JPS5942009B2 - Method for producing polyamide resin composition containing inorganic filler - Google Patents

Method for producing polyamide resin composition containing inorganic filler

Info

Publication number
JPS5942009B2
JPS5942009B2 JP9837274A JP9837274A JPS5942009B2 JP S5942009 B2 JPS5942009 B2 JP S5942009B2 JP 9837274 A JP9837274 A JP 9837274A JP 9837274 A JP9837274 A JP 9837274A JP S5942009 B2 JPS5942009 B2 JP S5942009B2
Authority
JP
Japan
Prior art keywords
polyamide resin
resin
resin composition
inorganic filler
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9837274A
Other languages
Japanese (ja)
Other versions
JPS5125553A (en
Inventor
光市 松本
雄吉 高士
逸穂 相島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9837274A priority Critical patent/JPS5942009B2/en
Publication of JPS5125553A publication Critical patent/JPS5125553A/en
Publication of JPS5942009B2 publication Critical patent/JPS5942009B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ポリアミド樹脂中に高濃度の無機充填剤を混
入して均質な複合組成物を製造する方法に関するもので
あり、極めて簡便で経済的な方法を提供するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a homogeneous composite composition by mixing a high concentration of inorganic filler into a polyamide resin, and provides an extremely simple and economical method. It is.

ポリアミド樹脂中に無機充填剤を充填して得ら 、れる
組成物は、剛性、硬度、耐熱変形性、寸法安定性、吸水
性等の各種の性質が向上するところから、鉱物補強ナイ
ロンとして工業的な展開が期待されている。
The composition obtained by filling polyamide resin with an inorganic filler is industrially used as mineral-reinforced nylon because it improves various properties such as rigidity, hardness, heat deformation resistance, dimensional stability, and water absorption. We are looking forward to further developments.

しかしながら、ポリアミド樹脂は工業的には一般にペレ
ット状もしくは粗大なチップ状をなし、しかも、ペレッ
トの粉砕が極めて困難であることから、微粉状の無機質
を充填する方法に多くの困難な課題を残していた。
However, industrially, polyamide resin is generally in the form of pellets or coarse chips, and it is extremely difficult to crush the pellets, so many difficult issues remain in the method of filling inorganic materials in the form of fine powder. Ta.

周知の混和技術、たとえば、各種の押出機に投入混合す
る場合には、分級、喰込み不良が顕著で、40重量%を
越える微粉状無機物質の充填は至難である。
When using well-known mixing techniques, for example, when mixing by charging into various extruders, poor classification and biting are noticeable, and it is extremely difficult to fill in more than 40% by weight of finely powdered inorganic substances.

他方、パンバリ−ミキサーやニーダー等の混練装置を用
いた場合にも、ポリアミド樹脂は融点が高く、熔融粘度
が低いために、摩擦による自己発熱が充分でなく、完全
な熔融、均一な分散が困難である。本発明者らは、平滑
な表面を有するペレット状あるいは糸状その他の形状の
ポリアミドも、微粉状無機物質と特殊条件下に高速流動
混合することにより、驚くべきことにフレーク状ないし
粉状の均質な組成体を与え、容易に成形可能で有用な素
材を製造しうることを見出し、本発明に到達した。
On the other hand, even when using a kneading device such as a Panbury mixer or kneader, polyamide resin has a high melting point and low melt viscosity, so self-heating due to friction is insufficient, making it difficult to completely melt and uniformly disperse. It is. The present inventors have surprisingly found that by mixing polyamide in the form of pellets, threads, or other shapes with a smooth surface with a finely powdered inorganic substance under special conditions at high speed, it can be turned into homogeneous flakes or powder. The inventors have discovered that it is possible to produce a useful material that is easily moldable by providing a composition, and have arrived at the present invention.

