JPS5941957A - Picture device and picture converting method using said device - Google Patents

Picture device and picture converting method using said device

Info

Publication number
JPS5941957A
JPS5941957A JP57150661A JP15066182A JPS5941957A JP S5941957 A JPS5941957 A JP S5941957A JP 57150661 A JP57150661 A JP 57150661A JP 15066182 A JP15066182 A JP 15066182A JP S5941957 A JPS5941957 A JP S5941957A
Authority
JP
Japan
Prior art keywords
electrode
image
striped
photoconductive layer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57150661A
Other languages
Japanese (ja)
Inventor
Kozo Oka
岡 孝造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP57150661A priority Critical patent/JPS5941957A/en
Publication of JPS5941957A publication Critical patent/JPS5941957A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa

Abstract

PURPOSE:To form compactly as one body each function of a copying machine, a facsimile and a printer, and to realize a high speed operation, by laminating a stripe electrode and a moving electrode in accordance with a prescribed order, and constituting a picture device. CONSTITUTION:A picture device is constituted by laminating successively a stripe electrode 2(Xi) and a photoconductive layer 3 on an insulating supporting body 1, and providing a moving electrode 4(Y) crossing the electrode Xi, on said layer. In this state, an electric field is generated in the inside of the layer 3 by giving a potential difference between the electrodes 2 and 4, and scanning the electrode 4, charge implantation is executed to the layer 3 from the electrode 2, subsequently, exposure of an optical image executed, and an electrostatic latent image is formed. Thereafter, charge implantation from the electrode 2 corresponding to a charge pattern of the electrostatic latent image is generated by giving a potential difference between the electrodes 2 and 4, and scanning the electrode 4, its current is detected, and a charge pattern signal is obtained.

Description

【発明の詳細な説明】 本発明は、 a)光学画像から静電m像への変換、 b)nt電気信号ら静電m像への変換、C)光学面f℃
から電気信号への変換 の三つのモードの変換をrテうことグ)できる画像デバ
イス及びそのデバイスを用いる画像変換方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a) conversion from an optical image to an electrostatic m-image, b) conversion from an nt electric signal to an electrostatic m-image, and C) an optical surface f°C.
The present invention relates to an image device capable of converting three modes of conversion from an electric signal to an electric signal, and an image conversion method using the device.

各種の+1ljr滓作成装置毘、例えば決写機、ファク
シミリ、プリンター等はこれまで個々に発展をとげてき
たが、高度な両1象情報処明が要求されるにしたがい、
これらの機能を複合化するための技術が注目されてきて
いる。この複合化を行うためには1例えば電子写真万代
による複写機に画像読み取り装置どレーザー泪査装置を
っけ加えることが考えられる1、こジノ場合複写機とし
て用いるには、光学系によって原稿像を感光体に投影し
て静電m像を形成するか、あるいは原稿の光学像をCC
U等の読み取り素子によって電気信号にf換し、これに
よってレーザー光を感光体に走査して靜N、潜像を形成
する。次にこの静電潜像を現陳じ、転写して可視像を得
る。
Various +1ljr slag producing devices, such as photocopy machines, facsimiles, and printers, have developed individually up to now, but as more sophisticated information processing is required,
Technologies for combining these functions are attracting attention. In order to achieve this combination, it is conceivable to add, for example, an image reading device and a laser scanning device to an electrophotographic copying machine. is projected onto a photoreceptor to form an electrostatic m-image, or an optical image of the original is converted into a CC
The signal is converted into an electric signal by a reading element such as U, and the laser beam is scanned onto the photoreceptor to form a latent image. This electrostatic latent image is then developed and transferred to obtain a visible image.

ファクシミリとして信号を送り出すには、読み取り素子
を通して画f象を電気信号に変換する。
To send out a signal as a facsimile, the image is converted into an electrical signal through a reading element.

又ファクシミリあるいはプリンターとして画像を作成す
るには、電気信号をレーザー走査装置けによって静電潜
1象に変換する。しかしながら、読み取り素子から靜電
潜「象への¥換速度は9通常の複写機におり゛る光学系
から静電潜像への変換速度に比較して遅い。また読み取
り装置とレーザー走査装置を複写機に付加することによ
り、装置のコストは著しく高くなる。したがって、この
ような機能の複合化をそれぞれの装置の性能を犠牲にす
ることな(、コンパクトに、かつ低コストで行う方法が
なく、複合化によるメリットが充分見い出せないのが現
状であった。
To create an image as a facsimile or printer, an electrical signal is converted into an electrostatic latent image by a laser scanning device. However, the conversion speed from the reading element to the electrostatic latent image is slower than the conversion speed from the optical system to the electrostatic latent image in normal copying machines. Adding additional functions to a machine significantly increases the cost of the device.Therefore, there is no way to combine such functions without sacrificing the performance of each device (i.e., there is no way to do it compactly and at low cost). At present, the benefits of compounding cannot be fully realized.

