JPS5941680A - Apparatus utilizing wind force - Google Patents

Apparatus utilizing wind force

Info

Publication number
JPS5941680A
JPS5941680A JP57152327A JP15232782A JPS5941680A JP S5941680 A JPS5941680 A JP S5941680A JP 57152327 A JP57152327 A JP 57152327A JP 15232782 A JP15232782 A JP 15232782A JP S5941680 A JPS5941680 A JP S5941680A
Authority
JP
Japan
Prior art keywords
valve
main
main circuit
circuit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57152327A
Other languages
Japanese (ja)
Other versions
JPS6410672B2 (en
Inventor
Yasuo Kita
喜多 康雄
Hiroyuki Fujii
藤井 浩之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57152327A priority Critical patent/JPS5941680A/en
Publication of JPS5941680A publication Critical patent/JPS5941680A/en
Publication of JPS6410672B2 publication Critical patent/JPS6410672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/22Wind motors characterised by the driven apparatus the apparatus producing heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

PURPOSE:To provide a compact apparatus for utilizing a wind force by providing a main valve of pilot pressure drive system to control the pilot pressure in accordance with temperature of a main circuit when the liquid discharged from a hydraulic pump driven by a wind mill is utilized for operating a heating system or the like. CONSTITUTION:A wind mill 1 rotated by wind force drives a hydraulic pump 2 to conduct working liquid A discharged from said pump to a heat exchanger 5 for exchanging heat with water B in a water supply circuit 10 after heating said liquid in an orifice 4 as an exothermic means in a main circuit 3. Then, the working liquid A is returned to the suction side of the pump 2 through a jet booster 6. In said apparatus, a main valve 7 controllably opened and closed by pilot pressure from a pilot circuit 8 is interposed in the main circuit 3, and a sub-valve 9 interposed in a working liquid flowing line 8a of the pilot circuit 8. Also, is provided a temperature sensing actuator 11 which controllably opens and closes the sub-valve 9 so that the temperature of the main circuit 3 does not exceed a set value.

Description

【発明の詳細な説明】 本発明は、風力を液圧Iこ変換し、この威圧を利用して
例えは暖房システムや給湯システム等を構成し得るよう
fこした風力利用装置fこ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wind power utilization device that converts wind power into liquid pressure and utilizes this force to construct a heating system, a hot water supply system, etc. be.

近時、クリーンエネルギーの利用技術1こ関する研究が
盛んであり、その−環として、風のエネルギーを熱エネ
ルギーに変換し、その熱エネルギーを暖房その他に利用
することができるようlこした液圧式の風力発熱装置が
開発されている。以下この発明を風力発熱袋@lこつい
て説明するが、従来のこの種風力発熱装置として、風車
lこより駆動される液圧ポンプと、この液圧ポンプから
吐出される作動液を循環させるためのメイン回路と、こ
のメイン回路の途中lこ設けられ絞り作用lこまって前
記作動液を加速して昇温させるオリフィスと、前記メイ
ン回路を流れる昇温した作動液から熱を取り出すための
熱交換器とを具備してなり、前記熱交換器lこより取り
出した熱を適宜利用lこ供し得るようIこしたものがあ
る。
Recently, there has been a lot of research into clean energy utilization technology, and as a link to this research, a hydraulic system that converts wind energy into thermal energy and uses that thermal energy for heating and other purposes has been active. A wind-powered heating device has been developed. The present invention will be explained below with reference to a wind heating bag.As a conventional wind heating device of this kind, a hydraulic pump driven by a wind turbine and a hydraulic pump for circulating the working fluid discharged from the hydraulic pump are used. a main circuit, an orifice provided in the middle of the main circuit that acts as a throttle to accelerate and raise the temperature of the working fluid, and a heat exchanger for extracting heat from the heated working fluid flowing through the main circuit. There is a heat exchanger equipped with the above-mentioned heat exchanger so that the heat extracted from the heat exchanger can be used as appropriate.