すなわち、本発明は、平均比表面積が2粛/g以上であ
る各種形状のポリアミド樹脂60〜15重量部と、平均
粒子径が0.01〜100μの範囲にある無機充填剤粉
末40〜85重量部を、回転翼を内蔵する高速流動混合
機中で樹脂の融点ないし融点以上20℃の温度範囲で高
速流動混合せしめ、回転翼トルク(モータ負荷)が急上
昇を開始した直後に高速流動混合機から排出して、急冷
することを特徴とする無機充填剤含有ポリアミド樹脂組
成物の製造法に関するものである。熔融粘度の温度依存
性が緩慢なPVC)ポリオレフィン等の熱可塑性樹脂を
ペンシェルミキサー等の高速流動撹拌装置を用い、融点
以上の温度で無機物質と混合し、組成物を得る方法はす
でに古くからいくつかの例が知られている。
That is, the present invention comprises 60 to 15 parts by weight of polyamide resin of various shapes having an average specific surface area of 2 μm/g or more, and 40 to 85 parts by weight of inorganic filler powder having an average particle size in the range of 0.01 to 100 μm. The components are mixed at high speed in a high-speed fluid mixer with built-in rotary blades at a temperature range of 20°C above the melting point of the resin, and immediately after the rotor torque (motor load) starts to rapidly increase, the mixture is mixed with high-speed fluid mixer. The present invention relates to a method for producing an inorganic filler-containing polyamide resin composition, which comprises discharging and rapidly cooling the composition. There has already been a long-standing method to obtain a composition by mixing a thermoplastic resin such as polyolefin (PVC) whose melt viscosity has a slow temperature dependence with an inorganic substance at a temperature above its melting point using a high-speed fluid stirring device such as a pen shell mixer. Several examples are known.

たとえば、PVCについては粉末を使用し、熔融軟化温
度以上の広範な温度域で充填剤、安定剤等を混和ゲル化
せしめる方法が知られている(古谷正之著[塩化ビニル
樹脂」270頁、昭和47年、日刊工業新聞社刊)。ま
た、PVCに比して明確な融点を示すポリオレフイン類
の場合はより困難であるが、特定の粉体樹脂を特定の条
件下で無機物質と混和し、有用な組成物を得る方法は本
発明者らが見出している(特開昭48−11344号、
特開昭48−92441号)。さらにその後、ポリオレ
フインについて同様な技術が報告されている(特開昭4
9−18148号)。また、ポリオレフインについては
無機物質と混和するに先立つて、平滑表面を有するベレ
ツト状樹脂を多孔体とすることが必要であるとの提案が
なされている。しかしながら、ポリアミド樹脂について
は前述の各種の困難のため、成功した例はない。
For example, for PVC, a method is known in which powder is used, and fillers, stabilizers, etc. are mixed in and gelled in a wide temperature range above the melting softening temperature (Masayuki Furuya, [Vinyl Chloride Resin], p. 270, Showa Published by Nikkan Kogyo Shimbun in 1947). In addition, although it is more difficult in the case of polyolefins that have a distinct melting point compared to PVC, the present invention provides a method for obtaining useful compositions by mixing specific powder resins with inorganic substances under specific conditions. (Japanese Unexamined Patent Application Publication No. 11344/1989,
JP-A No. 48-92441). Furthermore, similar technology was subsequently reported for polyolefin (Japanese Unexamined Patent Publication No. 4
No. 9-18148). It has also been proposed that polyolefins need to be made into a porous resin belet having a smooth surface before being mixed with an inorganic substance. However, due to the various difficulties mentioned above, there have been no successful examples of polyamide resins.

ところが、本発明者らは、すでに完成した前記発明(特
開昭48−92441号)を基に鋭意検討した結果、ペ
レツト状もしくは糸状その他の形状の樹脂を用いて、高
濃度の無機物質を均質、かつ容易に混和し、有用な組成
物を得ることができる本発明の方法に到達した。
However, as a result of intensive studies based on the already completed invention (Japanese Unexamined Patent Publication No. 48-92441), the inventors of the present invention discovered that it is possible to homogenize a highly concentrated inorganic substance using resin in the form of pellets, threads, or other shapes. We have now arrived at the method of the present invention, which allows to obtain a composition that is easy to mix and useful.

以下本発明をさらに具体的に説明する。The present invention will be explained in more detail below.