本発明を工、これらの点を改善したものであり、一つの
両(FJIデバイスにより上記のt(% RFをすべて
満足させ、高速複写機能とファクシミリ機能を低コスト
で、コンパクトに複合化したものである。
The present invention has been developed to improve these points, and to satisfy all of the above t(% RF) using a single FJI device, it combines high-speed copying and facsimile functions at low cost and in a compact manner. It is.

すなわち5本発明は a) 光学画像から静電潜像への変換、b)K気信号か
ら静引旧9への変換、 C)光学両開から11テ気信号への変換の三つのモード
の変換を行うことのでへる画はデバイスを提供したもの
である。
In other words, the present invention has three modes: a) conversion from an optical image to an electrostatic latent image, b) conversion from a K signal to a static signal, and C) conversion from an optical double opening to an 11 signal. The image provided by the device is the one that performs the conversion.

以F1図面に従って本発明の詳細な説明する。The present invention will be described in detail below with reference to the F1 drawing.

本発明の画像デバイスの構成を第1図及び第2図に示す
。第1図は画像デバイスの平面図である。
The configuration of the image device of the present invention is shown in FIGS. 1 and 2. FIG. 1 is a plan view of the imaging device.

信号電極Xiはストライブ状である。移ル11電極Y)
工信号電極Xiと直交しており、@1図中、矢印で示す
ように(Fi号電極にそって移M1可能となっている。
The signal electrode Xi has a stripe shape. transfer 11 electrode Y)
It is perpendicular to the engineering signal electrode Xi, and can be moved along the Fi signal electrode (as shown by the arrow in Figure @1).

第2図はデバイスの断面図である。絶縁性支持体1の上
K、ストライブ状の信号電極2(第1図中のXi )が
設けられ、その上に光導電性層3が積層され、σらにそ
の上に移動電極4(第1図中のY)が置かれている。8
動電極4は光導電性層上に単に接触しておかれているの
みであり、移動が可能である。また両者の間に空隙が存
在してもよい。電荷注入を阻止するため、移動電極の表
面もしくは光導電性層の表1mには絶縁層5を設けるこ
とが望ましい。
FIG. 2 is a cross-sectional view of the device. A striped signal electrode 2 (Xi in FIG. 1) is provided on the top of the insulating support 1, a photoconductive layer 3 is laminated thereon, and a movable electrode 4 ( Y) in Figure 1 is placed. 8
The movable electrode 4 is simply kept in contact with the photoconductive layer and is movable. Further, a gap may exist between the two. In order to prevent charge injection, it is desirable to provide an insulating layer 5 on the surface of the moving electrode or on the surface 1m of the photoconductive layer.

光導電性層3は単層であっても、あるいは電荷発生層と
電荷輸送とに分離されていてもよい。
The photoconductive layer 3 may be a single layer or may be separated into a charge generation layer and a charge transport layer.

信号電極2と光導電性層3との間の接触は、正孔あるい
は電子のどちらか一方が電場の存在下で注入可能であり
、他方に対してはブロッキング性でなければならない。
The contact between the signal electrode 2 and the photoconductive layer 3 must be such that either holes or electrons can be injected in the presence of an electric field, while blocking the other.

このことは材料の選択によって容易に実現され、光導電
材料と電極材料との仕事関数の関係により所望の電荷注
入を生じさせることができる。
This can be easily achieved through material selection, and the desired charge injection can be produced by the work function relationship between the photoconductive material and the electrode material.

即ち、光導電材料の仕事関数より大きな仕事関数を有す
る電極材料を用いれば正孔の注入を、また逆に光導′f
rL利料の仕$1■数より小さな仕事関数を有する電極
利料を用いれば49子の注入を行うことができろ。
That is, if an electrode material with a work function larger than that of the photoconductive material is used, holes can be injected, and conversely, light guide 'f'
If an electrode material having a work function smaller than the quantity of the rL material is used, 49 electrons can be injected.

lの絶縁性支持体と5の絶縁層の材料としては、ポリエ
ステル、ポリカーボネート、ポリウレタン、テフロン、
シリコン等の高分子圏脂を用いることができる。厚みは
1の絶縁性支持体は100μm以上、5の絶縁層IOi
〜50μmの間であることが望ましい1. 2リストライグ状の屯啄ハ、At、Ay、Cr、 Ni
Materials for the insulating support 1 and the insulating layer 5 include polyester, polycarbonate, polyurethane, Teflon,
A polymeric resin such as silicone can be used. The thickness of the insulating support 1 is 100 μm or more, and the thickness of the insulating layer IOi of 5 is 100 μm or more.
It is desirable that it is between ~50 μm1. 2-list lig-like tunic, At, Ay, Cr, Ni
.