ところが、単1ここれjどけのものでは、強風が長時間
吹き続いたような場合、前記メイン回路中を循環する作
動液の温度が許容限界を超えて上昇し、液汁ポンプをは
じめ各部の損傷を招くおそれがある。そのため、従来、
前記メイン回路の途中fこメインバルブを介設するとと
もニ、前記メイン回路の発熱手段下流の作動液の温度を
検出し該温度が設定値を上まわらないようlこ前記メイ
ンバルブを直接に開閉制御するワックスペレ7 h式等
の(感温アクチュエータを設けているものがある。しか
しながら、このような構成のものでは、装置が大規模J
こなってメイン回路の流量が多くなると前記メインバル
ブを開閉制御するtこめの感温アクチュエータが非常l
こ大がかりなものlこなり、コンバクl−化が難しくな
るという不都合がゐろ。
However, with a single unit like this, if strong winds continue to blow for a long time, the temperature of the working fluid circulating in the main circuit will rise beyond the permissible limit, causing damage to various parts including the fluid pump. This may lead to Therefore, conventionally,
A main valve is interposed in the middle of the main circuit, and the temperature of the working fluid downstream of the heat generating means in the main circuit is detected, and the main valve is directly opened and closed so that the temperature does not exceed a set value. There are models equipped with a temperature-sensitive actuator (such as the wax pellet 7H type) to control the wax pellet. However, with such a configuration, the device cannot be
As a result, when the flow rate in the main circuit increases, the temperature-sensitive actuator that controls the opening and closing of the main valve becomes
The disadvantage is that it will be difficult to convert it into a large-scale project.

未発明は、このような事情;こ着目してなされtこもの
で、メイン回路lこ介設するメインバルブをパイロット
圧駆動式のものlこし、パイロット回路に設けtこ小さ
なサブバルブを感温アクチュエータテ開閉すせ0■記メ
インバルブを間接的Iこ開閉制御し得るよう1こ構成す
ること暑こよって、前述した不都合を効果的jこ解消す
ることができる風力発熱装置を提供するものである。
The uninvented invention was made with this in mind, and the main valve installed in the main circuit was designed to be driven by pilot pressure, and the pilot circuit was equipped with a small sub-valve driven by a temperature-sensitive actuator. An object of the present invention is to provide a wind power heating device that can effectively eliminate the above-mentioned disadvantages caused by heat by configuring a main valve so as to indirectly control the opening and closing of the main valve.

以下、本発明を風力発熱装置として実h[n L/ t
:例1こついて図面を参照して説明する。
Hereinafter, the present invention will be used as a wind power heating device, and the actual h[n L/t
:Example 1 will be explained with reference to the drawings.

風力を受けて回転する風車1jこよって液圧ポンプ2を
駆動し、この液圧ポンプ2の吐出口211から吐出され
る高圧の作動液Aをメイン回路3内を循環させて該液圧
ポンプ2の吸入口2hへ戻すよう1こしている。そして
、このメイン回路3の途中1こ、絞り作用ICよって前
記作動液Aを加速して昇温させるtこめの発熱手段たる
オリフィス4と、m記メイン回路8 ’It流れる昇温
した作動液Aから熱を取り出すための熱取出手段たる熱
交換器5とAI記液圧ポンプ2の吸入口2b側Iこブー
ス1〜汗l・発生させるためのジェットブースタ6とを
順次1こ介設している。熱交換器5は、i前記メイン回
路3内を流れる作動故人と給水回路7内を流れる水Bと
の間で熱交換を行なわせてmI記水Bを加温するよう1
乙し1こもので、該水Bは家屋や温室の暖房あるいは給
湯等に利用される。そして、この熱交換器5は、内部f
こ作動液Aを貯留しその油面At下1(。
The wind turbine 1j rotates under the influence of wind power, thereby driving the hydraulic pump 2, and the high-pressure hydraulic fluid A discharged from the discharge port 211 of the hydraulic pump 2 is circulated in the main circuit 3, thereby driving the hydraulic pump 2. 1 strain to return to the suction port 2h. In the middle of this main circuit 3, there is an orifice 4 which is a heating means for accelerating and raising the temperature of the working fluid A by means of a throttle IC, and an orifice 4 which is a heating means for accelerating and raising the temperature of the working fluid A through the main circuit 8. A heat exchanger 5 as a heat extraction means for extracting heat from the pump 2 and a jet booster 6 for generating sweat l are successively installed on the side of the suction port 2b of the AI hydraulic pump 2. There is. The heat exchanger 5 is configured to heat the water B flowing through the main circuit 3 by exchanging heat between the water B flowing through the main circuit 3 and the water B flowing through the water supply circuit 7.
Water B is used for heating houses and greenhouses, hot water supply, etc. This heat exchanger 5 has an internal f
This hydraulic fluid A is stored and its oil level At is lower than 1 (.

