JPS5942040A - Reactor for making good contact of reactant in fine pore - Google Patents

Reactor for making good contact of reactant in fine pore

Info

Publication number
JPS5942040A
JPS5942040A JP57152528A JP15252882A JPS5942040A JP S5942040 A JPS5942040 A JP S5942040A JP 57152528 A JP57152528 A JP 57152528A JP 15252882 A JP15252882 A JP 15252882A JP S5942040 A JPS5942040 A JP S5942040A
Authority
JP
Japan
Prior art keywords
liquid
gas
cylinder
cylindrical body
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57152528A
Other languages
Japanese (ja)
Other versions
JPS609855B2 (en
Inventor
Shikazo Nakagawa
中川 鹿蔵
Kaoru Aoki
薫 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SANGYO GIJUTSU KK
Original Assignee
NIPPON SANGYO GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SANGYO GIJUTSU KK filed Critical NIPPON SANGYO GIJUTSU KK
Priority to JP57152528A priority Critical patent/JPS609855B2/en
Publication of JPS5942040A publication Critical patent/JPS5942040A/en
Publication of JPS609855B2 publication Critical patent/JPS609855B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/116Stirrers shaped as cylinders, balls or rollers
    • B01F27/1161Stirrers shaped as cylinders, balls or rollers having holes in the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/81Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow
    • B01F27/811Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis the stirrers having central axial inflow and substantially radial outflow with the inflow from one side only, e.g. stirrers placed on the bottom of the receptacle, or used as a bottom discharge pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To get good contact of gas and liquid, by submerging a cylindrical body rotating at high speed in a liquid phase, introducing gas into the cylinder from the upper opening, and making the liquid stream flow into the center of the cylinder in accompany with the gas. CONSTITUTION:When a shaft 8 is rotated at high speed, the liquid of a liquid phase 5 flows from the opening 4 of a porous cylindrical matter 1 to the center, collides with the inner surface of the cylinder wall 2 by a centrifugal force, passes through fine pores of the cylinder wall 2 being divided into fine streaks, and flows again to the opening 4. On the other hand, as a gas is introduced from a gas blowing pipe 10 into the cylinder 1, the gas is accompanied with the liquid circulating along curved lines as shown by arrows, passes through the fine pores of the cylinder 2, and contacts with the liquid effectively during this time. The gas is spouted from the outer surface of the cylinder wall 2 to the liquid, and becomes fine bubbles.

Description

【発明の詳細な説明】 本発明は多孔質材よりなる円筒体を用い、液液及び気液
間における微細空孔内の接触反応装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a contact reaction device in micropores between liquid and gas using a cylindrical body made of a porous material.

一般に液体を充填した容器内において、液液接触させる
には、容器内に攪拌羽根を設けて攪拌するか、容器内に
邪魔板を設け、液を流入旋回させる方法等が考えられる
が、容器内に多孔質円筒を立設し、同円筒を高速回転さ
せることにより、液を前記多孔質の空孔を経て遠心力に
より筒内より部外に還流するよう循環させることによっ
て液液接触させる考えは、従来全く提案さイtていなか
った。
In general, in order to bring liquid into contact with a container filled with liquid, methods such as providing stirring blades inside the container to stir the liquid, or installing a baffle plate in the container to swirl the liquid in and out, etc. are considered. The idea is to establish liquid-liquid contact by installing a porous cylinder upright and rotating the cylinder at high speed to circulate the liquid from the inside of the cylinder to the outside through the porous pores by centrifugal force. , which had not been proposed at all in the past.

また従来気液接触する方式として、密実材よりなる円筒
体の壁面に複数個の孔を穿設し、同円筒体を倒立有底円
筒に形成して液相中で高速回転させ/Sがら″F端開開
口部り気体を送入し、筒壁面に巻きついた気体の薄い膜
を周囲の回転の遅い液相で千切って微卸1気泡を発生さ
せる装置が、特公昭4、 (+−15(] !1 n号
公報において提案されている。
In addition, as a conventional gas-liquid contact method, multiple holes are bored in the wall of a cylinder made of solid wood, the cylinder is formed into an inverted bottom cylinder, and the cylinder is rotated at high speed in the liquid phase. A device was developed in the 4th year of the Tokuko Showa era, in which gas is introduced through an opening at the F end, and the thin film of gas wrapped around the cylinder wall is shredded by the surrounding slow-rotating liquid phase to generate small bubbles. +-15(] !1 Proposed in Publication No. n.