Au、 Zn、 Cu等の各種金風を蒸着したのち化学
エツチング法によりストライプ状パターンに形成するか
、あるいはストライプ状の開口部を有するマスクを介し
て上記金属を蒸着した後、マスクを除去することによっ
て形成することができる。電極の厚さは通常500ス〜
5μm程度である。また電極の巾と間隔は再現される画
r象の解像度と関係するが、16ドツト/I!wIの解
像度を満足するためには、1130μ、間隔30μ程度
に設定される。又4の移動電極の巾も信号電極と同程度
が望ましい。
After vapor-depositing various metals such as Au, Zn, and Cu, a striped pattern is formed using a chemical etching method, or after the metal is vapor-deposited through a mask having striped openings, the mask is removed. can be formed by The thickness of the electrode is usually 500mm~
It is about 5 μm. In addition, the width and spacing of the electrodes are related to the resolution of the reproduced image, but the resolution is 16 dots/I! In order to satisfy the resolution of wI, it is set to about 1130μ and the interval is about 30μ. Further, it is desirable that the width of the moving electrode 4 is about the same as that of the signal electrode.

3の光導電性層としては、単層の光導電層を用いてもよ
いし、あるいは電荷輸送層と電4Wr発生層の2Nに分
離してもよい。電荷発生層としては、Se、 5eTe
、 5eAs、CdS、 Cd’s、CdTe、5eA
sTe 。
As the photoconductive layer No. 3, a single photoconductive layer may be used, or it may be separated into a charge transport layer and a 4Wr generation layer. As the charge generation layer, Se, 5eTe
, 5eAs, CdS, Cd's, CdTe, 5eA
sTe.

アモルファスSi:H,別=F等の無機光導′重体や、
フタロシアニン、シアニン、メロシアニン、ビIJ I
Jウム塩等の有機光導電体を用いることができる。7の
電荷輸送層には、可視光に対してほぼ透明な有機半導体
が適している。例えば、ポリビニルカルバゾール(PV
K)等の高分子有機半導体、あるいは低分子電子供力性
物質をポリカーボネートやポリエステル等の樹脂中に分
子分散させたものを用いることができる。低分子電子供
与性物質としては、アントラセ/、2,6−シメチルア
ントラセン、フェナントレン、ピレン、コロネン等の縮
合多環式化合物、ジフェニルアミン、ジナフチルアミン
、トリフェニルアミン、トリーp−)ジルアミン、N 
、 N 、 N’、 N’−テトラフェニル−1,3(
及び−1,4)−フェニレンジアミン、N、N、N’、
N’−テトラベンジル−1,3(及び−1,4) −フ
ェニレンジアミン。
Inorganic light guide heavy bodies such as amorphous Si:H, another = F,
Phthalocyanine, cyanine, merocyanine, BiJI
Organic photoconductors such as Jium salts can be used. For the charge transport layer 7, an organic semiconductor that is substantially transparent to visible light is suitable. For example, polyvinylcarbazole (PV
A high-molecular organic semiconductor such as K) or a low-molecular electrodynamic substance molecularly dispersed in a resin such as polycarbonate or polyester can be used. Examples of low-molecular electron donating substances include fused polycyclic compounds such as anthrace/, 2,6-dimethylanthracene, phenanthrene, pyrene, and coronene, diphenylamine, dinaphthylamine, triphenylamine, tri-p-)dylamine, N
, N, N', N'-tetraphenyl-1,3(
and -1,4)-phenylenediamine, N, N, N',
N'-tetrabenzyl-1,3(and-1,4)-phenylenediamine.

N、N、N’、N’ −jトラ〔2−メブールベ/ジル
〕−1,3(及び−]、4)−フェニレンジアミン、N
N, N, N', N' -j tra[2-meboulevé/zyl]-1,3(and-],4)-phenylenediamine, N
.

N 、 N’、 N’−テトラ〔4−クロルベンジル〕
−1゜3(及び−1,4,)−フェニレンジアミン、N
N, N', N'-tetra[4-chlorobenzyl]
-1゜3(and-1,4,)-phenylenediamine, N
.

