JPS594335B2 - Tape winding method and device - Google Patents

Tape winding method and device

Info

Publication number
JPS594335B2
JPS594335B2 JP3297580A JP3297580A JPS594335B2 JP S594335 B2 JPS594335 B2 JP S594335B2 JP 3297580 A JP3297580 A JP 3297580A JP 3297580 A JP3297580 A JP 3297580A JP S594335 B2 JPS594335 B2 JP S594335B2
Authority
JP
Japan
Prior art keywords
tape
pressure
decompression chamber
atmospheric pressure
winding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3297580A
Other languages
Japanese (ja)
Other versions
JPS56132243A (en
Inventor
高「し」 一柳
清和 今西
秀俊 川
勝之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3297580A priority Critical patent/JPS594335B2/en
Publication of JPS56132243A publication Critical patent/JPS56132243A/en
Publication of JPS594335B2 publication Critical patent/JPS594335B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Winding Of Webs (AREA)

Description

【発明の詳細な説明】 本発明は、磁気テープ等のテープ状物体の巻取装置につ
いて、テープ巻取部でのエアーの巻込みによる乱巻現象
を解消し、テープの高速巻取を可能にする方法(及び装
置)を提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention eliminates the irregular winding phenomenon caused by air entrainment in the tape winding section of a winding device for tape-like objects such as magnetic tapes, and enables high-speed tape winding. The purpose is to provide a method (and apparatus) for

乱巻現象は、第1図に示すように、巻取リール1とテー
プ2で形成される微小すきま部3に、テープの走行、及
びリールの回転に伴なつて周辺のエアーが巻き込まれ、
流体潤滑理論でいう、くさび膜効果、或は絞り膜効果に
よつて発生する不安定な空気圧力膜によつて、テープ2
に浮上刃(図中の太い矢印)が発生し、更に、周辺各部
の機械振動や、リールの偏心回転に起因するテープテン
ションの変動等の不規則な外乱が加わることによつて、
テープが巾方向に振動し、巻取つたテープの端面が不揃
いになる現象である。
As shown in FIG. 1, the irregular winding phenomenon occurs when surrounding air is caught in a minute gap 3 formed between the take-up reel 1 and the tape 2 as the tape runs and the reel rotates.
In fluid lubrication theory, the tape 2 is
Floating blades (thick arrows in the figure) are generated, and in addition, irregular disturbances such as mechanical vibrations in the surrounding parts and fluctuations in tape tension due to eccentric rotation of the reel are added.
This is a phenomenon in which the tape vibrates in the width direction and the end surfaces of the wound tape become uneven.

テープが乱巻きされると、外観上不都合であるばかりで
なく、テープに巻きぐせが発生し、磁気記録テープでは
、磁気ヘツドでの読み取り、書き込みエラーが多発する
原因となる。
If the tape is wound irregularly, it not only looks bad, but also causes curls in the tape, which causes frequent reading and writing errors in the magnetic head of the magnetic recording tape.

この乱巻現象の根本的要因である、エアーの巻込みによ
る発生浮上刃Fと、テープの走行速度uの関係を第2図
に示す。
FIG. 2 shows the relationship between the floating edge F generated due to air entrainment, which is the fundamental cause of this irregular winding phenomenon, and the running speed u of the tape.

動圧空気軸受と同様のメカニズム゛で、テープ走行速度
の増大にともない、テープ浮上刃が増大することを示し
ており、乱巻現象が、テープの高速巻取を妨げる重大な
要因であることがわかる。上記の乱巻現象に対して、従
米の巻取装置では、例えば、(1)第3図に示すようは
、巻取り部近傍で、押えローラー4を介してテープ2を
外側より巻取リール1に押し付け、テープの浮上を防ぐ
This shows that the floating edge of the tape increases as the tape running speed increases, due to a mechanism similar to that of hydrodynamic air bearings, indicating that the irregular winding phenomenon is an important factor that hinders high-speed tape winding. Recognize. To deal with the above-mentioned irregular winding phenomenon, in the conventional winding device, for example, (1) as shown in FIG. to prevent the tape from floating up.