本発明に使用されるポリアミド樹脂は、一般のポリアミ
ド、たとえば、ナイロン−6、ナイロン−66、ナイロ
ン−610、ナイロン−11、ナイロン−12、あるい
は主鎖に芳香環、異節環を有するポリアミド等の単独重
合体および共重合体であり、種類は特に限定されるもの
ではない。
The polyamide resin used in the present invention is a general polyamide, such as nylon-6, nylon-66, nylon-610, nylon-11, nylon-12, or a polyamide having an aromatic ring or a heterocyclic ring in the main chain. These are homopolymers and copolymers, and the type is not particularly limited.

混合する際のポリアミドの形状は、粉末状、粒状である
ことが好ましく、フイルム状、繊維状であつてもよく、
成形品もしくはその破砕物であつてもよい。フイルムも
しくは繊維状の場合は、混合に支障(混合機モーターの
過負荷その他)がない限り大きいものが可能であるが、
細断されている方が望ましい。成形品もしくはその破砕
物も可能ではあるが、肉厚は10mm以下、断面積も1
0d以下の小片状であることが望ましい。総合していえ
ば、各形状の平均比表面積は2d/9以上であることが
必要であり、好ましくは5cii/9以上であり、さら
に好ましくは10d/fl以上である。樹脂の表面積が
この範囲よりも小さい場合には伝熱が充分でなく、加熱
が均一にできないことから、本発明によつて均質な混合
体を得ることはできない。本発明に有用な充填剤は、全
ての無機充填剤、無機顔料を包含するが、微粉末状粒子
であることが必要である。
The shape of the polyamide during mixing is preferably powdery or granular, and may be film-like or fibrous.
It may be a molded product or a crushed product thereof. In the case of films or fibers, large ones are possible as long as there is no problem with mixing (overload of mixer motor, etc.).
Preferably shredded. Molded products or their crushed products are also possible, but the wall thickness is 10 mm or less and the cross-sectional area is 1.
It is desirable to have a small piece shape of 0d or less. Overall, the average specific surface area of each shape needs to be 2d/9 or more, preferably 5cii/9 or more, and more preferably 10d/fl or more. If the surface area of the resin is smaller than this range, heat transfer will not be sufficient and heating will not be uniform, making it impossible to obtain a homogeneous mixture according to the present invention. Fillers useful in this invention include all inorganic fillers and inorganic pigments, but must be in the form of fine powder particles.

充填剤の平均粒子径は0.01〜100μの範囲にあり
、特に0.04〜40μ、さらには0.4〜20μの範
囲が望ましい。粉末粒子があまり小さい場合は、粉末飛
散その他の操作上の困難が生じ、粉末粒子があまり大き
い場合は、樹脂との均一な混合体が得難い。充填剤の例
を挙げれば、炭酸カルシウム、炭酸マグネシウム、炭酸
バリウム等の炭酸塩、水酸化マグネシウム、水酸化アル
ミニウム等の水酸化物、酸化マグネシウム、酸化亜鉛、
酸化チタン等の酸化物、硫酸カルシウム、亜硫酸カルシ
ウム等の硫酸塩、ホワイトカーボン、ガラス繊維粉末、
アスベスト、カオリン、タルク、マイカ等のシリカおよ
び硅酸塩類等がある。か\る無機充填剤は二種以上混合
してもよく、充填剤表面は各種の表面処理がなされてい
ることは自由である。ポリアミド樹脂に対する無機充填
剤の混入量は、通常ポリアミド樹脂と充填剤の合計10
0重量%に対し、充填剤濃度は40〜85重量%、さら
に好ましくは50〜70重量%である。
The average particle diameter of the filler is in the range of 0.01 to 100μ, particularly preferably in the range of 0.04 to 40μ, and more preferably in the range of 0.4 to 20μ. If the powder particles are too small, powder scattering and other operational difficulties occur; if the powder particles are too large, it is difficult to obtain a homogeneous mixture with the resin. Examples of fillers include carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate, hydroxides such as magnesium hydroxide and aluminum hydroxide, magnesium oxide, zinc oxide,
Oxides such as titanium oxide, sulfates such as calcium sulfate and calcium sulfite, white carbon, glass fiber powder,
These include asbestos, kaolin, talc, silica such as mica, and silicates. Two or more kinds of such inorganic fillers may be mixed, and the filler surface may be subjected to various surface treatments. The amount of inorganic filler mixed into polyamide resin is usually 10% in total of polyamide resin and filler.
With respect to 0% by weight, the filler concentration is 40-85% by weight, more preferably 50-70% by weight.