N 、 N’、 N’−テトラフェニルー[:1,1’
−ビフェニル) −4,4’−ジアミン、N、N’−ン
フェニルーN 、 N’−ビス−〔3−メチルフェニル
) −[1,1’−ビフェニル] −4,4’−ジアミ
ン、4,4′−ビス−[N、N−ジエブールアミノ〕テ
トラフェニルメタン等の芳香族アミン化合物、2−(4
’−ジメチルアミノフェニルツー5−フェニル−オキサ
ゾール等のオキサゾール誘導体、2− [4’−ジメチ
ルアミノフェニルクーベンズチアゾール等のチアゾール
誘導体、2−(4’−クロロフェニル) −4,5−ジ
フェニル−イミダゾール等のイミダゾール話導体、1,
3.5− )リフェニルピラゾリ7%l−フェニル−3
−〔4’−ジエチルアミノスチリル)−s−(、i“−
ジメチルアミノフェニル〕−ヒラソリン、1−フェニル
−3−〔4′−ジエチルアミノスチリル]−5−[4“
−ジエチルアミノフェニル]−ピラゾリン等のピラゾリ
ン誘導体、2,5−ビス−〔4′−ジメチルアミノフェ
ニル) −1,3,4−オキサジアゾール、2.5− 
t’スス−4/−ジエチルアミノフェニル〕−1,3,
4−オキサジアゾール等のオキサジアゾール94体、カ
ルバソール及びN−エチルカルバゾール、N−イングロ
ビルカルバゾール、N−フェニルカルバソール、ベンズ
カルバゾール等のカルバゾール誘導体を用いることがで
きる。
N, N', N'-tetraphenyl[:1,1'
-biphenyl) -4,4'-diamine, N,N'-phenyl-N, N'-bis-[3-methylphenyl) -[1,1'-biphenyl] -4,4'-diamine, 4,4 Aromatic amine compounds such as '-bis-[N,N-diebulamino]tetraphenylmethane, 2-(4
Oxazole derivatives such as '-dimethylaminophenyl-5-phenyl-oxazole, thiazole derivatives such as 2-[4'-dimethylaminophenylcubenzthiazole, 2-(4'-chlorophenyl)-4,5-diphenyl-imidazole, etc. imidazole conductor, 1,
3.5-) Liphenylpyrazoli 7% l-phenyl-3
-[4'-diethylaminostyryl)-s-(,i“-
dimethylaminophenyl]-hylasoline, 1-phenyl-3-[4'-diethylaminostyryl]-5-[4"
-diethylaminophenyl]-pyrazoline derivatives such as pyrazoline, 2,5-bis-[4'-dimethylaminophenyl)-1,3,4-oxadiazole, 2,5-
t'sus-4/-diethylaminophenyl]-1,3,
94 oxadiazoles such as 4-oxadiazole, carbazole and carbazole derivatives such as N-ethylcarbazole, N-inglovircarbazole, N-phenylcarbazole, and benzcarbazole can be used.

電荷発生層の厚さは0.05〜4.0μm、電荷輸送層
の厚さは5〜80μmの間が望ましい。また電荷発生層
と電荷輸送層を分離せず、単一の光導電性層を用いる場
合には、その膜厚は5〜80μmの間が望ましい。
The thickness of the charge generation layer is preferably 0.05 to 4.0 μm, and the thickness of the charge transport layer is preferably 5 to 80 μm. Further, when a single photoconductive layer is used without separating the charge generation layer and the charge transport layer, the film thickness is preferably between 5 and 80 μm.

次に本発明の画像デバイスの動作を図面にしたがって説
明する。第3図〜第5図は光入力を静電潜像に変換する
プロセスを示す。信号電極xi等はすべてゼロ電位に設
定し、移動電極Yには負電圧を印加した状態で、移動電
極を光導電性層表面全面に走査する。このとき、信号型
イ眞Xi等と移動正極Yの交点に相当する光導電性層内
部に電場が発生し、信号7■を極から光導電性R1への
電荷注入が生じろC,ijF 3図参照)うここでは、
正孔のみ注入し、電子の注入は生じないものとする。こ
うして、移動電極による走査が終了した状態では、第4
図に示すように光導電性層表面近傍に市U荷が存在する
ようになる。
Next, the operation of the image device of the present invention will be explained with reference to the drawings. Figures 3-5 illustrate the process of converting optical input into an electrostatic latent image. The signal electrode xi and the like are all set to zero potential, and the moving electrode Y is scanned over the entire surface of the photoconductive layer while a negative voltage is applied to the moving electrode Y. At this time, an electric field is generated inside the photoconductive layer corresponding to the intersection of the signal type IXi, etc. and the moving positive electrode Y, and charge injection of the signal 7 from the pole to the photoconductive layer R1 occurs. (See figure) Here,
It is assumed that only holes are injected and no electrons are injected. In this way, when the scanning by the moving electrode is completed, the fourth
As shown in the figure, U-shaped particles are present near the surface of the photoconductive layer.