しかしffからこの装置の壁面に穿設された孔は、壁面
に対し垂直方向に穿孔さitた直線孔て、孔の出口(4
壁而に直角に開口している。しかもこの孔(J機械的?
と穿孔した孔であるため、約2朋φ程度の大きな孔であ
り、この孔から出る気体は、部外の液相に向って直進し
、回転する筒壁と液相との隙間に沿って壁面を包む薄膜
とf、fつて拡がり、筒衣面に巻き付いて回転体と液流
との速度差によって千切らtして気泡となるが、前記の
如く孔が直線孔て、孔径が比較的大きいため、筒径、前
高、回転数等を勘案しても、気液接触反応に有効な微細
気泡の発生量が少なく、また円筒体側面に穿った小孔の
位置の上下高低によって発生ずる気泡の大きさに均一性
がない等の欠点があった。
However, the hole drilled in the wall of this device from ff is a straight hole drilled perpendicularly to the wall.
It opens at right angles to the wall. Moreover, this hole (J mechanical?
Because the hole is drilled, it is a large hole of about 2 mm in diameter, and the gas that comes out of this hole travels straight toward the liquid phase outside, along the gap between the rotating cylinder wall and the liquid phase. The thin film that wraps the wall surface spreads out, wraps around the jacket surface, and is torn into pieces by the speed difference between the rotating body and the liquid flow, forming bubbles.As mentioned above, the pores are straight and the pore diameter is relatively small. Because of its large size, the amount of microbubbles that are effective for gas-liquid contact reactions is small even when taking into account the cylinder diameter, front height, rotation speed, etc., and bubbles are generated due to the vertical height of the position of the small hole drilled on the side of the cylinder. There were drawbacks such as lack of uniformity in bubble size.

更に液相中に超微細気泡を発生させる方法が、従来特開
昭51−1.49175号公報において提案されている
。この方法では大多数の孔の口径が50μm以下の多孔
壁よりなる円筒体を使用しており、この円筒体は多孔質
材で形成されていて両端が閉塞されており、中21..
1.を経て空気を導入し、液中で微細気泡を発生さぜる
ものである。しかしこの場合多孔質相の微細気泡を経て
部外液相へ流出するのは空気たりであり、しかもその通
過は一度たけである。従って徽屑U空孔内での気液接触
はなく、折角微細気泡を発生させても気液接触は不十分
であった。
Furthermore, a method of generating ultrafine bubbles in a liquid phase has been proposed in Japanese Patent Application Laid-Open No. 51-149175. This method uses a cylindrical body with a porous wall in which the majority of the pores have a diameter of 50 μm or less, and this cylindrical body is made of a porous material and is closed at both ends. ..
1. Air is introduced through the liquid to generate microbubbles in the liquid. However, in this case, it is only air that flows out to the external liquid phase through the microbubbles of the porous phase, and moreover, it only passes through once. Therefore, there was no gas-liquid contact within the pores of the wafer U, and even if fine bubbles were generated, the gas-liquid contact was insufficient.

かかる点に鑑み、本発明者等は前記従来の欠点を解消す
るために種々検討を重ね、かつ実験を経て以下の現象を
見出した。
In view of this, the inventors of the present invention have conducted various studies in order to eliminate the above-mentioned conventional drawbacks, and have discovered the following phenomenon through experiments.

すなわち、微細で大きさの均一なビーズ状合成樹脂製硬
質球形粒を固めた多孔質材パルコン(ダイセル社製、商
品名)を使用してm1図に示ずようなロータ(:3 Q
 mmφX45mmA1肉厚3 +++s )をつくっ
た。
In other words, a rotor like the one shown in the m1 diagram (:3 Q
A size of mmφX45mmA1 and wall thickness 3+++s was made.

第1表 この「1−夕は1r■径10mmφのS U S 34
.製垂直軸によって、内径110 mmφ×650朋り
の透明塩化ビニール製液槽の5US34製底板中心に取
付けらill、、かつ、l]−夕の側壁面に平行に、槽
底に垂直に槽壁から18闘離れた対称の位置に3本の直
径12關φX長さzQQmtnhSUSjjjJ邪魔倖
を植設し、また槽底から210mm離れた位置に幅15
 mm、厚5 mm、長50曲の透明塩化ビニール板2
枚を、そitぞ’11.15 mm x 5 inの面
を液槽内壁面に直角に互に向い合せて固定し、ロータの
上部液相に起る渦流を防止する邪魔板として設置した。
Table 1 This “1-Evening is 1r ■ Diameter 10mmφ S U S 34
.. It is attached to the center of the 5US34 bottom plate of a transparent vinyl chloride liquid tank with an inner diameter of 110 mmφ x 650 mm using a vertical shaft made of aluminum. Three diameter 12mm φ x length zQQmtnhSUSjjjJ baffles were planted at symmetrical positions 18mm away from the tank bottom, and 15mm wide baffles were planted at 210mm away from the tank bottom.
Transparent vinyl chloride board 2, 5mm thick, 50mm long
The plates were fixed with their 11.15 mm x 5 inch surfaces facing each other at right angles to the inner wall surface of the liquid tank, and were installed as baffles to prevent swirling currents occurring in the upper liquid phase of the rotor.

そしてまず、液槽に水を槽底より500闘の高さまで張
り込み、合成樹脂(ポリプロピレン)加工原料用小粒状
ペレツt−(2mlnφX 2 mm A、 )数拾個
を投入し、水の流れを観測したところ、ロータの回転が
毎分1000回になると、水の流イ1は1.1−夕下端
開放「1の少し離イ]、た斜下方よりロータの中心部に
向って流動し、筒壁全面の微細空孔から外部液相に移っ
て動いている状況が明瞭にわかる。
First, water was poured into the liquid tank to a height of 500 mm from the bottom of the tank, several dozen small pellets T-(2mlnφX 2mm A, As a result, when the rotation of the rotor reached 1000 times per minute, the water flow 1 was 1.1 - 1.1 - 1.1 - 1. A little apart from the lower end, and the water flowed diagonally downward toward the center of the rotor and the cylinder It can be clearly seen that the liquid phase is moving from the micropores on the entire wall to the external liquid phase.