充填剤濃度が前記範囲よりも低い場合は、高温における
充填剤による粘着防止効果が充分でなく、樹脂の相互熔
着による巨大凝集2次粒子化が進行して、均質な混合を
阻害する。充填剤濃度が前記範囲よりも高い場合は、充
填剤粒子はポリアミド樹脂中に埋没分散させることが不
可能となり、遊離の充填剤粉末が作業性を極めてわるく
する。本発明を実施するにあたつて用いられる装置は、
回転翼を内蔵する高速流動混合機であつて、ポリアミド
樹脂の融点以上20℃の温度まで加熱でき、温度計およ
び回転翼トルク計(モータ負荷メーター)を付加設備と
して含む装置である。
If the filler concentration is lower than the above range, the anti-adhesion effect of the filler at high temperatures will not be sufficient, and the resins will adhere to each other to form giant agglomerated secondary particles, inhibiting homogeneous mixing. If the filler concentration is higher than the above range, the filler particles cannot be embedded and dispersed in the polyamide resin, and the free filler powder makes workability extremely poor. The apparatus used in carrying out the present invention is:
This is a high-speed fluid mixer with built-in rotary blades that can heat up to a temperature of 20°C above the melting point of polyamide resin, and includes a thermometer and rotary blade torque meter (motor load meter) as additional equipment.

たとえば、ペンシェルミキサーの如き加熱ジヤケツトを
有する高速流動混合機が好ましく用いられる。本発明の
効果を得るために最も重要なことは、樹脂の融点ないし
融点以上2『C1好ましくは融点ないし融点以上10゜
Cの温度範囲で、回転翼トルクの急上昇をもたらし、そ
の直後に急冷することである。
For example, a high-speed fluid mixer with a heating jacket, such as a pen shell mixer, is preferably used. In order to obtain the effects of the present invention, the most important thing is to bring about a sudden increase in rotor torque in a temperature range of 2' C1 preferably at or above the melting point of the resin and 10°C above the melting point, followed by rapid cooling immediately after that. That's true.

したがつて、か\る条件を満足させるために、回転翼回
転数、回転翼形状、ジヤケツト加熱条件等の条件を選定
すべきである。本発明においては、ポリアミドの熔融開
始時に充填剤と高速流動混合していることが必要であり
、融点以下では本発明の効果は得られない。
Therefore, in order to satisfy these conditions, conditions such as the rotational speed of the rotor, the shape of the rotor, and the jacket heating conditions should be selected. In the present invention, it is necessary to mix the polyamide with the filler at high speed when melting starts, and the effects of the present invention cannot be obtained below the melting point.

混合温度が上記範囲を越える場合は、ポリアミドの熔融
粘度が温度上昇により急速に低下するために、樹脂の相
互熔着による巨大凝集2次粒子化が進行して好ましくな
い。高速流動混合する時間は、樹脂および充填剤の予熱
程度によつて影響されるが、両者が樹脂の融点まで加熱
されている場合には、普通30秒〜10分の範囲で充分
である。
When the mixing temperature exceeds the above range, the melt viscosity of the polyamide rapidly decreases as the temperature rises, which is undesirable because the resins mutually fuse to form giant agglomerated secondary particles. The time for high-speed fluid mixing is affected by the degree of preheating of the resin and filler, but a range of 30 seconds to 10 minutes is usually sufficient if both have been heated to the melting point of the resin.