前記液圧ポンプ2やRiI記オリフィス4等を収容する
タンク7外に配置されている。−万、f11■記ジェッ
トブースタ6は、自−1I記メイン回路3日を流れる作
fi!l液へを小径なrltd躬ロ6aから狭小な作動
液通路6・なオスt〕−) 6bに向けて噴射するノズ
ル6Cと、このノズル6Cから高速の作動液流が前記ス
ロート(il)1こ向けて射出されることIこより惹起
さ」する負圧状態を利用してB記タンク7内の作動液A
を前記作動液流内IC取り込ませる1こめの作動液吸引
通路6dと、前記スロート6bを通過した作動液Aの流
路を漸次拡大して該作動液Aの静圧を高め前記液圧ポン
プ2の吸入口2b(11!Ifこ所要のブースト圧を発
生させるディフューザ6Cとを具備してなる。
It is arranged outside the tank 7 that accommodates the hydraulic pump 2, the RiI orifice 4, and the like. - 10,000, f11 ■Jet booster 6 is the work that flows through the main circuit of -1I on the 3rd! A nozzle 6C injects the liquid from the small-diameter rltd pipe 6a toward the narrow hydraulic fluid passage 6b, and a high-speed hydraulic fluid flow from this nozzle 6C to the throat (il) 1. The hydraulic fluid A in the tank B is
The hydraulic pump 2 The intake port 2b (11!If) is equipped with a diffuser 6C that generates the required boost pressure.