ロータの回転数を毎分5000回以上にすれば、検知用
ベレット粒子は数分間て筒体の内(1tlに集って耐着
し、液相中には最早見当らなくなる。この結果本発明者
等は、一端か開口し、他端が閉塞した多孔質材の円筒体
を垂直にして液中で高速回転させるL1液は多孔質材の
微細空孔を経て筒内から部外に移動することを見出した
When the rotation speed of the rotor is set to 5,000 times per minute or more, the detection pellet particles collect and adhere to the inside of the cylinder (1 tl) for several minutes, and are no longer found in the liquid phase.As a result, the present inventor etc., a cylinder made of porous material with one end open and the other end closed is held vertically and rotated at high speed in the liquid. L1 liquid moves from the inside of the cylinder to the outside through the micropores of the porous material. I found out.

次に液槽中にロータを取付けたま寸、水またはオチ食塩
水を槽底から500闘の高さまで張込み、ロータの下端
開放口より空気を送入すると、第1表の品番BP−5、
BP−12、BP−23の3つのBPグループは、ロー
タ静止時にロータ筒壁上部の空孔から大きな気塊が出て
上昇するが、5p−58,5P−8Qの2つのSPクル
ープはロータ静止時に1]−夕筒壁上部から微細気泡さ
え出現せず、専ら下端開放口からのみ大きな気塊が出る
Next, with the rotor installed in the liquid tank, water or saline solution is filled from the bottom of the tank to a height of 500 mm, and air is introduced from the open port at the bottom of the rotor.
In the three BP groups BP-12 and BP-23, when the rotor is stationary, a large air mass comes out from the hole in the upper part of the rotor cylinder wall and rises, but in the two SP groups 5p-58 and 5P-8Q, the rotor is stationary. Sometimes 1] - Even minute air bubbles do not appear from the upper part of the tube wall, and large air masses only come out from the open opening at the lower end.

この時1−1−夕を回転し、次第に増速すると大きな気
塊は消え、BPクループもSPグループも筒壁空孔から
のみ水の場合は小豆(2mm〜3 mmφ球状)人とな
り、3 %食塩水の場合は微細気泡で白濁する。
At this time, when rotating 1-1-Y and gradually increasing the speed, the large air mass disappears, and in the case of water only from the cylinder wall cavity in the BP croup and SP group, it becomes an adzuki bean (2 mm to 3 mmφ spherical) and 3% In the case of salt water, it becomes cloudy with fine bubbles.

なお、5p−58、S P−8Qのspクループについ
ては、これらを水または8チ食塩水中で毎分5000回
収上回転させながら、下端開放口より極めて少量例えば
1〜2’/minの空気を送入すると、空気は筒壁の微
細空孔から煙状になって液相中に飛び出してくる有様が
観測される。
In addition, for the sp croup of 5p-58 and SP-8Q, while rotating them in water or 80% saline solution at a rate of 5,000 times per minute, a very small amount of air, e.g. When the tube is injected, the air is observed to flow out into the liquid phase in the form of smoke through the micropores in the cylinder wall.

以上の観測から多孔質材よりなる円筒体を気液接触反応
装置に使用すると、ロータの高速回転によって液が[コ
ータ下端開放口の斜下方からロータ中心部に向って上昇
し、筒壁微細空孔を経て部外液相へ還流する0この還流
に気体を乗せると、気体は液の流れに追尾し、気液混和
線流となって[]−タ周辺の液相中に微細気泡となって
拡散し、筒体下端開放口の近傍に集1つだ微細気泡群は
オだロータの中心部を経て筒壁微細空孔を繰返しj1関
することが判明した。
From the above observations, when a cylindrical body made of porous material is used in a gas-liquid contact reaction device, the high-speed rotation of the rotor causes the liquid to rise [from diagonally below the open opening at the lower end of the coater toward the center of the rotor], causing microscopic cavities on the cylinder wall. When gas is added to this reflux that flows through the holes into the external liquid phase, the gas follows the liquid flow, becomes a gas-liquid mixed linear flow, and forms microbubbles in the liquid phase around the []-ta. It was found that a group of microscopic bubbles, which were diffused and concentrated in the vicinity of the open opening at the lower end of the cylinder, were repeatedly connected to the microscopic holes in the cylinder wall via the center of the rotor.

本発明は前記実験をもとに、効率的な液液接触が可能な
微細空孔内の接触反応装置を提供することを目的とする
もので、上側又は下側の少なくとも一端を開口し、他端
を密実材で閉塞してなる円筒体を、液相中の液面下に軸
線が垂直になるように沈設して高速回転させると、液相
中の液力く円筒体の開口部より中心部に向けて流動し、
遠心力番こより円筒体の多孔質材の微細空孔より部外液
相へ還流するよう循環する。
Based on the above experiments, the present invention aims to provide a contact reaction device in micropores capable of efficient liquid-liquid contact, in which at least one end of the upper or lower side is open, and the other end is open. When a cylindrical body whose end is closed with solid wood is submerged in a liquid phase with its axis perpendicular to the liquid surface and rotated at high speed, the liquid force in the liquid phase will move from the opening of the cylindrical body. flowing towards the center,
Due to the centrifugal force, the liquid circulates through the fine pores of the porous material of the cylindrical body to return to the external liquid phase.