ここで画r東露光を与えると非両地部では表面の正電荷
が消失し、静電潜rtが形成される(第5図参照)。
Here, when the image r is exposed to the east, the positive charge on the surface disappears in the non-bottom area, and an electrostatic latent rt is formed (see FIG. 5).

第6図〜第7図は電気入力によって静電潜像を形成する
プロセスを示す。移1ト11電極Yをゼロ雷1位に設定
し、光導電性層表面を走査すると同時に、信号電極xi
等に両f象信号に応じてゼロ電圧あるいはE!圧を印加
する(第6図参照)。
6-7 illustrate the process of forming an electrostatic latent image by electrical input. The signal electrode xi is set at zero lightning position and the photoconductive layer surface is scanned at the same time.
etc., zero voltage or E! depending on both f-parallel signals. Apply pressure (see Figure 6).

正電圧を印加した信号型4ijjxi等と移動電w1.
Yとの交点に相当する光導電性層内部には電場が発生し
、信号!極から光導電性層へ正孔が注入し、光導電性層
表面あるいはその近傍に捕獲される。こうして、′礪気
信号入力によって、光導電性層表面に画f象に対応した
lに荷パターンを形成することができろ(第7図参照)
A signal type 4ijjxi etc. to which a positive voltage is applied and a moving electric current w1.
An electric field is generated inside the photoconductive layer corresponding to the intersection with Y, and a signal! Holes are injected from the pole into the photoconductive layer and are trapped at or near the surface of the photoconductive layer. In this way, it is possible to form a charge pattern on the surface of the photoconductive layer in a direction corresponding to the image f by inputting a stagnation signal (see Fig. 7).
.

第3図〜第5図のプロセス、あるいは第6図〜第7図の
プロセスによって形成した静′1モ潜橡を1、負極性に
帯電したトナーで現像することができ、さらにこれを記
録紙に転写することによって画像を得ることがで角る。
It is possible to develop the static latent area formed by the process shown in FIGS. 3 to 5 or the process shown in FIGS. The image can be obtained by transferring it to the corner.

第8図〜第9図は、両「象を読みとって電気信号に変換
するプロセスを示す。画像デバイスには、第3図〜第5
図のプロセスにより、光学画像に応じた電荷パターンが
形成され”でいろものとする。
Figures 8 to 9 show the process of reading images and converting them into electrical signals.
Through the process shown in the figure, a charge pattern corresponding to the optical image is formed.

まず、信号電極xi−1と移動゛電極Yとの交点に相当
する光導電性層表面には電荷が存在しない。この時、信
号電極x1−1に正1位を印加すると、信号電極X1−
1から光導電性層へ’Tlv荷注入が生じ、これを検知
することができる(第8図参照)。次に、信号電極別に
正電位を印加すると、信号電極X、iと移動電極との交
点VCは電荷があらかじめ存在するため、それ以上の電
荷注入が生じない(第91IXl鳩照)。このように移
動電極をゼロベ位に設定した状態で光導m、層表面を走
汗すると同時に信号電極を逐次ゼロ′覗位から正゛市位
に切り変えていき、この時信号屯′4へに流れる電流を
検知することにより、信号電極と移動電極との交点に相
当する部分のfl、荷パターンを検出することができる
。このようにして、光入力を正電信号出力に欠換するこ
とができる。
First, no charge exists on the surface of the photoconductive layer corresponding to the intersection between the signal electrode xi-1 and the moving electrode Y. At this time, if a positive 1st position is applied to the signal electrode x1-1, the signal electrode
1 to the photoconductive layer, which can be detected (see FIG. 8). Next, when a positive potential is applied to each signal electrode, no further charge injection occurs at the intersection point VC between the signal electrodes X, i and the moving electrode because charges already exist (91st IXl Hateru). In this way, with the moving electrode set at the zero position, the light guide m is sweating on the layer surface, and at the same time the signal electrode is successively switched from the zero' position to the correct position, and at this time, the signal electrode is moved to the signal position '4. By detecting the flowing current, it is possible to detect fl and the load pattern at the portion corresponding to the intersection of the signal electrode and the moving electrode. In this way, optical input can be replaced with positive electrical signal output.

以下、本発明の実施例について説明する。厚さ200μ
mのポリエステルフィルムに対し、開口ri130μ、
ピッチ60μのストライプ状の開口部を有するメタルマ
ス、りを重ねあわせ、これにNiを約0.5μの厚さに
蒸着した。その後メタルマスクを取り除き、信号電極を
得た。次に、この上にセレニウムを抵抗加熱方式の蒸着
源を用いて20μm厚に真空蒸着し感光体部分を4だ。
Examples of the present invention will be described below. Thickness 200μ
m polyester film, opening ri130μ,
Metal masses having striped openings with a pitch of 60 μm were stacked on top of each other, and Ni was deposited on this to a thickness of about 0.5 μm. After that, the metal mask was removed to obtain a signal electrode. Next, selenium was vacuum evaporated onto this to a thickness of 20 μm using a resistance heating type evaporation source to form the photoreceptor portion.

