JPS5943409B2 - Compound having hexagonal layered structure represented by YFeMnO↓4 and method for producing the same - Google Patents
Compound having hexagonal layered structure represented by YFeMnO↓4 and method for producing the sameInfo
- Publication number
- JPS5943409B2 JPS5943409B2 JP56050136A JP5013681A JPS5943409B2 JP S5943409 B2 JPS5943409 B2 JP S5943409B2 JP 56050136 A JP56050136 A JP 56050136A JP 5013681 A JP5013681 A JP 5013681A JP S5943409 B2 JPS5943409 B2 JP S5943409B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- layered structure
- yfemno
- structure represented
- hexagonal layered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Compounds Of Iron (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】
本発明は新規化合物でめるYFeMn04で示される六
方晶系の層状構造を有する化合物およびその製造法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel compound YFeMn04 having a hexagonal layered structure and a method for producing the same.
従来、YFe204で示される六方晶系の層状構造を有
する化合物は知られる。Conventionally, a compound having a hexagonal layered structure represented by YFe204 is known.
この化合物はY3+Fe2+ Fe3+ 01−で示さ
れるように、鉄の2価イオンと3価イオンは5配位の酸
素イオンに囲まれ、Yは6配位の酸素イオンをその周り
に持つている化合物であり、磁性を持つている。本発明
は前記Y゜+Fe”+Fe゜+01−化合物のFe2+
の代りにMn2+ を置きかえた新規な化合物およびそ
の製造法を提供するにある。This compound is a compound in which divalent and trivalent iron ions are surrounded by five-coordinated oxygen ions, and Y has six-coordinated oxygen ions around them, as shown by Y3+Fe2+ Fe3+ 01-. Yes, it has magnetism. The present invention provides Fe2+ of the Y゜+Fe''+Fe゜+01- compound.
The object of the present invention is to provide a novel compound in which Mn2+ is replaced with Mn2+, and a method for producing the same.
本発明のYF、eMn04で示される化合物は、この化
合物中、鉄はFe3+イオン、マンガンはMn2天Yは
3価イオンとして存在しており、Y3+Fe3+Mn2
+OH−として表わすことができる。In the compound represented by YF and eMn04 of the present invention, iron exists as Fe3+ ion, manganese exists as Mn2, and Y exists as trivalent ion, Y3+Fe3+Mn2
It can be expressed as +OH-.
この結晶は第1図に示すような六方晶層状構造を持つて
いる。最大の丸は酸素、中丸はY、最小の黒丸はFeと
Mnを示す。FeとMnはランダムに入つている。マン
ガンの2価イオンと鉄の3価イオンは第5配位の酸素イ
オンによつて囲まれ、結晶学的には同一の位置を占めて
いる。またYは6配位の酸素をその周りに持つている。
陰イオンである酸素は緻密構造をとつている。a、bお
よびcは、単位格子内における位置を示す。この結晶の
面指数(hkt)、面間隔(dX)(doは実測、dc
は計算値を示す)、X線に対する相対反射強度(工%)
は第1表の通りでめる。This crystal has a hexagonal layered structure as shown in FIG. The largest circle indicates oxygen, the middle circle indicates Y, and the smallest black circle indicates Fe and Mn. Fe and Mn are entered randomly. The divalent ions of manganese and the trivalent ions of iron are surrounded by fifth-coordinated oxygen ions and occupy the same position crystallographically. Furthermore, Y has six-coordinated oxygen atoms around it.
Oxygen, an anion, has a dense structure. a, b and c indicate positions within the unit cell. Planar index (hkt), interplanar spacing (dX) (do is actual measurement, dc
(indicates calculated value), relative reflection intensity for X-rays (working%)
are shown in Table 1.
そして空間群はR″3mで、その晶癖は板状晶で、格子
定数は次の通りである。a0=3.4964±0.00
02(X)c0=25.456±O、003(X)第1
表れにをdoに dcCA〕 IC%〕0038.51
88.485190064.2484.2432410
13.0083.00710 0101 2.946
2.946 100 0 9 2.8 30 2.8
29 431 04 2.735 2.734 921
0 5 2.6 03 2.6 03 601 0
7 2.3 27 8 2.3 27 0 810下2
.19402.19351910101.94851.
