JPS594189A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS594189A
JPS594189A JP57113238A JP11323882A JPS594189A JP S594189 A JPS594189 A JP S594189A JP 57113238 A JP57113238 A JP 57113238A JP 11323882 A JP11323882 A JP 11323882A JP S594189 A JPS594189 A JP S594189A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
diffraction grating
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57113238A
Other languages
Japanese (ja)
Inventor
Kenzo Akita
秋田 健三
Hajime Imai
元 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57113238A priority Critical patent/JPS594189A/en
Publication of JPS594189A publication Critical patent/JPS594189A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor light emitting device of double hetero structure having a diffraction grating of less threshold current with ready manufacture by providing an active layer buried in a groove formed on a semiconductor layer which exists above the diffraction grating surface. CONSTITUTION:A diffraction grating 2 is formed by utilizing interference moire of gas laser on the main surface of an n type InP semiconductor substrate 1 of surface index (100). Then, an n type InGaAsP semiconductor layer 4 of the first semiconductor layer matched in lattice constant to the substrate 1 is grown with a p type InP semiconductor layer 6 of the second semiconductor layer. A wafer is removed from a growing furnace, dioxidized silicon film mask 6 is, for example, formed, and a groove 7 which extends to the periodic direction of the diffraction grating 2 is formed. Then, an n type InP semiconductor layer 8, an n type InGaAsP active layer 3, a p type InP semiconductor layer 9, and p type InGaAsP contacting layer 10 are sequantially grown by a normal method, electrodes are then formed, thereby completing a semiconductor light emitting device.

Description

【発明の詳細な説明】 発明の技術分野 本発明は2.半導体発光装置、特に二重へテロ接合構造
を有する半導体発光装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention comprises 2. The present invention relates to improvements in semiconductor light emitting devices, particularly semiconductor light emitting devices having a double heterojunction structure.

従来技術と問題点 従来、通常の半導体レーザを例えば1〜2 (GHzl
程度の高速で変調すると所望の発振スペクトルの外に多
波長のスペクトルが発生する。
Conventional technology and problems In the past, ordinary semiconductor lasers were
If modulation is performed at a relatively high speed, a multi-wavelength spectrum will be generated in addition to the desired oscillation spectrum.

この光をファイバで伝送すると波形が崩れ、これにモー
ド分配雑音が加わるので信号の質は劣化し、受信側では
正確な信号を得ることが困難となる。
When this light is transmitted through a fiber, the waveform is distorted and modal distribution noise is added to it, degrading the signal quality and making it difficult for the receiving side to obtain an accurate signal.

そこで、高速変調しても単一発振スペクトルを(1) 維持できる分布価iM型レーザと呼ばれる半導体発光装
置が開発されている。
Therefore, a semiconductor light emitting device called a distributed valence iM type laser has been developed which can maintain a single oscillation spectrum even when modulated at high speed.

第1図乃至第3図はそれぞれ異なる従来例の要部切断斜
面図である。
FIGS. 1 to 3 are cut-away oblique views of essential parts of different conventional examples.

図に於いて、■は基板、2は回折格子、3は活性層をそ
れぞれ示している。
In the figure, ■ indicates the substrate, 2 indicates the diffraction grating, and 3 indicates the active layer.

図示の全ての従来例に共通して特徴的であるのは、回折
格子2を有している点であり、他の部つ]・の構造は、
従来、知られているものと変りない。
A common feature of all the illustrated conventional examples is that they have a diffraction grating 2, and the structure of the other parts is as follows:
It is no different from what was previously known.

さて、回折格子2ば、その凹凸の周期がレーデの発振彼
区と一致させてあり、波が回折格子の中を往復して共振
するものである。
Now, the period of the unevenness of the diffraction grating 2 is made to match the Rede oscillation range, and the waves reciprocate within the diffraction grating and resonate.

ところで、前記いずれの従来例も、製造に特殊な技法を
要すること、また、しきい値電流が犬であること等の欠
点がある。
By the way, all of the above-mentioned conventional examples have drawbacks such as requiring special techniques for manufacturing and having a low threshold current.