(2)第4図に示すように、巻取部近傍で、サイドロー
ラー5を介してテープ2のエツジを規制して、テープの
巾方向のズレを防ぐ、等の方法がとられていた。
(2) As shown in FIG. 4, a method has been used in which the edges of the tape 2 are regulated by side rollers 5 near the winding section to prevent the tape from shifting in the width direction.

しかし、上記の方法によれば、ローラーとテープ面、或
はテープエツジが直接接触するため、テープに損傷を与
え、又、ゴミの発生、付着によるドロツプアウトが発生
するという欠点があり、更に、一般に巻取速度が5〜6
m/Sec以上になると、もはや乱巻を防止する効果が
なくなり、高速巻取が不可能であつた。
However, according to the above method, the roller and the tape surface or the tape edge come into direct contact, which causes damage to the tape, and also has the disadvantage that dropouts occur due to the generation and adhesion of dust. Picking speed is 5-6
When it exceeds m/Sec, there is no longer any effect of preventing random winding, and high-speed winding is impossible.

尚、テープテンシヨンを大きくすれば乱巻の発生限界の
巻取速度を大きくすることができるが、磁気テープ等で
は磁性層の剥離、劣化をもたらすため、好ましくない。
Incidentally, if the tape tension is increased, the winding speed at which irregular winding occurs can be increased, but this is not preferable in the case of magnetic tapes because it causes peeling and deterioration of the magnetic layer.

本発明は、上記の乱巻現象を根本的に解消し、テープの
高速巻取を可能にするため、テープの巻取りを減圧雰囲
気中において行なうもので、以下に、その実施例と原理
を、図を用いて説明する。
In order to fundamentally eliminate the above-mentioned irregular winding phenomenon and enable high-speed tape winding, the present invention winds up the tape in a reduced pressure atmosphere. Examples and principles thereof are described below. This will be explained using figures.

第5図に本発明の方法を適用したテープ巻取機の一実施
例を示す。テープ2は、原反6より供給され、各部走行
ガイド7A,7b,7cに沿つて走行し、切断、接着等
の加工部8を経て、巻取リール1に巻取られる。巻取装
置9全体は、密封容器10に納められており、密封容器
中の気圧&ζ真空ポンプ11によつて大気圧以下に減圧
される。次に、このような方法で、テープを減圧雰囲気
中で巻取ることによつて、乱巻現象が解消され、高速巻
取が可能になる原理を説明する。先に、乱巻現象が、テ
ープ巻取部でのエアーの巻込みによる一種の動圧空気軸
受作用によるものであることを述べた。
FIG. 5 shows an embodiment of a tape winding machine to which the method of the present invention is applied. The tape 2 is supplied from a raw material 6, travels along respective traveling guides 7A, 7b, and 7c, passes through a processing section 8 such as cutting and gluing, and is wound onto a take-up reel 1. The entire winding device 9 is housed in a sealed container 10, and the pressure is reduced to below atmospheric pressure by an air pressure &ζ vacuum pump 11 in the sealed container. Next, the principle of winding the tape in a reduced pressure atmosphere using such a method eliminates the random winding phenomenon and enables high-speed winding. It was previously stated that the irregular winding phenomenon is due to a type of dynamic pressure air bearing effect due to the entrainment of air at the tape winding section.