9485521101.74811.74827410
13 1.6 44 2 1.6 44 3 101
1 6 1.6161 1.616 4 121014
1.5588 1.5588 31この化合物は磁性
材料ならびに半導体材料として有用なものである。The space group is R″3m, the crystal habit is plate-like, and the lattice constant is as follows: a0=3.4964±0.00
02(X)c0=25.456±O, 003(X) 1st
dcCA〕IC%〕0038.51
88.485190064.2484.2432410
13.0083.00710 0101 2.946
2.946 100 0 9 2.8 30 2.8
29 431 04 2.735 2.734 921
0 5 2.6 03 2.6 03 601 0
7 2.3 27 8 2.3 27 0 810 lower 2
.. 19402.19351910101.94851.
9485521101.74811.74827410
13 1.6 44 2 1.6 44 3 101
1 6 1.6161 1.616 4 121014
1.5588 1.5588 31 This compound is useful as a magnetic material as well as a semiconductor material.
この化合物は次の方法によつて製造し得られる。This compound can be produced by the following method.
イツトリウム酸化物(Y2O3)、マンガン酸化物(M
nO)および酸化鉄(Fe2O3)を、モル比で約1対
2対1の割合で混合し、該混合物を非酸化性雰囲気下で
900℃以上の温度で加熱することによつて製造するこ
とがでへる。本発明に用いるイツトリウム酸化物は市販
のものをそのまま使用してもよいが、酸化物相互の反応
を速やかに進行させるためには、粒径が小さい程よく、
特に10μm以下であることが好ましい。Yttrium oxide (Y2O3), manganese oxide (M
nO) and iron oxide (Fe2O3) in a molar ratio of approximately 1:2:1, and heating the mixture at a temperature of 900°C or higher in a non-oxidizing atmosphere. Deheru. Commercially available yttrium oxides used in the present invention may be used as they are, but in order for the reaction between the oxides to proceed quickly, the smaller the particle size, the better.
In particular, it is preferably 10 μm or less.
また磁性材料として用いる場合は不純物の混入をきらう
ので、原料は純度が高く、また、約1000℃で数時間
空気中で仮焼したものが望ましい。酸化マンガンは通常
の試薬特級程度のものでよい。粒径は前記イツトリウム
酸化物と同様な理由で10Itm以下であることが好ま
しい。また、1000℃で1日間炭酸ガスと水素の混合
ガス(混合比容量で1対1)中で仮焼し、0℃に急冷さ
せたものが反応が早くなるので好ましい。酸化鉄は試薬
特級程度のものでよい。その粒径は前記と同様に10μ
m以下であることが好ましい。また800℃で1日間空
気中で仮焼したものが好ましい。これらの原料をそのま
ま、あるいはアルコール類、アセトン等を人れ十分混合
する。これらの混合割合はY2O3,MnO,Fe2O
3をモル比で1対2対1の割合である。Furthermore, when using it as a magnetic material, it is preferable to avoid contamination with impurities, so it is preferable that the raw material is of high purity and that it has been calcined in air at about 1000° C. for several hours. Manganese oxide of ordinary reagent grade level may be used. The particle size is preferably 10 Itm or less for the same reason as the yttrium oxide. Further, it is preferable to calcinate in a mixed gas of carbon dioxide and hydrogen (mixture ratio: 1:1 by volume) at 1000° C. for 1 day, and then rapidly cool it to 0° C., because the reaction speeds up. The iron oxide may be of special reagent grade. The particle size is 10μ as above.
It is preferable that it is below m. Moreover, it is preferable to calcined in air at 800° C. for one day. These raw materials may be used as they are, or alcohols, acetone, etc. may be thoroughly mixed. These mixing ratios are Y2O3, MnO, Fe2O
3 in a molar ratio of 1:2:1.
この割合をはずれると目的とする層状化合物を得ること
ができない。これらの混合物を石英またはガラスの容器
に封入して非酸化性雰囲気下で加熱する。If this ratio is exceeded, the desired layered compound cannot be obtained. These mixtures are sealed in a quartz or glass container and heated under a non-oxidizing atmosphere.