まT:、前記メイン回路3Iこおける前記液圧ポンプ2
と前記オリフィス4との間に位Ntする部位fこメイン
バルブ7を介設している。メインバルブ7は、弁体7a
の背部Iζパイロット室7bを設け=5− てなるもので、該パイロット室7b内1こ導入されるパ
イロット圧の大きさfこ応じて前記弁体7aが作動して
i前記メイン回路8を開閉するよう署こなっている。そ
して、このメインバルブ7のパイロット室7b+こ関連
させてパイロット回路8を設けている。パイロット回路
8は、前記メイン回路3Iこおける前記メインバルブ7
よりも下流部分の作動液Aのごく一部を前記メイン回路
3Iこおけるm記メインバルブ7よりも下流部分lこバ
イパスさせる1こめの作動液流通ライン8&と、この作
動液流通フィン8aの中間部を前記メインバルブ7のパ
イロット室7bに連通させるパイロット圧導入ライン8
aとから構成されている。そして、fltr記作動膜作
動液流通ライン8a部分lこサブバルブ9を介設してい
る。サブバルブ9は、スプール9Bを軸心方向(図中左
、右方向)え進退させることIこよって前記作動流通フ
ィン8aを開閉し得るようIこ構成したものである。そ
して、このサブバルブ9のスプール9aを、前記メイン
回路8Iこおける前記オリフィス4よりも下流部分の作
動液Aの温度6− を検出して作1f(I+する(感温アクチュエータ11
1こよって進退させるようにしている。感温アクチュエ
ータ11は、ケーシンクlla内Iこ充11A(]たワ
ックス(図示せず)が前記作動液Aの熱1こより融触(
ッて膨張する力で前記ケーシング118の端面g(s+
こ貫着し1こ作動杆11bを外方へ押し出し得るよう着
こ構成したワンクスペレット式のもので、前記作動杆1
1の先端で前記スプール9aを図中左方へ押圧するよう
1こしている。なお、12は前記ワックスが収縮しtコ
際に前記スプール9aを図中右方へ押し戻すtこめの戻
しばねであり、1Bは、前記感温アクチュエータ11+
こ前記オリフィス4よりも下流〕作動IAの一部を噴き
付けるtこめのノズルである。また、6−U記すブバル
ブ9を風車停止用の操作機構141こより前記感温アク
チュエータ11の作動とは別途iこ閉成させることがで
きるようIこしている。操作機構14は、回動端15B
を前記スプール9aの一端に当接させた回動アーム15
と、コU’) 回動アーム15の一側に添接させたカム
体16と、このカム体16を回動させるための操作部材
たる手動コック17とを具備してなり、前記手動コック
17を操作して前記カム体16を例えば90゜回動させ
た場合tこ、前記回動アーム15が図中左方へ回動して
前記スプール9aを閉成方向に抑圧し得るようシなって
いる。
T: The hydraulic pump 2 in the main circuit 3I
A main valve 7 is interposed between the main valve 7 and the orifice 4 at a distance of about Nt. The main valve 7 has a valve body 7a
A pilot chamber 7b is provided at the back of the pilot chamber 7b, and the valve body 7a operates to open and close the main circuit 8 in response to the magnitude of pilot pressure f introduced into the pilot chamber 7b. I have been asked to do so. A pilot circuit 8 is provided in association with the pilot chamber 7b of the main valve 7. The pilot circuit 8 is connected to the main valve 7 in the main circuit 3I.
An intermediate section between the first hydraulic fluid distribution line 8& and this hydraulic fluid distribution fin 8a, which bypasses a small portion of the hydraulic fluid A downstream of the main valve 7 in the main circuit 3I. a pilot pressure introduction line 8 that connects the main valve 7 with the pilot chamber 7b of the main valve 7;
It is composed of a. A sub-valve 9 is interposed in the working membrane working fluid distribution line 8a. The sub-valve 9 is configured so that the spool 9B can be moved back and forth in the axial direction (left and right directions in the figure), thereby opening and closing the working circulation fins 8a. Then, the spool 9a of this sub-valve 9 is actuated 1f(I+) by detecting the temperature 6- of the working fluid A downstream of the orifice 4 in the main circuit 8I (temperature-sensitive actuator 11
I try to advance and retreat by 1. In the temperature-sensitive actuator 11, the wax (not shown) in the casing 11A (not shown) is melted by the heat of the working fluid A (11A).
The end face g(s+
This is a Wanku pellet type in which one of the actuating rods 11b can be pushed outward.
1 is used to push the spool 9a to the left in the figure. Note that 12 is a return spring that pushes back the spool 9a to the right in the figure when the wax contracts, and 1B is a return spring for the temperature-sensitive actuator 11+.
This is a nozzle that sprays a part of the operating IA downstream of the orifice 4. In addition, the valve 9 indicated by 6-U is arranged so that it can be closed separately from the operation of the temperature-sensitive actuator 11 by the operation mechanism 141 for stopping the wind turbine. The operating mechanism 14 has a rotating end 15B.
a rotating arm 15 which is brought into contact with one end of the spool 9a;
The manual cock 17 is equipped with a cam body 16 attached to one side of the rotating arm 15 and a manual cock 17 which is an operating member for rotating the cam body 16. When the cam body 16 is rotated, for example, by 90 degrees, the rotating arm 15 is rotated to the left in the figure to suppress the spool 9a in the closing direction. There is.

また、前記パイロット回路8の作動液流通ライン8aの
下流部分子こ減圧バルブ18を、前記サブバルブ9とは
別途fこ介設している。減圧バルブ18は、前記メイン
回路8IこおけるnTJ記オリフィス4の1、下流間、
の差圧1こ基いて前記メイン回路3の流量を検出し該流
量が設定値を越えないようiこ前記作動液流通ライン8
aを開閉し得るよう1こ構成されたもので、図示しない
スプールの両端に設けられた対をなすパイロット室がパ
イロット圧導入フィン19.20e介して前記メイン回
路31こ接続されている。
Further, a molecular pressure reducing valve 18 is provided separately from the sub-valve 9 downstream of the hydraulic fluid distribution line 8a of the pilot circuit 8. The pressure reducing valve 18 is connected between the first and downstream of the orifice 4 of nTJ in the main circuit 8I,
The flow rate of the main circuit 3 is detected based on the differential pressure of 1, and the hydraulic fluid distribution line 8 is
A pair of pilot chambers provided at both ends of a spool (not shown) are connected to the main circuit 31 via pilot pressure introduction fins 19 and 20e.