動圧空気軸受の圧力発生のメカニズムは空気の粘性に起
因しており、粘性が大きい程、発生圧力は増大する。一
方、気体の粘性は、圧力を下げても変化しないこと&ζ
気体分子運動論の示すところである。しかし、空気のよ
うな圧縮性流体の場合、その圧力発生のメカニズムの非
線形性により、周囲の気圧が下がると、発生圧力は減少
する。具体的に、テープ巻取部をモデル化し、第6図に
示すように、入口部すきまa、出口部すきまbにおいて
、a>bなる関係を有する先せばまりの微少すきま12
を構成する無限巾の2つの平面13a,13bが同速度
uで図中矢印で示す方向に運動している場合に、すきま
内に発生する圧力pの分布が周囲の気圧Paによつて如
何に変化するかを、圧縮性流体の潤滑問題として差分法
によつて計算した結果、第7図に示すように、周囲圧力
Paの減少に伴ない発生圧力が小さくなることがわかつ
た。
The mechanism of pressure generation in a hydrodynamic air bearing is due to the viscosity of air, and the greater the viscosity, the greater the generated pressure. On the other hand, the viscosity of a gas does not change even if the pressure is lowered &ζ
This is what the kinetic theory of gas molecules shows. However, in the case of a compressible fluid such as air, due to the nonlinear nature of its pressure generation mechanism, the generated pressure decreases as the surrounding atmospheric pressure decreases. Specifically, the tape winding section is modeled, and as shown in Fig. 6, a narrow gap 12 is created in which the relationship a>b exists between the entrance clearance a and the exit clearance b.
When the two infinite-width planes 13a and 13b forming the space are moving at the same speed u in the direction indicated by the arrow in the figure, how is the distribution of the pressure p generated within the gap affected by the surrounding atmospheric pressure Pa? As a result of calculations using the differential method as a lubrication problem for compressible fluids, it was found that the generated pressure decreases as the ambient pressure Pa decreases, as shown in FIG.

又、第8図は、第7図の圧力分布を積分して、浮上刃を
計算し、速度uをパラメータとして、周囲圧力と発生浮
上刃の関係を示したものである。
Further, FIG. 8 shows the relationship between the ambient pressure and the generated floating blade by calculating the floating blade by integrating the pressure distribution shown in FIG. 7 and using the speed u as a parameter.

第8図より、周囲気圧の減少にともなつて、単位巾当り
の浮上刃は減少し、周囲気圧が0.1atm以下では、
速度uの影響をほとんど受けないことがわかる。以上は
、単純なモデル計算による結果であり、実際のテープ巻
取部の場合には、テープ巾、テープテンシヨン、テープ
の曲げ剛性等の諸要因が加わり、様相は極めて複雑であ
ると考えられるが、基本的には、周囲圧力を下げること
によつて、浮上刃が減少することは明白である。
From Figure 8, as the ambient pressure decreases, the floating blade per unit width decreases, and when the ambient pressure is below 0.1 atm,
It can be seen that it is hardly affected by the speed u. The above are the results of simple model calculations, and in the case of an actual tape winding section, various factors such as tape width, tape tension, tape bending rigidity, etc. are added, and the situation is considered to be extremely complex. However, it is clear that the number of floating edges is basically reduced by lowering the ambient pressure.

実施例として、第9図に示す如く、巻取リール部に減圧
室を設けた巻取機において、巾12.7v1(1/2,
インチ)、厚さ20μの磁気テープをテープテンシヨン
50gのもとで、フランジを外したリールに巻取る実験
を行なつた結果、減圧室の気圧が大気圧の場合、巻取つ
たテープの端面が不揃いになり(端面に1u以上の凹凸
が発生。
As an example, as shown in FIG. 9, in a winding machine in which a decompression chamber is provided in the winding reel part, the width is 12.7v1 (1/2,
As a result of an experiment in which a magnetic tape with a thickness of 20 μm was wound onto a reel with the flange removed under a tape tension of 50 g, it was found that when the pressure in the decompression chamber is atmospheric pressure, the end surface of the wound tape becomes uneven (irregularities of 1u or more occur on the end face).