また上記と同様の方法で得た1に極膜から一本の帯状電
極を切り取り、これを径20慴のアクリル製の円柱に接
着し、さらにNi表面にポリウレタン樹脂5μmの厚さ
にコートし、移動電極とした。
In addition, one strip-shaped electrode was cut from the electrode film 1 obtained in the same manner as above, and this was glued to an acrylic cylinder with a diameter of 20 mm, and the Ni surface was further coated with polyurethane resin to a thickness of 5 μm. It was used as a moving electrode.

次に信号電極を接地し、移動N、極IC−400Vを印
加した状態で移動電甑面を感光体表面に接触させて、1
50 tan/mの一様なスピードで走査させた後、感
光体表面に像露光を行なった。
Next, the signal electrode is grounded, and the moving electrode surface is brought into contact with the photoreceptor surface with moving N and pole IC-400V applied.
After scanning at a uniform speed of 50 tan/m, image exposure was performed on the surface of the photoreceptor.

次に感光体表面を正極性に帯電したトナーで現像し、転
写紙を重ねあわせ、転写紙の背面に置いた導電性ゴムロ
ーラーに負電圧を印加してトナーを転写紙に転写したと
ころ、良好な画像が得られた。
Next, the surface of the photoreceptor was developed with positively charged toner, transfer paper was placed on top of the other, and a negative voltage was applied to a conductive rubber roller placed on the back of the transfer paper to transfer the toner to the transfer paper. A great image was obtained.

次に、移動電極を接地して感光体表面を150M / 
冠の速度で走査す、ると同時に、r信号′屯極と移動電
極との交点が画像部に相当する時には信号電極に400
Vを印加し、非画像部に相当する時にはゼロVにした。
Next, the moving electrode is grounded and the surface of the photoreceptor is 150M/
At the same time, when the intersection point of the r signal's peak pole and the moving electrode corresponds to the image area, the signal electrode is scanned at a speed of 400
V was applied, and zero V was applied when corresponding to the non-image area.

これに対し、上述と同様の方法で現像と転写を行ない、
良好な17iii像を得た。
On the other hand, development and transfer are performed in the same manner as described above,
A good 17iii image was obtained.

次に信号電極を接地し、移動電極に−400Vを印加し
た状態で、移動電極面を感光体表面に接触させて、15
0 w@/ mの一様なスピードで走査させた後、感光
体表面に廉露光を行なった。
Next, with the signal electrode grounded and -400V applied to the movable electrode, the movable electrode surface was brought into contact with the photoconductor surface.
After scanning at a uniform speed of 0 w@/m, the surface of the photoreceptor was exposed to light.

その後、移動電極と信号をすべて接地した状態で感光体
表面を走査すると同時に信号電極を逐次ゼロVかも40
tJVK切り変え、この時信号電極に流れる電流を読み
取った。信号電極と移動電極の交点が両四部に相当する
用台には電流が流れず、非画像部に相当する場合には電
流が流れた。ふたたび信号電極を接地し、同様な動作を
(り返すことによって、光学画像を′電気信号としてと
り出すことができた・         4゜以上述べ
たように、本発明による二次元画r象デバイスは、従来
別個のデバイスでなければ実現できなかった光学画像入
力の静[満開への変換、電気入力信号の静電潜像への変
換、光学画像人力の電気信号への変換の3種の機能を1
つのデバイスで実現できるようにしたものである。
After that, while scanning the surface of the photoreceptor with all the moving electrodes and signals grounded, the signal electrodes are sequentially applied to zero V.
tJVK was switched, and the current flowing through the signal electrode at this time was read. No current flowed in the base where the intersection of the signal electrode and the moving electrode corresponded to both four parts, but current flowed in the base where the intersection of the signal electrode and the moving electrode corresponded to the non-image part. By grounding the signal electrode again and repeating the same operation, it was possible to extract the optical image as an electrical signal.As described above, the two-dimensional imaging device according to the present invention The three functions that could only be achieved using separate devices in the past: converting optical image input into a static [full bloom], converting an electrical input signal into an electrostatic latent image, and converting an optical image manually into an electrical signal are now available.
It is possible to realize this with one device.

これにより、従来の複写機、ファクシミリ、プリンター
の機能をコンパクトにまとめることが可能となった。ま
た従来の電子写真方式の複写機及びプリンターに比較し
て、本発明のデバイスの大へな長所は静電m@の形成に
おいて(工、コロナ帯電器を必要としないことである。
This has made it possible to compactly combine the functions of conventional copying machines, facsimile machines, and printers. A great advantage of the device of the present invention, compared to conventional electrophotographic copiers and printers, is that it does not require a corona charger in the formation of the electrostatic charge.

