitted high-intensity blue light as in the case of vacuum ultraviolet ray excitation. Example
8 Thoroughly mix each of the above phosphor raw materials, and mix the resulting mixture with 50%
It was filled into a CC aluminum crucible and fired in air at a temperature of 1500°C for 1.5 hours.

焼成物を充分粉砕し、塩化カリウム(KC/l)1.9
0fを添加し充分混合した後、再びアルミナルツボに充
填して2%の水素を含む窒素気流中で1400℃の温度
で2時間焼成を行なつた。焼成後、焼成物を水洗乾燥し
篩にかけて分級した。このようにしてi粒子径のそろつ
た、その組成式がで表わされる2価のユーロピウム付活
アルカリ土類金属アルミン酸塩螢光体を得た。
Thoroughly crush the baked product to reduce potassium chloride (KC/l) to 1.9
After adding 0f and thoroughly mixing, the mixture was again filled into an alumina crucible and fired at a temperature of 1400° C. for 2 hours in a nitrogen stream containing 2% hydrogen. After firing, the fired product was washed with water, dried, passed through a sieve, and classified. In this way, a divalent europium-activated alkaline earth metal aluminate phosphor having a uniform particle size and having a composition formula represented by is obtained.

この螢光体をヘリウム−キセノン混合ガス中での放電に
よつて放射される147nmの輝線よつて励起した場合
、従来の製造方法によつて得られた同一組成の螢光体の
155%の高輝度の青色発光を示した。なおこの螢光体
を253.7nmもしくは365nmの紫外線、陰極線
あるいはX線にて励起した場合も上記真空紫外線励起の
場合と同じく高輝度の青色発光を示した。
When this phosphor is excited by a 147 nm emission line emitted by a discharge in a helium-xenon gas mixture, it has a 155% increase in brightness compared to a phosphor of the same composition obtained by conventional manufacturing methods. It showed bright blue emission. Note that when this phosphor was excited with 253.7 nm or 365 nm ultraviolet rays, cathode rays, or X-rays, it also exhibited high-intensity blue light emission as in the case of vacuum ultraviolet ray excitation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法におけるアルカリ金属ハロゲ
ン化物添加量と得られる螢光体の200nm以下の真空
紫外線励起下における発光輝度との関係を例示するグラ
フである。
FIG. 1 is a graph illustrating the relationship between the amount of alkali metal halide added and the luminance of the obtained phosphor under vacuum ultraviolet excitation at 200 nm or less in the production method of the present invention.

Claims (1)

【特許請求の範囲】 1 酸化マグネシウム(MgO)もしくは高温で容易に
MgOに変わりうるマグネシウム化合物、酸化バリウム
(BaO)もしくは高温で容易にBaOに変わりうるバ
リウム化合物、酸化アルミニウム(Al_2O_3)も
しくは高温で容易にAl_2O_3に変わりうるアルミ
ニウム化合物および酸化ユーロピウム(Eu_2O_3
)もしくは高温で容易にEu_2O_3に変わりうるユ
ーロピウム化合物を、これらをすべて酸化物(但しユー
ロピウムについては2価の酸化物)に換算したとき、そ
の組成式がaMgO・bBaO・cAl_2O_3・d
EuO(但しa、b、cおよびdはそれぞれa+b+c
+d=10としたとき、0<a≦2.00、0.25≦
b≦2.00、6.0≦c≦8.5および0.05≦d
≦0.30なる条件を満たす数である。 )となるような割合で混合し、これを空気中で1200
℃乃至1600℃の温度で一次焼成し、次いで還元性雰
囲気中で1000℃乃至1600℃の温度で二次焼成し
、前記一次焼成前および前記二次焼成前のうちの少なく
とも一方において、前記組成式で表わされる混合酸化物
の20重量%以下のアルカリ金属ハロゲン化物を添加す
ることを特徴とする2価のユーロピウム付活アルカリ土
類金属アルミン酸塩青色発光螢光体の製造方法。 2 前記アルカリ金属ハロゲン化物の添加量が1乃至1
0重量%であることを特徴とする特許請求の範囲第1項
記載の2価のユーロピウム付活アルカリ土類金属アルミ
ン酸塩青色発光螢光体の製造方法。 3 前記アルカリ金属ハロゲン化物の添加量が2乃至8
重量%であることを特徴とする特許請求の範囲第2項記
載の2価のユーロピウム付活アルカリ土類金属アルミン
酸塩青色発光螢光体の製造方法。 4 一次焼成温度および二次焼成温度がそれぞれ130
0℃乃至1500℃および 1200℃乃至1500℃であることを特徴とする特許
請求の範囲第1項ないし第3項いずれか記載の2価のユ
ーロピウム付活アルカリ土類金属アルミン酸塩青色発光
螢光体の製造方法。
[Claims] 1 Magnesium oxide (MgO) or a magnesium compound that can be easily converted to MgO at high temperatures, barium oxide (BaO) or a barium compound that can be easily converted to BaO at high temperatures, aluminum oxide (Al_2O_3) or easily converted to BaO at high temperatures. Aluminum compounds and europium oxide (Eu_2O_3) that can be converted into Al_2O_3
) or europium compounds that can be easily converted to Eu_2O_3 at high temperatures, when all of these are converted into oxides (however, europium is a divalent oxide), the composition formula is aMgO・bBaO・cAl_2O_3・d
EuO (however, a, b, c and d are a+b+c, respectively)
When +d=10, 0<a≦2.00, 0.25≦
b≦2.00, 6.0≦c≦8.5 and 0.05≦d
This is a number that satisfies the condition of ≦0.30. ) and mix it in the air at 1200
The composition formula 1. A method for producing a divalent europium-activated alkaline earth metal aluminate blue-emitting phosphor, which comprises adding an alkali metal halide in an amount of 20% or less by weight of a mixed oxide represented by: 2 The amount of the alkali metal halide added is 1 to 1
A method for producing a blue-emitting divalent europium-activated alkaline earth metal aluminate phosphor according to claim 1, wherein the amount is 0% by weight. 3 The amount of the alkali metal halide added is 2 to 8
% by weight. A method for producing a divalent europium-activated alkaline earth metal aluminate blue-emitting phosphor according to claim 2. 4 The primary firing temperature and secondary firing temperature are each 130
Divalent europium-activated alkaline earth metal aluminate blue-emitting fluorescence according to any one of claims 1 to 3, characterized in that the temperature is 0°C to 1500°C and 1200°C to 1500°C. How the body is manufactured.
JP6151076A 1976-05-27 1976-05-27 Method for manufacturing blue-emitting phosphor Expired JPS5943507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6151076A JPS5943507B2 (en) 1976-05-27 1976-05-27 Method for manufacturing blue-emitting phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6151076A JPS5943507B2 (en) 1976-05-27 1976-05-27 Method for manufacturing blue-emitting phosphor