)、6〜7m/Secの巻取速度では、テープが巻取り
ールから飛び出して巻取ることが不可能であつた。これ
に対し、減圧室の気圧を50t0rr(約1/15at
m)に保持した場合、10m/Secという高速でテー
プを巻取つても、巻取つたテープの端面は極めてなめら
かであり、表面粗さ計で、端面の凹凸を測定した結果、
巻き重ねられたテープの個々の層の端面のズレ量は最大
0.04mJ!t程度であつた。又、大気中で巻取つた
テープと、減圧雰囲気中で巻取つたテープを比較すると
、減圧雰囲気中で巻取つたテープは、各テープ層間がす
べりにくく、運搬等における、振動や衝撃力によつて容
易に巻き姿が乱れないという利点をも有している。
), at a winding speed of 6 to 7 m/Sec, the tape jumped out of the winding reel and was impossible to wind up. On the other hand, the pressure in the decompression chamber is set to 50t0rr (approximately 1/15at
m), even if the tape was wound at a high speed of 10 m/Sec, the end surface of the wound tape was extremely smooth, and as a result of measuring the unevenness of the end surface with a surface roughness meter,
The amount of misalignment between the end faces of individual layers of rolled-up tape is up to 0.04 mJ! It was about t. Also, when comparing tapes wound in the air and tapes wound in a reduced pressure atmosphere, tapes wound in a reduced pressure atmosphere have less slippage between each tape layer and are more resistant to vibrations and impact forces during transportation. It also has the advantage that the rolled shape is not easily disturbed.

本発明は、以上詳述した原理に従つて、テープ巻取部周
辺の気圧を大気圧以下に減圧し、乱巻現象の根本的原因
であるテープ浮上刃を抑え、テープの高速安定巻取を可
能にするものである。特に、巻取部周辺の気圧を0.3
気圧以下に保持するならば、第8図からも類推できるよ
うに、従来大気中では不可能であつたような高速の巻取
が可能である。又、周辺の気圧は低ければ低い程発生浮
上刃が小さくなるが、1X10−4気圧以下では効果は
あまり変化なく、むしろ排気時間や経済性の点で好まし
くない。尚、第9図に示す本発明の実施例は、巻取側リ
ール部の周辺に減圧室14を設けたものであるが、テー
プを減圧室に導入するテープ入口部16には外部の大気
が減圧室へ大量に流人するのを防ぐためシールを構成す
る必要がある。
In accordance with the principles detailed above, the present invention reduces the pressure around the tape winding section to below atmospheric pressure, suppresses the tape floating blade, which is the root cause of the uneven winding phenomenon, and achieves high-speed and stable tape winding. It is what makes it possible. In particular, reduce the air pressure around the winding section to 0.3
As can be inferred from FIG. 8, if the pressure is kept below atmospheric pressure, high-speed winding is possible, which was conventionally impossible in the atmosphere. Further, the lower the surrounding atmospheric pressure is, the smaller the floating blades generated will be, but if it is less than 1.times.10@-4 atmospheric pressure, the effect will not change much, which is rather unfavorable in terms of exhaust time and economy. In the embodiment of the present invention shown in FIG. 9, a decompression chamber 14 is provided around the take-up reel section, but the tape entrance section 16 through which the tape is introduced into the decompression chamber is exposed to the outside atmosphere. It is necessary to construct a seal to prevent large numbers of people from flowing into the decompression chamber.

シールの手段は、種々の方式がある。There are various sealing methods.

第10図は、テープ2の両面に2個のピンチローラー1
7a17bを圧接して、大気圧側1と減圧室側を密封遮
断するものである。又、第11図は、テープ入口部通路
のテープと通路壁面の間隙にスポンジゴム、或は、クリ
ーナーテープ等の軟質の材料18を介在させ、減圧室へ
の気体の流入を抑圧するものである。
Figure 10 shows two pinch rollers 1 on both sides of the tape 2.
7a17b is brought into pressure contact with the atmospheric pressure side 1 and the reduced pressure chamber side in a sealed manner. Further, in FIG. 11, a soft material 18 such as sponge rubber or cleaner tape is interposed in the gap between the tape in the tape entrance passage and the passage wall to suppress the inflow of gas into the decompression chamber. .