発明の目的 本発明は、製造容易であり、目、つ、しきい値電流が少
ない構造になっている回折格子を有する二重へテロ構造
の半導体発光装置をIに供するものである。
OBJECTS OF THE INVENTION The present invention provides a double heterostructure semiconductor light emitting device having a diffraction grating that is easy to manufacture and has a structure with a low threshold current.

(2) 発明の構成 本発明では、活性層埋め込み構造と分布帰還型構造とを
組合せることが基本になっている。
(2) Structure of the Invention The present invention is based on a combination of an active layer buried structure and a distributed feedback structure.

発明の実施例 まず、本発明一実施例を製作する工程を第4図乃至第8
図を参照しつつ説明する。
Embodiment of the Invention First, the steps for manufacturing an embodiment of the present invention are shown in FIGS. 4 to 8.
This will be explained with reference to the figures.

第4図参照 (1)面指数(100)であるn型1nP半導体基板1
の主面にガス・レーザの干渉縞を利用して回折格子2を
形成する。
See Figure 4 (1) n-type 1nP semiconductor substrate 1 with plane index (100)
A diffraction grating 2 is formed on the main surface using interference fringes of a gas laser.

ガス・レーザとしてはHe−Cαレーザを使用し、ピッ
チを0.23(μm〕とした一次回折格子を得た。
A He-Cα laser was used as the gas laser to obtain a first-order diffraction grating with a pitch of 0.23 (μm).

第5図参照 (2)次に、液相エピタキシャル成長法を適用し、In
P半導体基板1に格子定数を合せた第1の半導体層であ
るn型1nGaAsP  (λ−1,05(#m))半
導体層4を、その上に第2の半導体層であるp型InP
半導体層5を成長開始温度600(’C)として成長さ
せた。
See Figure 5 (2) Next, by applying the liquid phase epitaxial growth method, In
An n-type 1nGaAsP (λ-1,05(#m)) semiconductor layer 4, which is a first semiconductor layer with a lattice constant matched to that of the P semiconductor substrate 1, is formed on the p-type InP semiconductor layer, which is a second semiconductor layer.
The semiconductor layer 5 was grown at a growth start temperature of 600 ('C).

(3) 第6図及び第7図参照 (3)ウェハを成長炉から取り出し、例えば、二酸化シ
リコン膜のマスク6を形成し、回折格子2の周期方向に
延在する溝7を形成する。
(3) See FIGS. 6 and 7. (3) The wafer is taken out of the growth furnace, a mask 6 made of, for example, a silicon dioxide film is formed, and grooves 7 extending in the periodic direction of the diffraction grating 2 are formed.

この溝7の横断面形状は適宜選択することができるが、
例えば、略V型であって良い。
The cross-sectional shape of this groove 7 can be selected as appropriate;
For example, it may be approximately V-shaped.

a7を形成する際のエツチング液を適当に選べば、In
P半導体層5のみをエツチングし、InGaAsI’半
導体M4に殆ど影響を与えないようにすることが可能で
ある。そのようなエツチング液としては、例えば、M 
C1,: H3P O4混液を挙げることができる。尚
、後記する実施例でばInP半導体層に影響を与えるこ
とな(TnGaAsP半導体As上ツチングしなければ
ならないが、そのときのエツチング液としては、例えば
、II2 S O4: H202:H2Oを使用すると
良い。
If you choose an appropriate etching solution when forming a7, In
It is possible to etch only the P semiconductor layer 5 so that the InGaAsI' semiconductor M4 is hardly affected. As such an etching solution, for example, M
C1,: A mixture of H3P O4 can be mentioned. In the example described later, etching must be performed on the TnGaAsP semiconductor As without affecting the InP semiconductor layer, but it is preferable to use, for example, II2SO4:H202:H2O as the etching solution at that time. .

図では、溝7は一本だけ表わしであるが、実際には、多
数形成されるものである。
In the figure, only one groove 7 is shown, but in reality, a large number of grooves 7 are formed.