次いで、この実施例の作動を次の(a)〜(d−)の場
合1こ分けて説明する。
Next, the operation of this embodiment will be explained in the following cases (a) to (d-).

(a)  正常運転の場合 手動コック17が運転位置fこセントされ、かつ、メイ
ン回路3内を流れる作動液Aの温度および流量が設定値
以下1こ保持されている正常な場合lこは、サブバルブ
9および減圧バルブ18がともIこ開成状態lこ維持さ
れる。その結果、パイロット回路8の作動液流通ライン
8a中を作動液入が流れることになり、メインバルブ7
のパイロット室7b、こ導入されるパイロット圧は低い
値を示す。
(a) In the case of normal operation In the case of normal operation, when the manual cock 17 is in the operating position and the temperature and flow rate of the hydraulic fluid A flowing in the main circuit 3 are maintained below the set value, The sub-valve 9 and the pressure reducing valve 18 are both maintained in the open state. As a result, the hydraulic fluid flows through the hydraulic fluid distribution line 8a of the pilot circuit 8, and the main valve 7
The pilot pressure introduced into the pilot chamber 7b exhibits a low value.

そのため、メインバルブ7が開成状態lこ維持されるこ
とfこなり、メイン回路8中を作動液Aが循環して通常
の発熱運転が営まれる。
Therefore, the main valve 7 is maintained in the open state, and the hydraulic fluid A circulates in the main circuit 8, allowing normal heat-generating operation to occur.

(b)  メイン回路3内の作動液Aの温度が異常な上
昇傾向を示し1こ場合。
(b) In this case, the temperature of the working fluid A in the main circuit 3 shows an abnormal rising tendency.

強風が長時間吹き続く等の事情fこより、MU記作動液
Aの温度が設定値を越えて上昇しようとした場合fこは
、感温アクチュエータ11の作動杆11bが突出してサ
ブバルブ9のスプール9aを図中左方へ押圧するため、
該サブバルブ9が閉成位置fこ切り換ってパイロット回
路8の作動液流通フィン8aが遮断される。その結果、
液圧ポンプ2の吐出圧が前記メインバルブ7のパイロッ
トg7b9− 1こパイロット圧として作用することlこなり、該メイ
ンバルブ7がその弁体7aの且下1こ作用する圧カバラ
ンス奢こよって閉成位置1こ切り換わる。そのため、メ
イン回路8が遮断され、液圧ポンプ2が回転を止めると
ともtこオリフィス41こよる発熱が停止される。そし
て、前記メイン回路8の作動液Aの温度が下がると前記
感温アクチュエータ11のワックスが収縮して前記サブ
バルブ9のスプール9aが戻しはね12の付勢力により
図中右方へ戻され該サブバルブ9が開成位置に復帰する
。その結果、メインバルブ7が元のようlこ開く状況と
なり、再び通常の発熱プロセスが営まれる。なお前記感
温アクチュエータ11によるサブバルブ9の切換動作は
、一定の設定温度幅内ticおいて徐々lこ行なわれる
ため、前記メインバルブ7が完全lこ閉成する手前で作
動液Aの温度が正常な値に戻り該メインバルブ7が再び
開成位置へ復帰する場合もある。
Due to circumstances such as strong winds blowing for a long time, if the temperature of the hydraulic fluid A attempts to rise above the set value, the operating rod 11b of the temperature-sensitive actuator 11 will protrude and the spool 9a of the sub-valve 9 will In order to press to the left in the figure,
The sub-valve 9 is switched to the closed position f, and the hydraulic fluid distribution fin 8a of the pilot circuit 8 is cut off. the result,
The discharge pressure of the hydraulic pump 2 acts as the pilot pressure of the main valve 7, and the main valve 7 has a pressure balance acting on the lower part of the valve body 7a. The closed position changes by one. Therefore, the main circuit 8 is cut off, the hydraulic pump 2 stops rotating, and the heat generated by the orifice 41 is stopped. When the temperature of the working fluid A in the main circuit 8 falls, the wax in the temperature-sensitive actuator 11 contracts, and the spool 9a of the sub-valve 9 is returned to the right in the figure by the urging force of the return spring 12, causing the sub-valve 9 returns to the open position. As a result, the main valve 7 is opened to its original state, and the normal heat generation process is resumed. Note that since the switching operation of the sub-valve 9 by the temperature-sensitive actuator 11 is performed gradually within a certain set temperature range, the temperature of the hydraulic fluid A is normal before the main valve 7 is completely closed. In some cases, the main valve 7 returns to the open position.