磁気テープ等では、テープ表面の損傷はドロツプアウト
の原因となるので、非接触でシールすることが望ましい
With magnetic tape, etc., damage to the tape surface can cause dropouts, so it is desirable to seal without contact.

単純な非接触シール【ζ第12図に示す如く、テープの
厚さより10〜100μ程度大きい間隙を有するスリツ
ト状の通路を設けることによつて形成される。つまり、
テープの両側に5〜50μのせまいすきま19a,19
bを形成し、気体の粘性抵抗によつて流人気体の量を抑
圧するものである。このような狭い通路をテープが走行
する場合、種々の外乱によつて、テープの走行位置が変
動し、通路壁面とテープが接触するぉそれがある。この
場合には第13図、第14図に示す如く、テープ通路の
テープ厚さ方向の間隙を、大気圧側1で大きく、減圧室
側へ向つて徐々に(第13図)、或はステツプ状に(第
14図)、小さく設定することによつて、テープ走行位
置に・・剛性・・を与え、安定にテープを減圧室に導入
することができる。これは、ひとつには、ステツプ絞り
或は表面絞りと呼ばれる静圧軸受の効果によるものと、
さらに、テープ走行に伴う動圧軸受の効果によるもので
ある。尚、上記と同様の効果は、第16図に示すように
テープ通路の上下の壁面に一対以上の溝21を設けるこ
とによつても得られる。
A simple non-contact seal [ζ] is formed by providing a slit-like passageway with a gap approximately 10 to 100 microns larger than the thickness of the tape, as shown in Figure 12. In other words,
A narrow gap of 5 to 50μ on both sides of the tape 19a, 19
b, and the amount of flowing gas is suppressed by the viscous resistance of the gas. When a tape runs in such a narrow passage, the running position of the tape changes due to various disturbances, and there is a possibility that the tape comes into contact with the wall surface of the passage. In this case, as shown in FIGS. 13 and 14, the gap in the tape thickness direction of the tape passage is made larger on the atmospheric pressure side 1 and gradually (see FIG. 13) or in steps toward the decompression chamber side. By setting it small as shown in FIG. 14, it is possible to give rigidity to the tape running position and stably introduce the tape into the decompression chamber. This is partly due to the effect of hydrostatic bearings called step or surface aperture.
Furthermore, this is due to the effect of dynamic pressure bearings accompanying tape running. The same effect as described above can also be obtained by providing one or more pairs of grooves 21 on the upper and lower walls of the tape path, as shown in FIG.

又、第15図に示す如く、テープ通路のテープ面に相対
する2つの壁面の相対する位置に1対以上の開口部20
を設け、該開口部より気体をテープの両面に吹きつける
ことによつて両面対向型の静圧気体軸受を構成しても良
い。
Further, as shown in FIG. 15, one or more pairs of openings 20 are provided at opposing positions on two wall surfaces facing the tape surface of the tape path.
A double-sided facing type static pressure gas bearing may be constructed by providing an opening and blowing gas onto both sides of the tape.