前記多孔質材の特性としてその微細空孔の孔道は屈折し
ており、孔は壁面に対して任意の角度で開口している0
従って微細空孔を通る液は、同空孔に入る際微細な線に
分離されることにより、この線になった液と液は相互に
接触を繰り返しながら部外液中へ還流し、高速回転の円
筒体と外部のヘタ吉の速度差により前記線条液は千切ら
れて、極めて効率的な液液接触が行なわれ、従来方法の
液液接触方法に比べて短時間で目的が達成され、かつ反
応装置の小型化を図り、コストを低下させることができ
る等の効果を奏する。。
As a characteristic of the porous material, the pore paths of the micropores are bent, and the pores open at an arbitrary angle with respect to the wall surface.
Therefore, the liquid that passes through the micropores is separated into fine lines when entering the same hole, and the liquid and liquid that form these lines repeatedly come into contact with each other and return to the external liquid, rotating at high speed. Due to the speed difference between the cylindrical body and the external hetaki, the filamentous liquid is torn into pieces, and extremely efficient liquid-liquid contact is performed, achieving the objective in a shorter time than in the conventional liquid-liquid contact method. In addition, the reaction apparatus can be made smaller and the cost can be reduced. .

また本発明は気液接触度を高めるこ吉がてきるWl、4
(It空孔内の接触反応装置を提供することを目的とす
るもので、高速回転する多孔質材よりなる円筒体を液相
中の液面下に沈設し、その少なくとも一端を開口した上
側又は下側の開口部より、円筒体の中心部に向けて流動
する液流に、前記開口部より筒内lこ流入させた気体を
同伴させるこ吉により、多孔質4=4の微細空孔の狭隘
す、壁面に対し任意の角度で開口している細孔より流出
させる0従って開口部に流入した気体は多孔質材の微細
空孔の屈折した孔道を通る間に、同時に線条に細分され
て同化道を通る液体と効率よく接触し、微細気泡となっ
て部外液相へ還流し、かつ循環して空孔を通過し、気液
の接触度を高めることができる効果を有する。
In addition, the present invention provides Wl, 4, in which Koyoshi comes, which increases the degree of gas-liquid contact.
(The purpose is to provide a catalytic reaction device in a pore. A cylindrical body made of a porous material that rotates at high speed is sunk below the surface of the liquid phase, and at least one end of the cylindrical body is opened at the upper side or The liquid flow flowing from the lower opening towards the center of the cylinder is accompanied by the gas that has flowed into the cylinder from the opening, which causes the micropores of the porous 4=4 to be entrained. The gas flowing into the opening is narrowed and flows out through the pores that open at an arbitrary angle to the wall surface. Therefore, while passing through the bent pores of the micropores in the porous material, the gas is simultaneously subdivided into filaments. It makes efficient contact with the liquid passing through the assimilation channel, becomes fine bubbles, returns to the external liquid phase, and circulates through the pores, which has the effect of increasing the degree of gas-liquid contact.

更に本発明は液相中の液面下に沈設した高速回転する円
筒体の周辺の液相中1こ渦流防止用邪魔板を付設するこ
とにより、円筒体の開口部より中心部に向けて流動させ
る液を、円筒体の多孔質材の微細空孔より部外液相へ還
流するよう循環させることを特徴とする特に単基の場合
の円筒体を液相中で回転させる場合に有効な微細空孔内
の接触反応装置を提供せんさするものである。
Furthermore, the present invention provides a baffle plate for preventing eddy flow in the liquid phase around the cylindrical body that rotates at high speed and is submerged below the surface of the liquid in the liquid phase, thereby preventing the flow from the opening of the cylindrical body toward the center. This method is particularly effective when rotating a single-unit cylinder in a liquid phase. It is intended to provide a catalytic reaction device within the cavity.

以下本発明の実施例を図面について説、明すると、第1
図は開口部を下側とした円筒体の縦断面図、第2図は開
口部を上側とした円筒体の縦断面図、第3図は上側と下
側に開口部を有し、中間部に密実材の仕切部材を設けた
円筒体の縦断面図である。
Below, embodiments of the present invention will be described and explained with reference to the drawings.
The figure is a longitudinal cross-sectional view of a cylindrical body with the opening at the bottom, Figure 2 is a vertical cross-sectional view of the cylinder with the opening at the top, and Figure 3 is a vertical cross-sectional view of the cylinder with the opening at the top and bottom. FIG. 3 is a longitudinal cross-sectional view of a cylindrical body provided with a partition member made of solid wood.