Publications (2)

Publication Number Publication Date
JPS52144385A JPS52144385A (en) 1977-12-01
JPS5943507B2 true JPS5943507B2 (en) 1984-10-22

Family

ID=13173147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6151076A Expired JPS5943507B2 (en) 1976-05-27 1976-05-27 Method for manufacturing blue-emitting phosphor

Country Status (1)

Country Link
JP (1) JPS5943507B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030339B1 (en) * 1997-11-06 2004-05-19 Matsushita Electric Industrial Co., Ltd. Phosphor material, phosphor material powder, plasma display panel, and processes for producing these
JPH11140437A (en) * 1997-11-06 1999-05-25 Matsushita Electric Ind Co Ltd Production of bivalent europium-activated fluorescent substance
US6841093B2 (en) 1999-12-02 2005-01-11 Lg Chemical Ltd. Method for manufacturing spherical blue fluorescent substance
JP3834290B2 (en) * 2000-12-16 2006-10-18 エルジー・ケム・リミテッド Method for producing spherical blue phosphor
JP5380790B2 (en) * 2007-01-30 2014-01-08 日亜化学工業株式会社 Alkaline earth metal aluminate phosphor and fluorescent lamp using the same
WO2008123498A1 (en) * 2007-03-30 2008-10-16 Mitsubishi Chemical Corporation Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device

Also Published As

Publication number Publication date
JPS52144385A (en) 1977-12-01

Similar Documents

Publication Publication Date Title
KR20020000835A (en) Method of producing aluminate fluorescent substance, a fluorescent substance and a device containing a fluorescent substance
JP2005068403A (en) Alkaline earth aluminate phosphor for cold-cathode fluorescent lamp, and cold-cathode fluorescent lamp
JP2009074090A (en) Phosphor for vacuum-ultraviolet ray-excited light-emitting element
JPS5943507B2 (en) Method for manufacturing blue-emitting phosphor
JP2002194346A (en) Method for producing aluminate fluorescent substance
JP5380790B2 (en) Alkaline earth metal aluminate phosphor and fluorescent lamp using the same
CN1366017A (en) Vacuum ultraviolet ray excited green barium magnesium aluminate as fluorescent substance and its preparing process
JPH10195432A (en) Fluorescent substance for plasma display panel
JP2002180041A (en) Fluorescent particle
JP2006002043A (en) Fluorescent substance to be excited by vacuum ultraviolet rays, method for producing the same, and vacuum ultraviolet ray-excited light-emitting element
JP2001335777A (en) Vacuum ultraviolet ray-excited fluorophor and light emitting device using the same
JPH032801B2 (en)
JP2008308634A (en) Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same
JP4622135B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP2003183644A (en) Method of production for silicate fluorescent substance
JP3956434B2 (en) Aluminate phosphor
JPH09157644A (en) Aluminate fluorescent substance, its production and discharge apparatus using the same fluorescent substance
JP4058864B2 (en) Phosphors for vacuum ultraviolet light-emitting devices
JP2001172625A (en) Vacuum ultraviolet excitable fluorescent substance and light emitting device using the same
JP2004026922A (en) Fluorescent substance for vacuum ultraviolet light excitation light emission element
JP2003231881A (en) Phosphor, method for producing phosphor and cathode- ray tube
JP2006028480A (en) Phosphor and light-emitting element using the same
JP4232559B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP4556310B2 (en) Method for producing aluminate phosphor
JP2004197043A (en) Aluminate salt fluorescent material, method for producing the same and ultraviolet light-excited light-emitting element