混合の終了時間は前述のとおり、回転翼トルク(モータ
負荷)の急上昇を始めた直後であるが、普通1〜60秒
後、さらには5〜20秒後がより好ましい。過剰の混合
時間は樹脂組成物の巨大凝集2次粒子化が進行し、異状
発熱の原因にもなつて好ましくない。したがつて、ポリ
アミド樹脂の場合は、混合時間が終了すれば加熱混合槽
から排出して、撹拌下に樹脂の融点以下に急冷し、樹脂
組成物を粉粒状化することが必要である。
As mentioned above, the mixing end time is immediately after the rotor torque (motor load) starts to rapidly increase, but it is usually 1 to 60 seconds later, and more preferably 5 to 20 seconds later. Excessive mixing time is undesirable because the resin composition progresses to become giant agglomerated secondary particles and causes abnormal heat generation. Therefore, in the case of polyamide resin, it is necessary to discharge the resin composition from the heated mixing tank after the mixing time and rapidly cool it to below the melting point of the resin while stirring to pulverize the resin composition.

加熱流動混合および撹拌冷却する雰囲気は大気中で可能
であるが、ポリアミド樹脂や充填剤の分解もしくは変質
を避けるために窒素その他の不活性気体雰囲気で行うこ
とが望ましい。
Although heating fluid mixing, stirring and cooling can be carried out in the atmosphere, it is preferable to carry out the process in an atmosphere of nitrogen or other inert gas to avoid decomposition or deterioration of the polyamide resin or filler.

以上で得られた樹脂組成物は、粉粒状もしくはフレーク
状であり、その大きさは大部分が0.2〜5m77!の
範囲にある。
The resin composition obtained above is in the form of powder or flakes, and most of them have a size of 0.2 to 5 m77! within the range of

また、充填剤粉末はポリアミド樹脂中に埋没分散してい
るために、分級の心配はない。この均一分散体を、次に
脱気機構を保持する造粒装置もしくは成形装置に供給し
て造粒もしくは成形することにより完壁なポリアミド樹
脂組成物を得ることができる。
Furthermore, since the filler powder is embedded and dispersed in the polyamide resin, there is no need to worry about classification. This uniform dispersion is then fed to a granulating device or a molding device equipped with a degassing mechanism and granulated or molded to obtain a complete polyamide resin composition.

ポリアミドの場合は、塩化ビニル樹脂やポリオレフイン
に比べて熔融点以上で無機物質との接触による分解が起
り易いこと、吸湿性であること等の理由で、脱気機構を
保持する装置で造粒もしくは成形することが必要である
。脱気機構としては、スクリユ一押出機では圧縮比が2
.5以上であることが好ましく、あるいはベント型押出
機であることが望ましい。圧縮成形の場合は、圧縮〜脱
気操作を数回繰り返すことが好ましく、射出成形の場合
はスクリユ一背圧、スクリユ一回転数、温度等の条件選
択により可能である。一般に言えば、ポリアミドの場合
は、上記均一分散体をベント型押出機で一旦造粒した後
、各種成形機に供給して成形する方法が、品質的にも好
ましい。以上の方法で得られた本発明のポリアミド樹脂
組成物は上記組成以外に、安定剤、滑剤、架橋剤、繊維
状補強材、染料、難燃剤、帯電防止剤その他の添加剤を
含んでいてもよい。
In the case of polyamide, it is more likely to decompose on contact with inorganic substances at temperatures above its melting point than vinyl chloride resins and polyolefins, and it is hygroscopic, so it cannot be granulated or processed using equipment with a degassing mechanism. It is necessary to mold it. As for the degassing mechanism, the compression ratio is 2 in the screw extruder.
.. It is preferable that it is 5 or more, or it is preferable that it is a vent type extruder. In the case of compression molding, it is preferable to repeat the compression-degassing operation several times, and in the case of injection molding, this is possible by selecting conditions such as the back pressure per screw, the number of revolutions of the screw, and the temperature. Generally speaking, in the case of polyamide, it is preferable in terms of quality to granulate the uniform dispersion in a vented extruder and then supply it to various molding machines for molding. The polyamide resin composition of the present invention obtained by the above method may contain stabilizers, lubricants, crosslinking agents, fibrous reinforcing materials, dyes, flame retardants, antistatic agents, and other additives in addition to the above composition. good.