図において(1)は円筒体で、多孔質材よりなる円筒壁
(2)と、密実材よりなる閉塞部材(3)よりなり、第
1図の場合には開口部(4)が下側になるよう液相(5
)中の液面(6)下に軸線(7)が垂直になるよう沈設
しである。(8)は駆動軸で垂直ζこ立設さイt、上端
のイ、ジ部(9)を閉塞部材(3)に螺着し、かつ図示
しない回転機構に連結さイ1ていて、高速回転するよう
になつている。
In the figure, (1) is a cylindrical body, consisting of a cylindrical wall (2) made of porous material and a closing member (3) made of solid wood, and in the case of Fig. 1, the opening (4) is on the bottom side. The liquid phase (5
) so that the axis (7) is vertical below the liquid level (6). (8) is a drive shaft which is vertically erected, the upper end A and J parts (9) are screwed onto the closing member (3), and connected to a rotating mechanism (not shown). It is supposed to rotate.

さて第1図において駆動軸(8)を高速回転させると、
液相(5)中の液は円筒体(1)の開口部(4)より中
心部に向けて流動すると共に、遠心力により円筒壁(2
)の内面に突き当り、円筒壁(2)の微細空孔を線条f
こ分割さfして通り、高速回転する円筒体吉筒外液4f
J c!:の速度差lこより千切ら71.てg、液接触
しながら、再び開口部(・1)ζ(流入するよう循環し
、更に液液接触する。
Now, in Fig. 1, when the drive shaft (8) is rotated at high speed,
The liquid in the liquid phase (5) flows toward the center from the opening (4) of the cylinder (1), and the liquid in the cylinder wall (2) flows due to centrifugal force.
), the fine pores in the cylindrical wall (2) are exposed to the filament f.
The outer liquid 4f of the cylindrical body rotates at high speed through this division f.
Jc! : The speed difference l is more than 71. Then, while making liquid contact, the liquid circulates again to flow into the opening (.1) ζ (and makes further liquid contact.

(10)は気体送入管で、外部から気体を円筒体(1)
内に送入するものであり、同送人W(10)は開口部(
4)を経て円筒壁(2)の内面に平行に挿入されており
、気体の噴出孔は送入管(10)の先端のみでもよいが
、金部lこ多数の/J%孔を穿設してあってもよい。
(10) is a gas supply pipe, which supplies gas from the outside to the cylindrical body (1).
The sender W (10) is sent to the opening (
4) is inserted parallel to the inner surface of the cylindrical wall (2), and the gas ejection hole may be only at the tip of the inlet pipe (10), but a large number of holes are bored in the metal part. You may do so.

さて気体送入管(10)より円筒体(1ン内lこ気体が
送入さtLると、この気体は前記矢印の如く循環還流す
る液体に同伴して円筒壁(2)の微細空孔の屈折した孔
道を通り、この間に液体と効率よく接触すると共に、円
筒壁(2)の外面から任意角度で液中に射出され、その
1ま微細気泡となる。
Now, when a gas is introduced into the cylinder (1 inch) from the gas supply pipe (10), this gas is carried along with the liquid that circulates and refluxes as indicated by the arrow above, and enters the fine pores in the cylinder wall (2). The bubbles pass through the bent pores, during which they come into efficient contact with the liquid, and are ejected from the outer surface of the cylindrical wall (2) into the liquid at an arbitrary angle, forming minute bubbles.

(11jは円筒体(1)の周辺の液相(5)中に付設さ
れた渦流防止用邪魔板であり、円筒壁(2)の外面開口
孔より射出された液及び気体は微細化されて液中に分散
され、邪魔板(7)によって液の旋回が制限さ′4]7
て微細化が均一化される。
(11j is a baffle plate attached to the liquid phase (5) around the cylindrical body (1) for preventing eddy currents, and the liquid and gas injected from the outer opening of the cylindrical wall (2) are finely divided. Dispersed in the liquid, and the rotation of the liquid is restricted by the baffle plate (7)'4]7
This results in uniform miniaturization.

第2図は円筒体(1)の開[]部(・1)を上側にして
沈設した場合であり、この場合には液体は」二側から吸
込まイt1 また液面(G) i(、接近して設置した
場合には液面(6)上の気体が開口部(4)を経て、前
記吸込まれる液体に同伴して吸引され、気液接触がなさ
tLる。
Figure 2 shows the case where the cylindrical body (1) is submerged with the open part (1) facing upward; in this case, the liquid is sucked in from the second side (t1) and the liquid level (G) If they are installed close to each other, the gas on the liquid surface (6) passes through the opening (4) and is sucked along with the sucked liquid, so that there is no gas-liquid contact.

なお、この場合にも気体送入管(1(す、邪魔板(11
)を第1図の如く設置することができる。
In this case as well, the gas inlet pipe (1) and the baffle plate (11
) can be installed as shown in Figure 1.

第8図は上下に円筒壁(2) (2)が夫々開口するよ
う、中間に仕切部拐(3)(3)を用いて連結したもの
で、第1図及び第2図の作用効果を同時lこ達成するも
のである。この場合にも気体送入管(++11及び邪魔
板(11)を設置することができる。なお、第1図〜第
3図の何れの場合も、駆動軸(8)は液中から上方に立
設されているが、この駆動軸は液面上から液中に下垂す
るように設けてもよく、この場合には軸受を液中に設置
しなくてもよいので、シール機構を簡単にてきる。
In Figure 8, the upper and lower cylindrical walls (2) (2) are connected using partitions (3) (3) in the middle so that they are open, respectively, and the effects of Figures 1 and 2 are achieved. This is accomplished at the same time. In this case as well, the gas supply pipe (++11) and the baffle plate (11) can be installed.In addition, in any of the cases shown in Figs. However, this drive shaft may be installed so that it hangs down into the liquid from above the liquid level, and in this case, the bearing does not need to be installed in the liquid, making the sealing mechanism easier. .