これ1こより、前記メイン回路8内の作動液Aは常lこ
設定値以下の温度lζ維持されることlこなる。
As a result of this, the temperature of the working fluid A in the main circuit 8 is always maintained below the set value.

−1〇− (C)  メイン回路3内の作動液Aの流速が異常な上
昇傾向を示し1こ場合。
-10- (C) In this case, the flow velocity of hydraulic fluid A in the main circuit 3 shows an abnormal upward trend.

きイ〕めで強い風が一時lこ吹き荒れる等の事情ICよ
り、前記作動液Aの流速が設定値を越えて上昇しようと
し丁こ場合1こは、減圧バルブ18が閉成方向1こ移動
して前記作動液流通ライン8aの流量を減少させてゆく
。その結果、メインバルブ7はmf記中)項で述べたの
と同じ原理によって、閉成方向Iこ移行してゆく。この
動作lこよりフィードバックループが形成され、前記メ
イン回路3の流速は液圧ポンプ2の負荷の如何(こかか
わらず、設定しtこ一ヒ限値1こ維持されること3こな
る。
If the flow velocity of the hydraulic fluid A is about to rise above the set value due to a situation such as a strong wind raging at one point, the pressure reducing valve 18 will move one step in the closing direction. Then, the flow rate of the hydraulic fluid distribution line 8a is decreased. As a result, the main valve 7 moves in the closing direction I according to the same principle as described in section mf. A feedback loop is formed by this operation, and the flow rate of the main circuit 3 is maintained at the set limit value regardless of the load on the hydraulic pump 2.

(d)  手動コック17を運転位置から停止位置へ切
り換えた場合。
(d) When the manual cock 17 is switched from the operating position to the stop position.

保守点検等Iこ際し、手動コック177i−停止位置へ
切り換えると、カム16が90’回転して回動アーム1
5を押圧する。その結果、前記回動アーム16が回動し
てサブバルブ9のスプール9aを図中左方へ移行させる
こと1こなり、該サブバルブ9が開成状態から開成状態
に切り換わり、前記パイロット回路8の作動液流通ライ
ン8aが遮断さノする。そのため、前記(b)項で述べ
t、二のと同じ原理ICよってメインバルブ7が開成状
態から開成状態)こ切り換り、風車1および液圧ポンプ
2が停止するとともlこメイン回路3内の作動液Aが循
環を止める。そして、この状態は、前記手動コック17
を元の運転位置lこ復帰させるまで維持される。
During maintenance and inspection, etc., when the manual cock 177i is switched to the stop position, the cam 16 rotates 90' and the rotating arm 1
Press 5. As a result, the rotating arm 16 rotates to move the spool 9a of the sub-valve 9 to the left in the figure, the sub-valve 9 switches from the open state to the open state, and the pilot circuit 8 is activated. The liquid flow line 8a is cut off. Therefore, the main valve 7 is switched from the open state to the open state by the same principle IC as described in section (b) above, and when the wind turbine 1 and the hydraulic pump 2 are stopped, the main valve 7 is switched from the open state to the open state. Hydraulic fluid A stops circulation. In this state, the manual cock 17
It is maintained until it returns to its original operating position.

なお、メイン流量検出のための差圧発生手段はオリフィ
スlこ限らす、ベンチュリー等であってもよい。
Note that the differential pressure generating means for detecting the main flow rate may be an orifice, a venturi, or the like.