尚、第15図では、自成絞り、或は、オリフイス絞り等
の離散的な給気型式を示しているが、多孔質材料を通路
壁面に設け、該多孔質物質を通じて気体をテープ表面に
吹きつける、いわゆる多孔質靜圧気体軸受を構成しても
良い。
Although Fig. 15 shows a discrete air supply type such as a self-generated iris or an orifice iris, a porous material is provided on the passage wall and gas is blown onto the tape surface through the porous material. A so-called porous static pressure gas bearing may also be constructed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は乱巻現象の説明図、第2図はテープ速度とテー
プ浮上刃の関係図、第3〜4図は従来の乱巻防止対策法
を示す説明図、第5図は本発明によるテープ巻取機の実
施例の説明図、第6図は乱巻現象のモデル解析の説明図
、第7図は同乱巻現象のモデル解析によるすきま部の圧
力分布図、第8図はモテル解析による発生浮上刃と周囲
気圧の関係図、第9図ぱ本発明によるテープ巻取装置の
実施例の説明図、第10〜16図は本発明によるテープ
巻取装置の減圧室へのテープ入口部のシール装置の説明
図である。 11・・・・・・真空ポンプ、14・・・・・・減圧室
、18・・・・・・軟質材料、19a,19b・・・・
・・すきま、20・・・・・・開口部。
Figure 1 is an explanatory diagram of the irregular winding phenomenon, Figure 2 is a diagram showing the relationship between tape speed and tape floating blade, Figures 3 and 4 are explanatory diagrams showing conventional measures to prevent irregular winding, and Figure 5 is the method according to the present invention. An explanatory diagram of an example of a tape winding machine, Fig. 6 is an explanatory diagram of a model analysis of the random winding phenomenon, Fig. 7 is a pressure distribution diagram in the gap based on a model analysis of the same random winding phenomenon, and Fig. 8 is a model analysis. Fig. 9 is an explanatory diagram of an embodiment of the tape winding device according to the present invention, and Figs. 10 to 16 are diagrams showing the tape inlet to the decompression chamber of the tape winding device according to the present invention. It is an explanatory view of the sealing device of. 11... Vacuum pump, 14... Decompression chamber, 18... Soft material, 19a, 19b...
...Gap, 20...Opening.

Claims (1)

【特許請求の範囲】 1 巻取り側リールにテープが巻き付く部分の周辺の気
圧を大気圧以下に減圧、保持して、テープの巻取りを行
なう方法において、巻取り側リールにテープが巻き付く
部分の周辺の気圧を0.3〜0.0001気圧(絶対気
圧)に減圧保持することを特徴とするテープ巻取方法。 2 巻取り側リール部を減圧室に納め、該減圧室内の気
圧を、真空ポンプ等の気体排出源によつて、大気圧以下
に減圧、保持して、テープの巻取りを行なうことを特徴
とするテープ巻取装置。 3 テープの両面を一対以上の回転円筒体で挾持したシ
ール機構をテープの減圧室入口部に設置したことを特徴
とする特許請求の範囲第2項記載のテープ巻取装置。 4 スポンジゴム或は、クリーナーテープ等の軟質材料
を介してテープの両面を挾持したシール機構を、テープ
の減圧室入口部に設置したことを特徴とする特許請求の
範囲第2項記載のテープ巻取装置。 5 テープ厚より10〜100μ大きいすきまを有する
スロット状のテープ通路を、テープの減圧室入口部に設
置したことを特徴とする特許請求の範囲第2項記載のテ
ープ巻取装置。 6 すきまの大きさが、大気圧側から、減圧室側に向か
つて、除々に或はステップ状に減少する形状を有するテ
ープ通路をテープの減圧室入口部に設置したことを特徴
とする特許請求の範囲第2項記載のテープ巻取装置。 7 テープ通路のテープの両面に相対する壁面の相対す
る位置に、一対以上の開口部を設け、該開口部より気体
をテープの両面に吹きつけることによつて両面対向型静
圧気体軸受を構成したことを特徴とする特許請求の範囲
第5項記載のテープ巻取装置。
[Claims] 1. A method in which the tape is wound around the take-up reel by reducing and maintaining the pressure around the part where the tape is wound around the take-up reel to below atmospheric pressure. A tape winding method characterized in that the atmospheric pressure around the part is maintained at a reduced pressure of 0.3 to 0.0001 atm (absolute atmospheric pressure). 2. The tape is wound by placing the take-up reel part in a reduced pressure chamber, and reducing and maintaining the pressure in the reduced pressure chamber below atmospheric pressure using a gas discharge source such as a vacuum pump. tape winding device. 3. The tape winding device according to claim 2, characterized in that a sealing mechanism in which both sides of the tape are held between one or more pairs of rotating cylindrical bodies is installed at the entrance of the tape to the decompression chamber. 4. The tape winding according to claim 2, characterized in that a sealing mechanism that sandwiches both sides of the tape via a soft material such as sponge rubber or cleaner tape is installed at the entrance of the decompression chamber of the tape. removal device. 5. The tape winding device according to claim 2, wherein a slot-shaped tape passage having a gap 10 to 100 microns larger than the tape thickness is installed at the entrance of the tape to the decompression chamber. 6. A patent claim characterized in that a tape passage having a shape in which the size of the gap gradually decreases in a stepwise manner from the atmospheric pressure side toward the decompression chamber side is installed at the entrance of the tape to the decompression chamber. 2. The tape winding device according to item 2. 7 A double-sided facing type hydrostatic gas bearing is constructed by providing one or more openings at opposite positions of the wall facing both sides of the tape in the tape passage, and blowing gas onto both sides of the tape from the openings. A tape winding device according to claim 5, characterized in that:
JP3297580A 1980-03-14 1980-03-14 Tape winding method and device Expired JPS594335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3297580A JPS594335B2 (en) 1980-03-14 1980-03-14 Tape winding method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3297580A JPS594335B2 (en) 1980-03-14 1980-03-14 Tape winding method and device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23159785A Division JPS6194954A (en) 1985-10-17 1985-10-17 Tape winder