それはマンガンが2価の状態であるので、酸化性雰囲気
(例えば大気中)下ではマンガンが酸化されて3価にな
つてしまうので、非酸化性雰囲気下であることが必要で
ある。加熱温度は900℃以上であればよく、また加熱
時間は10分以上、好ましくは1時間以上である。加熱
の際の昇温速度は制約はない。反応終了後はO℃に急冷
するかあるいは大気中に急激に引出せぱよい。得られた
YFeMnO4化合物は黒色金属光沢を有し、粉末X線
回折法によつて結晶構造を有することが分つた。Since manganese is in a divalent state, in an oxidizing atmosphere (for example, in the atmosphere), manganese will be oxidized and become trivalent, so it is necessary to be in a non-oxidizing atmosphere. The heating temperature may be 900°C or higher, and the heating time is 10 minutes or more, preferably 1 hour or more. There are no restrictions on the rate of temperature increase during heating. After the reaction is completed, it can be rapidly cooled to 0°C or rapidly drawn out into the atmosphere. The obtained YFeMnO4 compound had a black metallic luster and was found to have a crystalline structure by powder X-ray diffraction.
化合物中の鉄イオンの価数はメスバウエル効果の測定で
、またマンガンイオンの価数は試料を空気中で加熱する
際の試料の重量変化を測定する重量分析法によつて決定
した。実施例
純度99.9%以上のイツトリウム酸化物(Y2O3)
粉末、純度99.9%以上の酸化マンガン(MnO)粉
末および純度99.9%以上の鉄酸化物(Fe2O3)
粉末をモル比で1対2対1の割合に秤量し、乳鉢内でア
セトンを加えて十分に混合して平均粒径数μmの微粉末
混合物を得た。The valence of iron ions in the compound was determined by measuring the Mössbauer effect, and the valence of manganese ions was determined by gravimetric analysis, which measures the change in weight of the sample when it is heated in air. Example: Yttrium oxide (Y2O3) with a purity of 99.9% or more
Powder, manganese oxide (MnO) powder with a purity of 99.9% or more, and iron oxide (Fe2O3) with a purity of 99.9% or more
The powders were weighed at a molar ratio of 1:2:1, acetone was added in a mortar, and the mixture was thoroughly mixed to obtain a fine powder mixture with an average particle size of several μm.
該混合物を透明石英管(内径8m0内に人れて真空ポン
プを用いて管内を10−3mmHgの真空度に下げ、約
1時間維持し、ガスバーナで溶封した。これを1000
℃に設定された箱型のシリコニツト炉内に入れ、約1日
間加熱し、その後試料を取出し、室温まで急速に冷却し
た。得られたものはYFeMnO4の六方晶系の層状加
合物であつた。その経晶の性状は第1表に示す通りであ
つた。The mixture was placed in a transparent quartz tube (with an inner diameter of 8 m0), the inside of the tube was lowered to a vacuum of 10-3 mmHg using a vacuum pump, maintained for about 1 hour, and then melt-sealed with a gas burner.
The sample was placed in a box-shaped siliconite furnace set at .degree. C. and heated for about 1 day, after which time the sample was removed and rapidly cooled to room temperature. What was obtained was a hexagonal layered compound of YFeMnO4. The properties of the crystals were as shown in Table 1.
図面は本発明のYFeMnO4の結晶の図である。 The drawing is a diagram of a YFeMnO4 crystal of the present invention.