第8図参照 (4)この後、通常の技法にて、n型TnP半導体(4
) 1ii8.n型1nGaAsP活性層3 (λ−1,3
〔μm))、p型1nP半導体層9+p型1nGaAs
Pコンタクト層10 (λ−1,3〔μm))を順次成
長させ、そして、電極等を形成して完成する。
Refer to Figure 8 (4) After this, using the usual technique, an n-type TnP semiconductor (4
) 1ii8. n-type 1nGaAsP active layer 3 (λ-1,3
[μm)), p-type 1nP semiconductor layer 9 + p-type 1nGaAs
A P contact layer 10 (λ-1,3 [μm)] is sequentially grown, and electrodes and the like are formed to complete the process.

このようにして半導体発光装置を形成したウェハをキャ
ビティ長を150 〔μm〕として襞間し、特性香調べ
たところ、波長約1.3 〔μm〕の単一の発振が得ら
れた。
When the wafer on which the semiconductor light emitting device was formed in this way was folded with a cavity length of 150 [μm] and its characteristics were investigated, a single oscillation with a wavelength of about 1.3 [μm] was obtained.

本発明に於いては、前記実施例の他に多くの改変が可能
である。
In the present invention, many modifications other than the embodiments described above are possible.

第9図は他の実施例の要部切断正面図、第10図は第9
図の線A−Aに依る要部切断側面図である。
FIG. 9 is a cutaway front view of main parts of another embodiment, and FIG.
It is a main part cutaway side view according to the line AA of a figure.

図に於いて、11ばn型InP半導体基板、12はn型
1nGaAsr’半導体層(λ−〜1.05 〔μm〕
)、13は1111折格子、14はp型InP半導体層
、15ばn型1nP半導体層、15Aはn型1nPクラ
ッド層、16ばTnGaAsP半導体As上6AはIn
Ga八sPへ性層(λ−1,5(μm))、17はp型
InPクラッド層、18はp型1nGaAsPコンタク
ト(5) 層をそれぞれ示す。
In the figure, 11 is an n-type InP semiconductor substrate, and 12 is an n-type 1nGaAsr' semiconductor layer (λ-~1.05 [μm]
), 13 is a 1111-fold lattice, 14 is a p-type InP semiconductor layer, 15 is an n-type 1nP semiconductor layer, 15A is an n-type 1nP cladding layer, 16 is a TnGaAsP semiconductor As, and 6A is an InP semiconductor layer.
17 is a p-type InP cladding layer, and 18 is a p-type 1nGaAsP contact (5) layer.

各部分の厚さは次の通りである。The thickness of each part is as follows.

11:〜100 〔μm〕 12:0.3〜0.5cμm〕 14:1 〔μm〕 15:〜0.2〔μm〕 15A : 0. 3 (μm) 16.16A: 0.1〜0.2 Cμm)17:1〜
2(μm〕 181.5〜1 〔μm〕 尚、回折格子13の高さは0.1〜0.2〔μm〕であ
る。
11:~100 [μm] 12: 0.3~0.5 cμm] 14:1 [μm] 15: ~0.2 [μm] 15A: 0. 3 (μm) 16.16A: 0.1~0.2 Cμm) 17:1~
2 (μm) 181.5 to 1 [μm] The height of the diffraction grating 13 is 0.1 to 0.2 [μm].

主要各部分の不純物濃度及び不純物は次の通りである。The impurity concentration and impurities in each main part are as follows.

12 : 〜5 X 10I7(am−3)  (S 
n)14:0.5〜I X 1018(cm−3)  
(Cd若しくはZn) 15.15A :〜5XI O”  (cm−3)  
(Sn)16.16A:ノン・ドープ 17 : 0. 5〜I X 1018(cm−3) 
 (Cd若しく(6) む;IZn ) 1 11  : −1018(cm−3)  (Z n
)本実施例に於けるn型[nGaAsr’半導体層12
の組成はInl’との選択エツチングが可能である限り
、そのハン1゛・ギヤツブ・エネルギを大にする方が良
い。
12: ~5 X 10I7(am-3) (S
n) 14:0.5~I x 1018 (cm-3)
(Cd or Zn) 15.15A: ~5XI O” (cm-3)
(Sn) 16.16A: Non-doped 17: 0. 5~I x 1018 (cm-3)
(Cd or (6) m; IZn) 1 11: -1018(cm-3) (Zn
) In this example, the n-type [nGaAsr' semiconductor layer 12
As long as selective etching with Inl' is possible, it is better to increase the composition of H1', gear, and energy.