まtこ、感温アクチュエータの構成も図示実施例のよう
なワックスペレット式のも0月と限定されないのは勿論
であり、例えは、バイメタル等でi)っでもよい。
Of course, the configuration of the temperature-sensitive actuator is not limited to the wax pellet type as shown in the illustrated embodiment; for example, it may be bimetallic or the like.

さら1こ液圧負荷手段としては、図示例のオリフィスl
こよる発熱手段のみ1こは限定されない。
In addition, as the hydraulic pressure loading means, the orifice l shown in the illustration is used.
The number of heat generating means is not limited to one.

以t、説明しr、=よう1こ本発明は、微小な作動液が
流通するパイロット回路の作動液流通ラインをサブバル
ブと感温アクチュエータとを用いて開閉させること1こ
まっでメイン回路lこ介設し1こメインバルブを間接的
fこ作動させて該メイン回路内lこおける作動液の異常
な温度上昇を制限するようlこしているので、風車が大
型化してメイン回路の流量が膨大なもの1こなっても温
度制御用の感温アクチュエータ等を大型化する必要は全
くない。したがって、制御の確実さを損ねることなしに
装置のコンパクト化を図ることができるものである。ま
tこ、機械的な作動部分をなす感温アクチュエータをき
わめて小型なものIこすることができるので高い安全性
を確保することもできる。
The present invention is to open and close the hydraulic fluid distribution line of the pilot circuit, through which a small amount of hydraulic fluid flows, using a sub-valve and a temperature-sensitive actuator. Since the main valve is operated indirectly to limit abnormal temperature rises in the hydraulic fluid in the main circuit, wind turbines become larger and the flow rate in the main circuit becomes enormous. There is no need to increase the size of the temperature-sensitive actuator for temperature control even if only one thing is achieved. Therefore, the device can be made more compact without compromising reliability of control. Furthermore, since the temperature-sensitive actuator, which constitutes the mechanical operating part, can be made extremely small, a high level of safety can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示す概略説明図である。 1・・・風車  2・・・液圧ポンプ 3・・・メイン回路 4・・・発熱手段(オリフィス) 5・・・熱取出手段(熱交換器) 7・・・メインバルブ 8・・・パイロット回路 8a・・・作動液流通フィン 18− 9・・・サブバルブ 11・・・感温アクチュエータ 代理人 弁理士 赤澤−博 14− The drawings are schematic explanatory diagrams showing one embodiment of the present invention. 1...Windmill 2...Hydraulic pump 3... Main circuit 4... Heat generating means (orifice) 5... Heat extraction means (heat exchanger) 7... Main valve 8...Pilot circuit 8a... Hydraulic fluid distribution fin 18- 9...Sub valve 11...Temperature-sensitive actuator Agent: Patent Attorney Hiroshi Akazawa 14-

Claims (1)

【特許請求の範囲】[Claims] 風車Iこより駆動される液圧ポンプと、この液圧ポンプ
から吐出される作動液を循環させる1こめのメイン回路
と、このメイン回路の途中1こ設けられた液圧負荷手段
と、前記メイン回路の途中Iこ介設されパイロット室l
こ導入される/<イロット圧lこ制御されて該メイン回
路を開閉するメインノくルブと、このメインバルブのパ
イロット室1こ関連させて設けられ作動液流通ライン中
の微少な作動液の流れを制御することlこよって前記/
4:イロット、圧を変化させ得るようlこ構成したノ<
イロツト回路と、このパイロット回路の作動液流通ライ
ンの途中普こ介設しfこサブバルブと、前記メイン回路
の温度を検出し該温度が設定値lP、I:まわらないよ
うiこ前記サブバルブを開閉させて前記メインバルブを
開閉制御する感温アクチュエータとを具備してなること
を特徴とする風力利用装置。
A hydraulic pump driven by a wind turbine, a main circuit for circulating the working fluid discharged from the hydraulic pump, a hydraulic load means provided in the middle of the main circuit, and the main circuit. A pilot room was installed in the middle of the
The pilot chamber of this main valve is connected to a main knob that opens and closes the main circuit under controlled pressure, and is connected to the pilot chamber of the main valve to control the minute flow of hydraulic fluid in the hydraulic fluid distribution line. To control the above/
4: It was constructed so that the pressure could be changed.
A pilot circuit, a sub-valve interposed in the middle of the hydraulic fluid distribution line of this pilot circuit, and a sub-valve that detects the temperature of the main circuit and opens and closes the sub-valve so that the temperature does not exceed the set value. and a temperature-sensitive actuator that controls opening and closing of the main valve.
JP57152327A 1982-08-31 1982-08-31 Apparatus utilizing wind force Granted JPS5941680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152327A JPS5941680A (en) 1982-08-31 1982-08-31 Apparatus utilizing wind force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152327A JPS5941680A (en) 1982-08-31 1982-08-31 Apparatus utilizing wind force