以下本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

実施例 1平均粒子径1.8μの重質炭酸カルシウム微
粉末14kg(70重量%)と、数平均分子量2300
0のナイロン−66(4φ×3mmペレツト)6kgを
250℃まで予熱した後、1501ペンシェルミキサー
(三井三池製作所製、撹拌翼回転数1460rPII1
1ジヤケツト温度27『C)を用いて4分間流動混合し
たところ、混合槽内温度は258゜Cに達し、回転翼ト
ルク(モータ負荷)が急激に上昇を始めた。
Example 1 14 kg (70% by weight) of heavy calcium carbonate fine powder with an average particle diameter of 1.8 μm and a number average molecular weight of 2300
After preheating 6 kg of No. 0 nylon-66 (4φ x 3mm pellets) to 250°C, a 1501 pen shell mixer (manufactured by Mitsui Miike Seisakusho, stirring blade rotation speed 1460rPII1) was heated to 250°C.
When fluid mixing was carried out for 4 minutes using a jacket temperature of 27°C, the temperature inside the mixing tank reached 258°C, and the rotor torque (motor load) began to rise rapidly.

そこでさらに10秒間混合を続けて、1501冷却混合
機(三井三池製作所製、翼回転数360rpm1ジヤケ
ツト温度15℃)中に排出し、10分間撹拌下に冷却し
た。得られた樹脂組成物は、平均粒度10〜35メツシ
ユの粉粒状であり、直径6mm以上の巨大粒子はなかつ
た。
Then, mixing was continued for another 10 seconds, and the mixture was discharged into a cooling mixer 1501 (manufactured by Mitsui Miike Seisakusho, blade rotation speed: 360 rpm, jacket temperature: 15° C.), and cooled while stirring for 10 minutes. The obtained resin composition was in the form of powder particles with an average particle size of 10 to 35 mesh, and there were no giant particles with a diameter of 6 mm or more.

この粉粒状樹脂組成物をベント型押出機(D5Omml
L/D=28、圧縮比=3.0)にて、樹脂温290℃
で押出し、ペレツト化した。
This powdery resin composition was processed using a vent type extruder (D5Omml).
L/D=28, compression ratio=3.0), resin temperature 290℃
It was extruded and pelletized.

このペレツトを乾燥後、樹脂温285゜C、金型温度8
0℃で射出成形したところ、表面の美麗な成形品を得る
ことができた。参考例 1 実施例1と同じ組成を、室温でペンシェルミキサーを用
いて混合した後、実施例1と同様に押出機に供給したと
ころ、押出機中に混合物は喰込まず製造不可能であつた
After drying this pellet, the resin temperature was 285°C and the mold temperature was 8°C.
When injection molded at 0°C, a molded product with a beautiful surface could be obtained. Reference Example 1 When the same composition as in Example 1 was mixed at room temperature using a pen shell mixer and then fed to an extruder in the same manner as in Example 1, the mixture did not feed into the extruder and production was impossible. Ta.

混合物の組成を変えて充填剤濃度を低くしたところ、充
填剤濃度が35重量%ではじめて安定な押出機による生
産が可能になつた。
When the composition of the mixture was changed to lower the filler concentration, stable production using an extruder became possible only when the filler concentration was 35% by weight.

このペレツトを用いて、実施例1と同様に射出成形した
ところ、成形品表面には少量のフイラ一凝集物とフロー
マークが観察された。参考例 2 実施例1と同じ組成を、実施例1と同様にして約4分間
流動混合したところ、混合槽内温度は258℃に達した
When this pellet was injection molded in the same manner as in Example 1, a small amount of filler aggregates and flow marks were observed on the surface of the molded product. Reference Example 2 When the same composition as in Example 1 was fluidized and mixed for about 4 minutes in the same manner as in Example 1, the temperature inside the mixing tank reached 258°C.

しかし、回転翼トルク(モータ負荷)が急激に上昇を始
める直前に冷却混合機中に排出して、実施例1と同様に
冷却した。得られた混合物は、室温で混合した参考例1
とほとんど同じ混合状態であつた。参考例 3 実施例1と同じ組成を、実施例1と同様にして約4分間
流動混合したところ、混合槽温度は258℃に達し、回
転翼トルク(モータ負荷)が急激に上昇を始めた。
However, just before the rotor torque (motor load) started to rise rapidly, it was discharged into the cooling mixer and cooled in the same manner as in Example 1. The obtained mixture was mixed at room temperature in Reference Example 1.
The mixture was almost the same. Reference Example 3 When the same composition as in Example 1 was fluidized and mixed for about 4 minutes in the same manner as in Example 1, the mixing tank temperature reached 258° C. and the rotor torque (motor load) began to rise rapidly.