このn型1nGaAsP半導体層12の表面に形成され
る回折格子は発振波長のλ/2・n倍の周期で形成され
た溝からなり、その1次回折光或いは2次回折光が発振
モードと一致するように構成されている。
The diffraction grating formed on the surface of this n-type 1nGaAsP semiconductor layer 12 consists of grooves formed at a period of λ/2·n times the oscillation wavelength, and the diffraction grating is arranged so that the first-order diffraction light or second-order diffraction light coincides with the oscillation mode. It is composed of

活性層16Aを埋め込む為の溝を図示のような形状にし
、活性層16Aをできる限り下方へ設けるようにすると
自然的にストライブ幅は狭くなるので容易に低しきい値
化を達成することができ、また、その場合、回折格子1
3との結合が強くなるので波長選択性が良好になる。
If the groove for embedding the active layer 16A is shaped as shown in the figure and the active layer 16A is provided as far down as possible, the stripe width will naturally become narrower, making it easier to achieve a lower threshold value. and in that case, the diffraction grating 1
Since the coupling with 3 becomes stronger, the wavelength selectivity becomes better.

本実施例が、第4図乃至第8図に関して説明した実施例
と相違する点は、回折格子の表面と活性層との間の半導
体層が一層しかないことであり、(7) このように活性層と回折格子との間隔を狭くすると回折
格子と発生光の結合を大きくできる。二層にして、しか
も、薄くすることは製造技術面での困難性が増大する。
This embodiment differs from the embodiments described with reference to FIGS. 4 to 8 in that there is only one semiconductor layer between the surface of the diffraction grating and the active layer. By narrowing the distance between the active layer and the diffraction grating, the coupling between the diffraction grating and the generated light can be increased. Making it two layers and making it thinner increases the difficulty in terms of manufacturing technology.

第11図は他の実施例の要部切断正面図、第12図は第
11図の線A−Aに依る要部切断側面図である。
FIG. 11 is a cutaway front view of the main part of another embodiment, and FIG. 12 is a cutaway side view of the main part taken along line A-A in FIG. 11.

図に於いて、21はn型1nP半導体基板、22ばn型
1nP半導体層、23は回折格子、24はp型1nGa
AsP半導体層(λ−1,05(、+1m))、25は
n型1nGaAsP半導体層、25Aはn型11Ga八
sPクラッド1M (λ−1,05Cμm)) 、26
はInGaAsP半導体層、26AはInGaAsP活
性層、27はp型1nPクラッド層、28ばp型1nG
aAsPコンタクト層をそれぞれ示す。
In the figure, 21 is an n-type 1nP semiconductor substrate, 22 is an n-type 1nP semiconductor layer, 23 is a diffraction grating, and 24 is a p-type 1nP semiconductor substrate.
AsP semiconductor layer (λ-1,05(,+1m)), 25 is n-type 1nGaAsP semiconductor layer, 25A is n-type 11Ga8sP cladding 1M (λ-1,05Cμm)), 26
is an InGaAsP semiconductor layer, 26A is an InGaAsP active layer, 27 is a p-type 1nP cladding layer, and 28 is a p-type 1nG layer.
The aAsP contact layer is shown respectively.

各部分の厚さは次の通りである。The thickness of each part is as follows.