Publications (2)

Publication Number Publication Date
JPS5941680A true JPS5941680A (en) 1984-03-07
JPS6410672B2 JPS6410672B2 (en) 1989-02-22

Family

ID=15538100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152327A Granted JPS5941680A (en) 1982-08-31 1982-08-31 Apparatus utilizing wind force

Country Status (1)

Country Link
JP (1) JPS5941680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318098A (en) * 1988-05-06 1989-12-22 Unilever Nv Powder detergent and production thereof
JP2007085263A (en) * 2005-09-22 2007-04-05 Bosch Rexroth Corp Power generating circuit
JP2007327397A (en) * 2006-06-07 2007-12-20 Bosch Rexroth Corp Hydraulic circuit for wind power generation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318098A (en) * 1988-05-06 1989-12-22 Unilever Nv Powder detergent and production thereof
US5030379A (en) * 1988-05-06 1991-07-09 Lever Brothers Company, Division Of Conopco, Inc. Process for preparing high bulk density detergent powders admixed with zeolite and coated with nonionic surfactant
JP2007085263A (en) * 2005-09-22 2007-04-05 Bosch Rexroth Corp Power generating circuit
JP4680019B2 (en) * 2005-09-22 2011-05-11 ボッシュ・レックスロス株式会社 Power generation circuit
JP2007327397A (en) * 2006-06-07 2007-12-20 Bosch Rexroth Corp Hydraulic circuit for wind power generation

Also Published As

Publication number Publication date
JPS6410672B2 (en) 1989-02-22

Similar Documents

Publication Publication Date Title
JPS5941680A (en) Apparatus utilizing wind force
JPS5941682A (en) Apparatus utilizing wind force
JPS5941681A (en) Apparatus utilizing wind force
Park et al. Experiments on the heat transfer and natural circulation characteristics of the passive residual heat removal system for an advanced integral type reactor
JP4155495B2 (en) Cooling equipment for reactor isolation
JPS5874804A (en) Controlling device for controlling steam turbine having turbine bypass system
JPH06330706A (en) Back pressure steam turbine system
JPS59210265A (en) Natural energy utilizing system
JP5242496B2 (en) Open / close device for steam control valve
JPS5827210Y2 (en) Heater drain water level control device for steam power generation equipment
JPH0566175A (en) High enthalpy supersonic wind tunnel
JPS5993103A (en) Nuclear power generating plant
JP2746935B2 (en) Heater drain pump-up device in steam turbine plant
KR200181676Y1 (en) The Automatic Temperature Control Device For HRSG (Heat Recovery Steam Generator) Of CCPP (Combin ed Cycle Power Plant)
JPH07294694A (en) Reactor supply water heater device
JP2001193416A (en) Steam turbine device
JPH03253703A (en) Cooling water pressure maintaining method for turbine bypass steam
CN117674291A (en) Emergency process switching control method for solid electric boiler-thermal power coupling system
US986941A (en) Means for preventing a quick heating of motors operated by hot fluid.
JPH04191405A (en) Water supply control device for repowering system
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger
JPH01193507A (en) Pressure and wafer level controller of aerator at the time of sudden decrease of load
JPH0454151B2 (en)
JP2001509868A (en) Passive pulse generator and valve control method using the passive pulse generator
JPH01140095A (en) Method of controlling feed water temperature of fast breeder reactor