これにより、高圧電源が不用となり、またコロナ帯電器
に帰因するトラブルが消滅し、信頼性が向上し低コスト
化とコンパクトが可能となった。
This eliminates the need for a high-voltage power supply, eliminates troubles caused by corona chargers, improves reliability, and enables cost reduction and compactness.

また画[tの読み取りにおいても、従来の一次元アレイ
構造の読み取り素子と比較して大面積の二次元領域にお
いて+ttiif象読み取りを行なうため、高速の読み
取り動作が可能となった。
Furthermore, in reading the image [t, the +ttiif image reading is performed in a two-dimensional area having a larger area than the conventional reading element having a one-dimensional array structure, so a high-speed reading operation is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1面像デバイスの平面図、第2図は画像デバイ
スの断面図、第3図〜第5図G;C1光学画像から静電
性1象への変換プロセスの説明図、第6図〜第7図は電
気信号から静電潜像への変換プロセスの説明図、第8図
〜第9図は光学画像から電気信号への変換プロセスの説
明図であるO 国中符号: 1・・・絶縁性支持体;2、Xi・・・信号電極:3・
・・光導電性府;4、Y・・・移動11T、 4’0 
; 5・・・M’S縁層。 第  1  図
Figure 1 is a plan view of a single-plane image device, Figure 2 is a cross-sectional view of the image device, Figures 3 to 5G; 7 to 7 are explanatory diagrams of the conversion process from an electrical signal to an electrostatic latent image, and FIGS. 8 to 9 are explanatory diagrams of the conversion process from an optical image to an electrical signal. ... Insulating support; 2, Xi... Signal electrode: 3.
・・Photoconductive area; 4, Y...Movement 11T, 4'0
; 5...M'S marginal layer. Figure 1

Claims (1)

【特許請求の範囲】 1、絶縁性支持体上に、ストライプ状電極、光導電性層
を順次積層し、その上にストライプ状電極に対し交叉す
る移動?It啄を設りてなることを特徴とする両f宏デ
バイス。 2、絶縁性支持体上に、ストライプ電極凧、光導電性層
を順次積層し、その上にストライプ状電極に対し   
交叉する移動電極を設けてなる画像デバイスを用い、ス
トライプ状電極と移動電極との間に電位差を与えながら
移動電極を走査して光導電性層内部に電場を生ぜしめて
、ストライプ状電極から光導電性層へ電荷注入を行ない
、次いで光像の露光を行ない静電潜像を形成することを
特徴とする光像かも静電m像への画1争変換方法。 3o  絶縁性支持体−ヒに、ストライプ状W、N、光
導電性層を順次積層し、その上にストライプ状電極に対
し   交叉する移動電極を設けてなる画像デバイスを
用い、ストライプ状電極と移動電極との間に画像に対応
した電位差を与えながら移動電極を走査して光導′成性
内部に電場を発生させ、ストライプ状電極から光導電性
層へ画像に対応した電荷注入を行なって静電潜1’I!
を形成することを特徴とする画像状電気信号から静電m
像への画像′R換方法。 4、絶縁性支持体」二に、ストライプ状電極、光導電性
層を順次積層I7、その上にストライプ状電極に対し 
  交叉する移動電極を設け°Cなる画像デバイスを用
い、ストライプ状電極と移動電極との間に電位差を与え
ながら移動電極を走査して光導電性層内部に電場を生ぜ
しめて、ストライプ状電極から光導電性層へ電荷注入を
行ない1次いで光像の?耳・光を行ない静N潜像を形成
し、その後ストライプ状電極と移動電極との間に電位差
を与えながら移動電極を走査して静’;11 m 閾の
電荷パター/に対応したストライプ状屯極がらの電荷注
入を生ぜしめ、その糟、流を検出することを特徴とする
光学画像から画i雫状■、気信号への1IJi′i(象
変換方法。
[Claims] 1. A striped electrode and a photoconductive layer are sequentially laminated on an insulating support, and the striped electrode is moved to intersect with the striped electrode. A Ryo f Hiroshi device characterized by being equipped with an Itaku. 2. A striped electrode kite and a photoconductive layer are sequentially laminated on an insulating support, and a striped electrode is placed on top of the striped electrode kite and a photoconductive layer.
Using an imaging device provided with intersecting moving electrodes, the moving electrodes are scanned while applying a potential difference between the striped electrodes and the moving electrodes to generate an electric field inside the photoconductive layer, and photoconductive electricity is generated from the striped electrodes. 1. A method for converting an optical image into an electrostatic m-image, which comprises injecting charge into a static layer and then exposing the optical image to form an electrostatic latent image. 3o Using an image device in which a striped W, N, and photoconductive layer are sequentially laminated on an insulating support, and a movable electrode that intersects with the striped electrode is provided on the layer, the striped electrode and the movable An electric field is generated inside the photoconductive layer by scanning the moving electrode while applying a potential difference corresponding to the image between the striped electrode and the photoconductive layer. Sub 1'I!
Electrostatic m from an image-like electrical signal characterized by forming
How to convert an image into an image. 4. Insulating support” Second, a striped electrode and a photoconductive layer are sequentially laminated I7, and a striped electrode is placed on top of that.
Using an image device (°C) in which intersecting moving electrodes are provided, the moving electrodes are scanned while applying a potential difference between the striped electrodes and the moving electrodes to generate an electric field inside the photoconductive layer, and light is emitted from the striped electrodes. Charge is injected into the conductive layer and then an optical image is formed. A static N latent image is formed by applying a static N latent image, and then the moving electrode is scanned while applying a potential difference between the striped electrode and the moving electrode to form a static N latent image corresponding to a static charge pattern with a threshold of 11 m. 1IJi'i (an image conversion method) from an optical image to a droplet-like signal, which is characterized by causing polar charge injection and detecting its flow.
JP57150661A 1982-09-01 1982-09-01 Picture device and picture converting method using said device Pending JPS5941957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57150661A JPS5941957A (en) 1982-09-01 1982-09-01 Picture device and picture converting method using said device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150661A JPS5941957A (en) 1982-09-01 1982-09-01 Picture device and picture converting method using said device