21 : 〜I OO(μm) 2 2  :  0.  3 〜0.  5   (/
71Tl)24:〜1 〔μm〕 25:0.2〜0.3 〔μm〕 (8) 25A: 〜0. 4  [x!m) 26.26A:0. 1〜0. 2  Cp+n)27
:1〜2〔μ丁n〕 28  :  0. 5〜]  (l+m)尚、回折格
子23の高さは0.1〜0.2 〔μm〕である。
21: ~IOO (μm) 22: 0. 3 to 0. 5 (/
71Tl) 24: ~1 [μm] 25: 0.2 ~ 0.3 [μm] (8) 25A: ~0. 4 [x! m) 26.26A:0. 1~0. 2 Cp+n)27
:1~2 [μcn] 28 : 0. 5~] (l+m) Note that the height of the diffraction grating 23 is 0.1 to 0.2 [μm].

主要各部分の不純物濃度及び不純物は次の通りである。The impurity concentration and impurities in each main part are as follows.

214〜10” (cm−3)  (S’n)22 :
 5 X 1017(cm−3)  (S n)24:
0.5〜1×1018 ccIn−3〕 (Zn若しく
はCd) 25.25A:5XIO17(cm−3)(Sn)26
.26A:ノン・ドープ 27 : 0. 5〜I X 10Ia(cm−3) 
 (Cd若しくZn) 28二〜l Q10(cm−3)  (Zn)本実施例
に於けるn型InP半導体層22の組成はn型1nP半
導体基板21のバンド・ギヤ、2プ。
214~10" (cm-3) (S'n)22:
5 x 1017 (cm-3) (S n) 24:
0.5-1×1018 ccIn-3] (Zn or Cd) 25.25A:5XIO17 (cm-3) (Sn)26
.. 26A: Non-doped 27: 0. 5~I x 10Ia (cm-3)
(Cd or Zn) 282~l Q10 (cm-3) (Zn) The composition of the n-type InP semiconductor layer 22 in this embodiment is the band gear of the n-type 1nP semiconductor substrate 21, 2p.

エネルギと等しくしである。It is equal to energy.

(9) 本実施例が、第4図乃至第8図に関して説明した実施例
と相違する点は、第9図及び第10図に関して説明した
実施例との相違点と同様である。
(9) This embodiment differs from the embodiments described with reference to FIGS. 4 to 8 in the same way as the embodiments described with reference to FIGS. 9 and 10.

また、本実施例と第9図及び第10図に関して説明した
実施例と相違する点は、回折格子を形成した半導体層と
活性層との間の半導体層、即ち、半導体層25Aと半導
体層15Aの組成が反対になっていることである。この
層としてrnGaAsPを用いると活性層との屈折率差
が小さくなって、光のしみ出しが大きくなる為、層厚に
余裕をとることができる。
Further, the difference between this embodiment and the embodiments explained with reference to FIGS. 9 and 10 is that the semiconductor layers between the semiconductor layer in which the diffraction grating is formed and the active layer, that is, the semiconductor layer 25A and the semiconductor layer 15A The composition of the two is opposite. If rnGaAsP is used as this layer, the difference in refractive index with the active layer will be small, and light seepage will be large, so the layer thickness can be increased.