Claims (1)
有する化合物。 2 イットリウム酸化物(Y_2O_3)、マンガン酸
化物(MnO)および酸化鉄(Fe_2O_3)を、モ
ル比で約1対2対1の割合で混合し、この混合物を非酸
化性雰囲気下で900℃以上の温度で加熱することを特
徴とするYFeMnO_4で示される六方晶系の層状構
造を有する化合物の製造法。[Claims] 1. A compound having a hexagonal layered structure represented by YFeMnO_4. 2 Yttrium oxide (Y_2O_3), manganese oxide (MnO) and iron oxide (Fe_2O_3) are mixed in a molar ratio of about 1:2:1, and this mixture is heated at 900°C or higher in a non-oxidizing atmosphere. A method for producing a compound having a hexagonal layered structure represented by YFeMnO_4, which comprises heating at a temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56050136A JPS5943409B2 (en) | 1981-04-03 | 1981-04-03 | Compound having hexagonal layered structure represented by YFeMnO↓4 and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56050136A JPS5943409B2 (en) | 1981-04-03 | 1981-04-03 | Compound having hexagonal layered structure represented by YFeMnO↓4 and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57166317A JPS57166317A (en) | 1982-10-13 |
JPS5943409B2 true JPS5943409B2 (en) | 1984-10-22 |
Family
ID=12850725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56050136A Expired JPS5943409B2 (en) | 1981-04-03 | 1981-04-03 | Compound having hexagonal layered structure represented by YFeMnO↓4 and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5943409B2 (en) |
-
1981
- 1981-04-03 JP JP56050136A patent/JPS5943409B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57166317A (en) | 1982-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mountvala et al. | Phase Relations and Structures in the System PbO–Fe2O3 | |
JPS5934656B2 (en) | Compound having hexagonal layered structure represented by YbAlMnO↓4 and method for producing the same | |
JPS5943412B2 (en) | Compound having hexagonal layered structure represented by LuFeMnO↓4 and method for producing the same | |
JPS5943409B2 (en) | Compound having hexagonal layered structure represented by YFeMnO↓4 and method for producing the same | |
JPS5943410B2 (en) | Compound having hexagonal layered structure represented by ErFeMnO↓4 and method for producing the same | |
JPS5943413B2 (en) | Compound having hexagonal layered structure represented by TmFeMnO↓4 and method for producing the same | |
JPS5943424B2 (en) | Compound having hexagonal layered structure represented by TmFeCuO↓4 and method for producing the same | |
JPS5933541B2 (en) | Compound with hexagonal layered structure represented by HoGaMnO↓4 and method for producing the same | |
JPS5933539B2 (en) | Compound having hexagonal layered structure represented by LuAlMnO↓4 and method for producing the same | |
JPS5933542B2 (en) | Compound having hexagonal layered structure represented by YGaMnO↓4 and method for producing the same | |
JPS5933536B2 (en) | Compound having hexagonal layered structure represented by LuGaMnO↓4 and method for producing the same | |
JPS5943411B2 (en) | Compound having hexagonal layered structure represented by YbFeMnO↓4 and method for producing the same | |
JPS5933540B2 (en) | Compound having hexagonal layered structure represented by ErGaMnO↓4 and method for producing the same | |
JPS5933537B2 (en) | Compound having hexagonal layered structure represented by TmGaMnO↓4 and method for producing the same | |
JPS5933538B2 (en) | Compound having a layered structure of hexagonal crystal threads represented by TmAlMnO↓4 and method for producing the same | |
JPS5933535B2 (en) | Compound having hexagonal layered structure represented by YbGaMnO↓4 and method for producing the same | |
Bueno et al. | Crystal growth, IR and Raman spectra, thermal decomposition and magnetic properties of KLn (CrO4) 2 (Ln≡ Pr, Nd, Sm) | |
JPS5943420B2 (en) | Compound having hexagonal layered structure represented by YbFeMgO↓4 and method for producing the same | |
JPS5943416B2 (en) | Compound having hexagonal layered structure represented by YbFeZnO↓4 and method for producing the same | |
JPS6045130B2 (en) | Compound belonging to the monoclinic system represented by 4NiO・6Fe↓2O↓3・9GeO↓2 (Ni↓4Fe↓1↓2Ge↓9O↓4↓0) and its production method | |
JPS5943421B2 (en) | Compound having hexagonal layered structure represented by TmFeMgO↓4 and method for producing the same | |
JPS6041622B2 (en) | Compound having hexagonal layered structure represented by LuGaCoO↓4 and method for producing the same | |
JPS6041620B2 (en) | Compound having hexagonal layered structure represented by YbGaCoO↓4 and method for producing the same | |
JPS6041619B2 (en) | Compound having hexagonal layered structure represented by TmFeCoO↓4 and method for producing the same | |
JPS6041618B2 (en) | Compound having hexagonal layered structure represented by YbFeCoO↓4 and method for producing the same |