以下史に本発明を下記具体例により詳述する。The present invention will be explained in detail below using the following specific examples.

(実施例1.) 第1表の各品番のパルコン使用のロータ(30mmφX
4.5 mm A1多孔質材肉厚8mm)で、 (1,
2m01/lの硫酸ソーダ溶液中、I Q 27m、 
i rLの空気を送入し、fl (1(1(I R,P
、M回転すると何イ1.も送入空気の全部が気泡となり
、気塊が見当らないことを確認した後、次の実験を実施
した。上述の液槽に亜硫酸ソーダ1モルを54の純水に
とがした散を入イ1、液温を50″Cニしてがら、10
1/min ノ空気を送り、+1−夕の回転をいずれも
(S O00R。
(Example 1.) Rotor using Palcon of each product number in Table 1 (30mmφX
4.5 mm A1 porous material wall thickness 8 mm), (1,
IQ 27m in 2m01/l sodium sulfate solution,
Inject i rL of air, fl (1(1(I R, P
, what happens when it rotates M?1. After confirming that all of the injected air turned into bubbles and that no air masses were found, the next experiment was carried out. Add 1 mole of sodium sulfite to the above liquid tank and add 1 mole of diluted powder to pure water.
Send air at 1/min, and rotate +1 - evening (SO00R).

P、 M lこ恒定して酸化完了時間、!:反応中の動
力とを求めたところ、第2衣の結果を得た。
The oxidation completion time is fixed with P and M l constant. : When the power during the reaction was determined, the second result was obtained.

第2表を図示する。!:第第4吉♂り、パルコンの空孔
径が小さいものが必ずしも酸化速度が大きくない。BP
−12が酸化完了時間最短で、時間当り酸化量、酸素利
用率、単位動カ当り酸化量も最大である。
Table 2 is illustrated. ! : No. 4, the oxidation rate is not necessarily high if the pore size of Palcon is small. B.P.
-12 has the shortest oxidation completion time, and the maximum oxidation amount per hour, oxygen utilization rate, and oxidation amount per unit dynamic force.

(実施例2.) 次にBP  12を使って前述と同じ濃度(0,2m”
/l) ノ亜硫酸ンータ溶液5tを、液温50’Cから
反応を開始し、D−夕の回転数を600 ORlP。
(Example 2.) Next, using BP 12, the same concentration as above (0.2 m”
/l) Start the reaction with 5 tons of sulfite solution at a liquid temperature of 50'C, and set the rotation speed at 600 ORlP.

Mに恒定し、送入空気量のみ変えて酸化を行ない、酸化
速度を求め第3表?と示した。
M is kept constant, oxidation is performed by changing only the amount of air supplied, and the oxidation rate is determined as shown in Table 3. It showed.

第8表 第:3表より分る如く多桁の空気を微細化する程酸化完
了時間は短く、その間に所要した動力も小さく、単位動
力当り酸化量も増加する。但しこのこと(Jこの(−1
−タへのRlP、Mて気泡化した範囲て、気味の現わイ
″Lない限界までは正確である。、(実施例3) 本発明の多孔質材筒体の【コータと従来の密実付筒体Q
月」−夕との性能を比較するため、多孔質材筒体の中で
も前述のように液中静止時送気すると下端開放口からの
み気味の出る一見恰も密実付筒体に近似したE3Pクル
ープからノ々ルコン5P−58を選ひ、75朋φx i
 l O” ” s肉厚3mm(7)円筒で、下端開放
、上端硬質塩化ビニール製蓋(厚10m+n)とし、こ
の蓋に5US34製径10關の垂直軸を取付けたロータ
をつくり、一方従来型密実材として硬質塩化ビニールを
選び、q5mmφ×llO+nmA、肉厚2胴の円筒で
、下端開放、上端は蓋て閉塞した側表面平滑な垂if 
#!III付ロータをつくり、これらをいずイ1.も2
10關φ×1.000mmkの透明アクリル製液槽の5
US34製底板の中心に垂直に据付け、ロータの外周側
面に平行で槽底に垂直に、ロータ断面に対して放射線状
に幅:つ5開、高さ360mm、 Jlさ:(胴の透明
アクリル扱;3枚を「コータ外周側面から12.5 m
m IJlt、 L、、槽内壁面より20.5mm離し
た位IUζ邪魔板として固定し、さらに槽底より4・0
0開離れた高い位置に幅■5關、長さ80關、厚さ5開
の透明アクリル板2枚をそイtぞit”7.5 mm 
x 15 mmの而をh1シ内面に接着し、壁面に対し
て直角にお互いに向い合せになるように植設しロータの
回転によって生ずる渦流防止用邪魔板とした。
Table 8: As can be seen from Table 3, the more fine the air is, the shorter the oxidation completion time, the less power required during that time, and the greater the amount of oxidation per unit power. However, this (J this (-1)
- It is accurate up to the limit where there is no slight appearance of bubbles in the range where RlP and M bubbles are formed. (Example 3) Cylindrical body Q
In order to compare the performance with the "Tsuki" and "Yu", among the porous material cylinders, as mentioned above, when air is supplied while stationary in the liquid, the E3P croup, which at first glance resembles a densely packed cylinder, appears only from the open opening at the bottom end. Select Nonorucon 5P-58 from 75 tomoφx i
A rotor was made of a cylinder with a wall thickness of 3 mm (7) with an open bottom end and a lid made of hard vinyl chloride (thickness 10 m + n) at the top end, and a vertical shaft made of 5US34 with a diameter of 10 mm was attached to this lid. Hard vinyl chloride was selected as the solid material, and it was a q5mmφ×llO+nmA, two-walled cylinder with an open bottom end and a closed top end with a smooth vertical surface.
#! Make a rotor with III and attach these parts to 1. Mo2
10mm diameter x 1.000mm transparent acrylic liquid tank 5
Installed vertically at the center of the bottom plate made of US34, parallel to the outer circumferential side of the rotor, perpendicular to the tank bottom, and radially to the rotor cross section Width: 5 mm, height 360 mm, height: ; Place the three sheets at a distance of 12.5 m from the outer circumferential side of the coater.
m IJlt, L,, fixed as an IUζ baffle plate at a distance of 20.5 mm from the tank inner wall surface, and further 4.0 mm from the tank bottom.
Place two transparent acrylic plates with a width of 5 mm, a length of 80 mm, and a thickness of 5 mm at a high position 0 mm apart.It is 7.5 mm.
x 15 mm were glued to the inner surface of h1 and planted so as to face each other at right angles to the wall surface to serve as a baffle plate for preventing eddy currents caused by rotation of the rotor.