発明の効果 本発明に依れば、回折格子面上に在る半導体層に溝が形
成され、その溝内に少なくとも活性層が埋設された構造
の半導体発光装置が得られ、該半導体発光装置の発振ス
ペクトルは如何なる動作モードであっても常に単一であ
り、また、しきい値電流は低く、しかも、その製造は容
易である。
Effects of the Invention According to the present invention, a semiconductor light emitting device having a structure in which a groove is formed in a semiconductor layer on a diffraction grating surface and at least an active layer is buried in the groove is obtained, and The oscillation spectrum is always single regardless of the operating mode, the threshold current is low, and manufacturing is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は従来例の要部切断斜面図、(10) 第4図乃至第8図は本発明一実施例を製造する場合を説
明するだめの工程要所に於ける装置の要部切断斜面図(
第4図及び第5図及び第7図)及び要部切断正面図(第
6図及び第8図)、第9図は他の実施例の要部切断正面
図、第1O図は第9図の線A−Aζこ於8Jる要部切断
側面図、第11図は更に伯の実施例の要部FJJ断正断
固面図12図は第11図の線A −Aに於ける要部切断
側面図である。 図に於いC8l IJ: n型1nP半導体基板、2は
回折格子、3は4(i性層、4はn型1nGaAsP半
導体層、5ばp型I口p ′4!、導体層、6はマスク
、7は溝、8はn型rnP半導体層、9ばp型JnP半
導体層、10ばp型1nGaAsPコンタクト層である
。 特許出願人   富士通株式会社 代理人弁理士  工具 久五部 (外3名) (11) 第4図 第1図 と 第2図 第3図 第5図 第6図 第7図 第 8 図
Figures 1 to 3 are cross-sectional views of main parts of the conventional example, (10) Figures 4 to 8 are diagrams of the equipment at key points in the process for explaining the case of manufacturing an embodiment of the present invention. Cutaway slope diagram of main part (
4, 5, and 7), main part cutaway front views (Figs. 6 and 8), Fig. 9 is a main part cutaway front view of another embodiment, and Fig. 1O is Fig. 9. Fig. 11 is a cross-sectional side view of the main part FJJ of the embodiment shown in Fig. 12 is a cross-sectional side view of the main part taken along the line A-Aζ in Fig. 11. FIG. In the figure, C8l IJ: n-type 1nP semiconductor substrate, 2 is a diffraction grating, 3 is 4 (i-type layer, 4 is n-type 1nGaAsP semiconductor layer, 5 is p-type I gate p'4!, conductor layer, 6 is The mask, 7 is a groove, 8 is an n-type rnP semiconductor layer, 9 is a p-type JnP semiconductor layer, and 10 is a p-type 1nGaAsP contact layer. Patent applicant: Fujitsu Limited representative patent attorney Tools: Kugobe (3 others) ) (11) Figure 4 Figure 1 and Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 回折格子面上方に在る半導体層、該半導体層上に形成さ
れた溝、該溝内に埋め込まれた活性層を備えてなること
を特徴とする半導体発光装置。
A semiconductor light emitting device comprising: a semiconductor layer located above a diffraction grating surface; a groove formed on the semiconductor layer; and an active layer embedded in the groove.
JP57113238A 1982-06-30 1982-06-30 Semiconductor light emitting device Pending JPS594189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113238A JPS594189A (en) 1982-06-30 1982-06-30 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113238A JPS594189A (en) 1982-06-30 1982-06-30 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS594189A true JPS594189A (en) 1984-01-10

Family

ID=14607063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113238A Pending JPS594189A (en) 1982-06-30 1982-06-30 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS594189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144375A (en) * 1985-12-18 1987-06-27 Oki Electric Ind Co Ltd Semiconductor laser element and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144375A (en) * 1985-12-18 1987-06-27 Oki Electric Ind Co Ltd Semiconductor laser element and manufacture thereof

Similar Documents

Publication Publication Date Title
CA1228936A (en) Semiconductor devices
CA2072632A1 (en) Structure and method for fabricating indium phosphide/indium gallium arsenide phosphide buried heterostructure semiconductor lasers
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
KR100582114B1 (en) A method of fabricating a semiconductor device and a semiconductor optical device
US6204078B1 (en) Method of fabricating photonic semiconductor device using selective MOVPE
JPH0231488A (en) Semiconductor laser device and its manufacture
JPS594189A (en) Semiconductor light emitting device
JPS63265485A (en) Semiconductor laser
JPS6237911B2 (en)
US5027368A (en) Semiconductor laser device
JPS63213383A (en) Semiconductor laser
JPS59126693A (en) Distributed feedback type semiconductor laser and manufacture thereof
JPH037153B2 (en)
JPH07118568B2 (en) Distributed feedback semiconductor laser
JPH0131318B2 (en)
JPS6188584A (en) Distributed feedback type semiconductor laser having phase shift structure
JP5418359B2 (en) Distributed feedback laser diode
JPH0228985A (en) Semiconductor laser and manufacture thereof
JPS60165782A (en) Semiconductor laser
JPS61208886A (en) Buried type semiconductor laser
JPH0377675B2 (en)
JPS63302586A (en) Manufacture of semiconductor laser device
JPH07335977A (en) Semiconductor laser and optical integrated device and manufacture thereof
JPH08334657A (en) Production of semiconductor optical integrated element