Publications (1)

Publication Number Publication Date
JPS5941957A true JPS5941957A (en) 1984-03-08

Family

ID=15501717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150661A Pending JPS5941957A (en) 1982-09-01 1982-09-01 Picture device and picture converting method using said device

Country Status (1)

Country Link
JP (1) JPS5941957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272395A (en) * 2008-05-02 2009-11-19 Nippon Hoso Kyokai <Nhk> Imaging element
WO2015038396A1 (en) * 2013-09-10 2015-03-19 Qualcomm Mems Technologies, Inc. Photoconductive optical touch
US9262003B2 (en) 2013-11-04 2016-02-16 Qualcomm Incorporated Piezoelectric force sensing array
US9323393B2 (en) 2013-06-03 2016-04-26 Qualcomm Incorporated Display with peripherally configured ultrasonic biometric sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272395A (en) * 2008-05-02 2009-11-19 Nippon Hoso Kyokai <Nhk> Imaging element
US9323393B2 (en) 2013-06-03 2016-04-26 Qualcomm Incorporated Display with peripherally configured ultrasonic biometric sensor
WO2015038396A1 (en) * 2013-09-10 2015-03-19 Qualcomm Mems Technologies, Inc. Photoconductive optical touch
US9262003B2 (en) 2013-11-04 2016-02-16 Qualcomm Incorporated Piezoelectric force sensing array

Similar Documents

Publication Publication Date Title
US4611901A (en) Electrophotographic method and apparatus
US4545669A (en) Low voltage electrophotography with simultaneous photoreceptor charging, exposure and development
JPS59824B2 (en) image forming member
JPS597973A (en) Developer for electrophotographic copying machine
KR890004869B1 (en) Method for forming a toner imager in electrophotographic printing
JPS5941957A (en) Picture device and picture converting method using said device
US3795513A (en) Method of storing an electrostatic image in a multilayered photoreceptor
US4524117A (en) Electrophotographic method for the formation of two-colored images
US3419888A (en) Electrostatic reproduction system
US3645729A (en) Method of transferring electrostatic latent images using multiple photoconductive layers
US4898797A (en) Multiple xeroprinted copies from a single exposure using photosensitive film buffer element
US3664833A (en) Method of transferring an electrostatic image to a dielectric sheet
JPS5941956A (en) Two-dimensional picture device and picture converting method using said device
JP2619948B2 (en) Injection charge control type photoconductor
US4265989A (en) Photosensitive member for electrophotography
JPS5937765A (en) Two-dimensional picture device and picture converting means using said device
JPS5937567A (en) Picture device and picture converting method using said device
JPS6064364A (en) Method and device for image formation
JPS5941958A (en) Two-dimensional picture device and picture converting method using said device
JP2738787B2 (en) Optical rear recording type image forming apparatus
JP2920663B2 (en) Electrophotographic photoreceptor
JPS6355707B2 (en)
JP2705926B2 (en) Optical rear recording device
JPS6064365A (en) Method and device for image formation
JP2640697B2 (en) Image forming device