Publications (2)

Publication Number Publication Date
JPS56132243A JPS56132243A (en) 1981-10-16
JPS594335B2 true JPS594335B2 (en) 1984-01-28

Family

ID=12373887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3297580A Expired JPS594335B2 (en) 1980-03-14 1980-03-14 Tape winding method and device

Country Status (1)

Country Link
JP (1) JPS594335B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212120Y2 (en) * 1983-08-31 1990-04-05
JPH0526646U (en) * 1991-03-02 1993-04-06 株式会社タチエス Auxiliary bed for automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212120Y2 (en) * 1983-08-31 1990-04-05
JPH0526646U (en) * 1991-03-02 1993-04-06 株式会社タチエス Auxiliary bed for automobile

Also Published As

Publication number Publication date
JPS56132243A (en) 1981-10-16

Similar Documents

Publication Publication Date Title
US4445458A (en) Beveled edge metered bead extrusion coating apparatus
US4995339A (en) Coating apparatus
US4310130A (en) Method and apparatus for taking up tape
JPS594335B2 (en) Tape winding method and device
US4474320A (en) Air bearing for tape drives
Keshavan et al. Air entrainment during steady-state web winding
JPS6194954A (en) Tape winder
US20040131781A1 (en) Coating method and apparatus
US7354479B2 (en) Coating device, and coating method using said device
JPH01158623A (en) High-speed copying device for magnetic tape
US6508431B1 (en) Guide packing recording media along with cartridges and apparatus incorporating such guides
JPS6212145B2 (en)
JP2000167474A (en) Coating method
JPH057819A (en) Coating device
JPS6143266B2 (en)
JPH04325920A (en) Coating device for magnetic recording medium
JP4174645B2 (en) Application method
Keshavan Air entrainment and discharge in web winding
Rogers et al. Measurement of magnetic tape abrasivity by interchanging tape thickness
JP2003151189A (en) Guide roller for guiding tape
Schweizer Specific Properties of Slot Coating
EP0740288A2 (en) Magnetic head assembly having beveled air skiving transverse slots
JPH08315357A (en) Production of metal thin film type magnetic recording medium tape and producing device therefor
Wright et al. Effects of different magnetic tapes and operating parameters on lateral tape motion in a linear tape drive
Müftü Mechanics of thin, flexible, translating media and their interactions with surrounding air