この液槽に無水亜硫酸ンーダ4. molを14tの純
水にとかした濃度0゜287 mOL/lの液を入れ、
液温か45°Cになってから、空気20 t7miルの
割合で送りながらロータの回転を260 OR,PlM
に恒定して酸化実験を行ない第4表の結果を得た。
4. Add anhydrous sulfite to this liquid tank. Pour in a solution with a concentration of 0°287 mOL/l, which is obtained by dissolving 14 t of pure water.
After the liquid temperature reached 45°C, the rotor was rotated at 260 OR, PlM while supplying air at a rate of 20 t7mil.
An oxidation experiment was carried out with the temperature constant at , and the results shown in Table 4 were obtained.

第4表 以上は密実材との比較に重点を置いたので5P−58を
選定したが多孔質材ロータの実用化に当ってはBP−1
2を採用すれば酸化速度は更に大きくなることが第2表
から推算される。なお、本発明において多孔質材は独り
パルコンに限定するものでなく、使用目的tこ応じて多
孔質炭素、焼結アルミナ、焼結金属、素焼、触媒能力あ
る粒子を固めて多孔質材としたもの等の内から適宜選定
することが出来るものとする。
In Table 4 and above, 5P-58 was selected because the emphasis was placed on comparison with solid wood, but BP-58 was selected for practical use of porous material rotors.
It is estimated from Table 2 that if 2 is adopted, the oxidation rate will be further increased. In addition, in the present invention, the porous material is not limited to Palcon alone, but can be made into a porous material by solidifying porous carbon, sintered alumina, sintered metal, bisque, or particles with catalytic ability, depending on the purpose of use. It shall be possible to select as appropriate from among the following.

以上述べた通り多孔質材使用筒体による気液接触反応速
度は、独り気泡の微細度にのみよるものでなく、気泡の
微細度と気泡が微細空孔を還流する頻度との相乗積に比
例するもので、従来の密実付使用筒体の遠く企及できな
い高い反応速度を示すものである。すなわち、本発明は
多孔質材筒体の使用により気液接触反応速度が高まるの
で、反応装置の小型化を招来する経済性の極めて大きな
発明である。
As mentioned above, the gas-liquid contact reaction rate of a cylinder made of porous material does not depend solely on the fineness of the bubbles, but is proportional to the multiplicative product of the fineness of the bubbles and the frequency with which the bubbles circulate through the fine pores. This shows a high reaction rate that is far beyond the reach of conventional cylinders with tight fittings. That is, since the gas-liquid contact reaction rate of the present invention is increased by using a porous material cylinder, it is an extremely economical invention that leads to the downsizing of the reaction apparatus.