そこで、さらに40秒間混合を続けたところ、混合槽内
で樹脂組成物は巨大凝集2次粒子化が進行し、塊状に固
まつてしまつた。実施例 2平均粒子径0.7μの水酸
化マグネシウム微粉末12Kg(60重量%)と、実施
例1で用いたナイロン−66ペレツト8kgを250℃
まで予熱した後、実施例1と同様のペンシェルミキサー
を用いて6分間流動混合したところ、混合槽内温度は2
61℃に達し、回転翼トルク(モータ負荷)が急激に上
昇を始めたので、さらに5秒間混合を続けた後、冷却混
合機に排出して、撹拌下に10分間冷却した。
Then, when the mixing was continued for another 40 seconds, the resin composition progressed to become gigantic agglomerated secondary particles in the mixing tank and solidified into a lump. Example 2 12 kg (60% by weight) of magnesium hydroxide fine powder with an average particle size of 0.7 μ and 8 kg of the nylon-66 pellets used in Example 1 were heated at 250°C.
After preheating to
The temperature reached 61° C. and the rotor torque (motor load) started to rise rapidly, so mixing was continued for an additional 5 seconds, then discharged to a cooling mixer and cooled for 10 minutes while stirring.

得られた樹脂組成物は平的粒度20〜60メツシユの粉
粒状であり、直径6m77!以上の巨大粒子はなかつた
The obtained resin composition was in the form of powder particles with an average particle size of 20 to 60 mesh, and a diameter of 6 m77! There were no larger particles.

この粉粒状樹脂組成物を実施例1と同様の方法でペレツ
ト化し、射出成形したところ、表面の美麗な成形品を得
ることができた。
When this powdery resin composition was pelletized in the same manner as in Example 1 and injection molded, a molded product with a beautiful surface could be obtained.

実施例 3 平均粒子径2.5μのカオリンクレ一微粉末10kg(
50重量%)と、数平均分子量20000のナイロン−
6(糸くず)10kgを2000Cまで予熱した後、実
施例1と同様のペンシェルミキサーを用いて5分間流動
混合したところ、混合槽内温度は212℃に達し、回転
翼トルク(モータ負荷)が急激に上昇を始めたので、さ
らに5秒間混合を続けた後、冷却混合機に排出して撹拌
下に10分間冷却した。
Example 3 10 kg of kaolin clay fine powder with an average particle size of 2.5 μm (
50% by weight) and nylon with a number average molecular weight of 20,000.
After preheating 10 kg of lint (lint) to 2000 C, fluid mixing was carried out for 5 minutes using the same pen shell mixer as in Example 1. The temperature inside the mixing tank reached 212 C, and the rotor torque (motor load) increased. Since the mixture started to rise rapidly, mixing was continued for an additional 5 seconds, then the mixture was discharged into a cooling mixer and cooled for 10 minutes while stirring.

得られた樹脂組成物は、平均粒度20〜60メツシユの
粉粒状であり、直径6mm以上の巨大粒子はなかつた。
The obtained resin composition was in the form of powder particles with an average particle size of 20 to 60 mesh, and there were no giant particles with a diameter of 6 mm or more.

この粉粒状樹脂組成物を実施例1と同様の方法で、樹脂
温250℃で押出しペレツト化し、樹脂温250℃で射
出成形したところ、表面の美麗な成形品を得ることがで
きた。
This powdery resin composition was extruded into pellets at a resin temperature of 250°C in the same manner as in Example 1, and injection molded at a resin temperature of 250°C, resulting in a molded product with a beautiful surface.

本発明によれば、ポリアミド樹脂に無機充填剤を、従来
困難とされていた高濃度まで容易に混入することができ
る。
According to the present invention, it is possible to easily mix an inorganic filler into a polyamide resin to a high concentration, which was conventionally considered difficult.