なお、本発明では専ら気液の接触反応について記述した
が、本発明を液液および固液間に利用すれば微細空孔内
の接触反応について未踏分野の開発が期待される。
In addition, although the present invention describes exclusively gas-liquid contact reactions, if the present invention is utilized between liquid-liquid and solid-liquid, the development of unexplored fields of contact reactions within micropores is expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第8図は夫々本発明の実施例を示す
装置の縦断面図、第4図は時間と酸化率りの関係を示す
線図である。 図の主要部分の説明 ■・・・円筒体     2・・円筒壁8・・・閉塞部
材    4.・・・開口部5・・・液相      
7・・・軸線8・・・駆動軸    10・・・気体送
入管6・液面      11.邪魔板
FIGS. 1, 2, and 8 are longitudinal sectional views of an apparatus showing examples of the present invention, and FIG. 4 is a diagram showing the relationship between time and oxidation rate. Explanation of main parts of the figure■...Cylindrical body 2...Cylindrical wall 8...Closing member 4. ...Opening part 5...Liquid phase
7... Axis line 8... Drive shaft 10... Gas feed pipe 6/liquid level 11. baffle board

Claims (3)

【特許請求の範囲】[Claims] (1)  多孔質材よりなり、上側又は下側の少なくと
も一端を開口し、他端を密実材で閉塞してなる円筒体を
、同円筒体の軸線が垂直に、かつ回転機構に連結して高
速回転するよう液相中の液面下に沈設してなることを特
徴とする微細空孔内の接触反応装置。
(1) A cylindrical body made of porous material with at least one upper or lower end open and the other end closed with solid wood, the axis of which is perpendicular, and connected to a rotating mechanism. A catalytic reaction device in micropores, which is submerged below the surface of a liquid in a liquid phase so as to rotate at high speed.
(2)  多孔質材よりなり、上側又は下側の少なくと
も一端を開口し、他端を密実材で閉塞してなる円筒体を
、同円筒体の軸線が垂直に、かつ回転機構に連結して高
速回転するよう液相中の液面下に沈設すると共に、前記
円筒体内に外部より気体を流入さぜる手段を設けたこと
を特徴とする微細空孔内の接触反応装置。
(2) A cylindrical body made of porous material with at least one upper or lower end open and the other end closed with solid wood, the axis of which is perpendicular, and connected to a rotating mechanism. 1. A catalytic reaction device in micropores, characterized in that the cylindrical body is submerged below the liquid surface in a liquid phase so as to rotate at high speed, and is provided with means for flowing gas into the cylindrical body from the outside.
(3) 多孔質料よりなり、上側又は下側の少なくとも
一端を開口し、他端を密実材で閉塞してなる円筒体を、
同円筒体の軸線が垂直に、かつ回転機構に連結して高速
回転するよう液相中の液面下に沈設すると共に、前記円
筒体の周辺の液相中に渦流防止用邪魔板を付設してなる
ことを特徴とする微細空孔内の接触反応装置。
(3) A cylindrical body made of a porous material, with at least one upper or lower end open and the other end closed with a solid material,
The cylindrical body is submerged below the liquid surface in the liquid phase so that its axis is perpendicular and connected to a rotation mechanism to rotate at high speed, and a baffle plate for preventing eddy currents is attached to the liquid phase around the cylindrical body. A catalytic reaction device in micropores characterized by:
JP57152528A 1982-09-03 1982-09-03 Catalytic reaction device inside micropores Expired JPS609855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152528A JPS609855B2 (en) 1982-09-03 1982-09-03 Catalytic reaction device inside micropores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152528A JPS609855B2 (en) 1982-09-03 1982-09-03 Catalytic reaction device inside micropores

Publications (2)

Publication Number Publication Date
JPS5942040A true JPS5942040A (en) 1984-03-08
JPS609855B2 JPS609855B2 (en) 1985-03-13

Family

ID=15542402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152528A Expired JPS609855B2 (en) 1982-09-03 1982-09-03 Catalytic reaction device inside micropores

Country Status (1)

Country Link
JP (1) JPS609855B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421814U (en) * 1987-07-29 1989-02-03

Also Published As

Publication number Publication date
JPS609855B2 (en) 1985-03-13

Similar Documents

Publication Publication Date Title
RU2090635C1 (en) Apparatus for refining aluminium smelt and device for dispersion supply of gas into aluminium smelt in apparatus for refining aluminium smelt
Grijseels et al. Hydrodynamic approach to dissolution rate
JP2002500273A5 (en)
JPS5942040A (en) Reactor for making good contact of reactant in fine pore
JP2002500273A (en) Blower for molten metal gas treatment
JP2003190753A (en) Fine air bubble feeder
CN108022661A (en) The discharge method and its device of ball type device in fluid media (medium)
CN205379887U (en) Carbonating column and carbonating system
TWI844527B (en) Apparatus for producing ozone solution, method for producing ozone solution
US2151126A (en) Aeration apparatus
JP5291312B2 (en) Pickling apparatus and method
WO2022252530A1 (en) Mixture stirring device
JP2007216104A (en) Apparatus for diffusing gas bubble
JPS5830326A (en) Gas-liquid contact method and apparatus
US5632932A (en) Distribution of fine bubbles or droplets in a liquid
JPS5832588B2 (en) Equipment for chemical defoaming in fermenters
JPS59230606A (en) Separator
JPS6136970B2 (en)
JPS59105890A (en) Surface aerator
RU2259870C1 (en) Method and vortex centrifugal reactor for carrying out multiphase processes
JPH06190255A (en) Gas and liquid mixing device
JP2011161430A (en) Microbubble generator
JPH1190275A (en) Negative pressure fine-foam generator
JP4498837B2 (en) Dispensing and feeding device for solid-liquid mixture
CN205995305U (en) A kind of gas-liquid agitation device of efficient uniform mixing