Claims (1)

【特許請求の範囲】[Claims] 1 平均比表面積が2cm^2/g以上である各種形状
のポリアミド樹脂60〜15重量部と、平均粒子径が0
.01〜100μの範囲にある無機充填剤粉末40〜8
5重量部を回転翼を内蔵する高速流動混合機中で樹脂の
融点ないし融点以上20℃の温度範囲で高速流動混合せ
しめ、回転翼トルク(モータ負荷)が急上昇を開始した
直後に高速流動混合機から排出して、急冷することを特
徴とする無機充填剤含有ポリアミド樹脂組成物の製造法
1 60 to 15 parts by weight of polyamide resin of various shapes with an average specific surface area of 2 cm^2/g or more and an average particle size of 0
.. Inorganic filler powder in the range of 01-100μ 40-8
5 parts by weight were mixed at high speed in a high-speed fluid mixer with a built-in rotary blade at a temperature range of 20°C above the melting point of the resin, and immediately after the rotor torque (motor load) started to increase rapidly, the high-speed fluid mixer 1. A method for producing a polyamide resin composition containing an inorganic filler, which comprises discharging the composition from a container and rapidly cooling the composition.
JP9837274A 1974-08-29 1974-08-29 Method for producing polyamide resin composition containing inorganic filler Expired JPS5942009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9837274A JPS5942009B2 (en) 1974-08-29 1974-08-29 Method for producing polyamide resin composition containing inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9837274A JPS5942009B2 (en) 1974-08-29 1974-08-29 Method for producing polyamide resin composition containing inorganic filler

Publications (2)

Publication Number Publication Date
JPS5125553A JPS5125553A (en) 1976-03-02
JPS5942009B2 true JPS5942009B2 (en) 1984-10-12

Family

ID=14218038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9837274A Expired JPS5942009B2 (en) 1974-08-29 1974-08-29 Method for producing polyamide resin composition containing inorganic filler

Country Status (1)

Country Link
JP (1) JPS5942009B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171736A (en) * 1985-12-09 1986-08-02 Karupu Kogyo Kk Production of granular resin composition
JPS63270761A (en) * 1987-04-28 1988-11-08 Unitika Ltd Polyamide resin composition of good thermal conductivity

Also Published As

Publication number Publication date
JPS5125553A (en) 1976-03-02

Similar Documents

Publication Publication Date Title
US20080310251A1 (en) Elastomer mixtures for rubber manufacture
US4491553A (en) Method for producing filler-loaded thermoplastic resin composite
US6312639B1 (en) Processing aid for thermoplastic resin compositions
JPS63207617A (en) Manufacture of polyolefin resin composition containing inorganic filler
JPS5891736A (en) Granulation of filler
US3997494A (en) Compounded thermoplastic polymeric materials and fillers
US4789597A (en) Incorporation of chemically reactive agents on resin particles
US4045403A (en) Method of compounding thermo-plastic polymeric materials and fillers
US4331776A (en) Polyamide masterbatches
JPWO2004033538A1 (en) Method for producing resin composition
CN102378781A (en) Neutralization by filler
US4046849A (en) Method of compounding thermo-plastic polymeric materials and fillers and extruding onto electrical conductors
US3962531A (en) Electrical conductor insulated with filled polymeric compounds
US4524160A (en) Directly moldable resin compositions for composite plastics
JPS5942009B2 (en) Method for producing polyamide resin composition containing inorganic filler
JPH0222094B2 (en)
CA1230271A (en) Rotational molding grade lldpe resin
JP3846825B2 (en) Method for producing epoxy resin composition for encapsulating granular semiconductor
CN105189618A (en) Halogenated polymer composite composition, its manufacturing process and its use
JP2000127152A (en) Manufacture of master batch pellet
JPH08165376A (en) Thermoplastic resin composition
JPS5953291B2 (en) Kneading method of thermoplastic resin
JP2001048992A (en) Holding master batch composition and its production
JPS6056513A (en) Manufacture of polymerized resin having large packing density and blend
JPH0258298B2 (en)