JPS5941659A - Fuel injection unit - Google Patents

Fuel injection unit

Info

Publication number
JPS5941659A
JPS5941659A JP57152435A JP15243582A JPS5941659A JP S5941659 A JPS5941659 A JP S5941659A JP 57152435 A JP57152435 A JP 57152435A JP 15243582 A JP15243582 A JP 15243582A JP S5941659 A JPS5941659 A JP S5941659A
Authority
JP
Japan
Prior art keywords
fuel
chamber
valve
switching valve
servo piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57152435A
Other languages
Japanese (ja)
Other versions
JPS6314187B2 (en
Inventor
Koji Kubota
窪田 耕治
Atsushi Saito
篤 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP57152435A priority Critical patent/JPS5941659A/en
Publication of JPS5941659A publication Critical patent/JPS5941659A/en
Publication of JPS6314187B2 publication Critical patent/JPS6314187B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To obtain engine operation without any malfunction by installing a working oil supply system, which operates a servo piston for an injector plunger, separately from a fuel feeding system, which is provided with an independent fuel flow rate control mechanism. CONSTITUTION:An injector, in which a spool valve 26 is inserted into a spool valve chamber 23 within an injector body 13, lowers the valve 26 via a core 28 when a solenoid coil 8 is magnetized. A changeover valve 41, which is inserted into a changeover valve chamber 19 that is connected to a valve chamber 23 via a fuel passage 17', is energized downward by a spring 42. Working oil, which is supplied from a working oil supply system via an oil passage 12 and a flow inlet 14 by opening the changeover valve 41, is introduced into a servo pistion chamber 46 to lower a servo pistion 50. With this contrivance, fuel, which has been supplied from a fuel feeding system to a fuel passage 54 via a fuel control system S2b, a fuel passage 12b, and a flow inlet 14a, is pressurized to push up a needle 36, thereby being injected from a nozzle 55.

Description

【発明の詳細な説明】 本発明は電子油圧制御方式に適した内燃機関用燃料噴射
装置に関するもので、インジェクターコイルの通電時間
を減し、コイルの昇温によるソレノイド特性の劣化(作
用時間の遅れ、作用力の減少等)を少なくすることを目
的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection device for an internal combustion engine that is suitable for an electro-hydraulic control system, and it reduces the energization time of an injector coil and prevents deterioration of solenoid characteristics (delay in operation time) due to coil temperature rise. , reduction in acting force, etc.).

燃料油に低重質油を使用した場合の、パイロットバルブ
ならびにメインバルブの作動障害、即ち高粘度による作
動抵抗大、摩耗増大、固着、燃料加熱によるソレノイド
部昇温に起因する作動特性の劣化等の防止及び、ソレノ
イドへの荷重を少なくして昇温によるソレノイド特性の
変化を少なくし、又サーボピストンの応答性を速くする
ことも本発明の目的の一部である。
Operation failure of pilot valve and main valve when using low-heavy fuel oil, such as high operating resistance due to high viscosity, increased wear, sticking, and deterioration of operating characteristics due to temperature rise of the solenoid due to fuel heating. It is also a part of the purpose of the present invention to prevent this, to reduce the load on the solenoid to reduce changes in solenoid characteristics due to temperature rise, and to speed up the response of the servo piston.

従来、電子油圧制御燃料噴射装置としてインジェクター
内にパイロットバルブ、メインバルブ等の切換弁機構と
、切換弁機構に連結したソレノイドアクティブコアと、
プランジャ作動用サーボ機構とを備え、ソレノイドへの
電流通電と電b1ε遮断によりサーボピストンを動作さ
せるものにおいては、インジェクターのソレノイドコイ
ルの通電時間又は遮断時間のみで噴射量を制御するよう
罠なっている。ところがその場合はコイルの通電時間が
長くなり、昇温によるソレノイド特性の変化により噴射
特性が変化する問題点がある。又従来、直接スプール弁
でサーボピストンへの流量を制御するものも既に提案さ
れている、(例えば実開昭57−80656.特開昭5
5−49571)。ととろがその場合はスプール弁でサ
ーボピストンへの流量量制御する方式であるため、スプ
ール弁の流量面積が大きく取れない不具合がある。
Conventionally, an electro-hydraulic control fuel injection device includes a switching valve mechanism such as a pilot valve and a main valve in an injector, and a solenoid active core connected to the switching valve mechanism.
In a device that is equipped with a servo mechanism for operating a plunger and operates a servo piston by energizing the solenoid and cutting off the current b1ε, the injection amount is controlled only by the energization time or cutoff time of the solenoid coil of the injector. . However, in this case, there is a problem that the coil is energized for a long time and the injection characteristics change due to changes in the solenoid characteristics due to temperature rise. Conventionally, systems in which the flow rate to the servo piston is directly controlled using a spool valve have already been proposed (for example, Utility Model Application Publication No. 57-80656; Japanese Patent Application Publication No. 57-80656).
5-49571). In this case, Totoro uses a spool valve to control the flow rate to the servo piston, so there is a problem that the spool valve cannot have a large flow area.

更に従来、電子油圧制御燃料噴射装置としてインジェク
ター内にパイロットバルブ、メインバルブプ等の切換弁
機構と、プランジャ作動用サーボ機構とを有する構造に
おいて、作動油供給システムと燃料油供給システムとを
それぞれ別個に設けた構造はない。ところが燃料油に低
重質油を使用した場合、高粘度ならびに燃料油中への燃
料噴射装置の異常摩耗成分(スラッジ等)の混入等があ
り、ソレノイドのパイロットバルブ、メインバルブ、サ
ーボ機構の作動障害(応答性不良、異常摩耗、固着等)
や、粘度低減を回避するだめの加熱によるソレノイドの
作用力や作用速度の低下が問題になる。
Furthermore, conventionally, in an electro-hydraulic control fuel injection device having a structure in which the injector has a switching valve mechanism such as a pilot valve and a main valve, and a servo mechanism for operating the plunger, the hydraulic oil supply system and the fuel oil supply system are separated. There is no built-in structure. However, when low-heavy oil is used as fuel oil, it has high viscosity and abnormal wear components (sludge, etc.) of the fuel injection device are mixed into the fuel oil, causing problems with the operation of the pilot valve, main valve, and servo mechanism of the solenoid. Failure (poor response, abnormal wear, sticking, etc.)
In addition, a decrease in the operating force and operating speed of the solenoid due to heating to avoid viscosity reduction becomes a problem.

本発明は電子油圧制御燃料噴射装置において、作動油供
給システムと燃料油供給システムとをそれぞれ別個に設
けると共に1インジエクターとは独立した燃料油量制御
機構を設け、即ちインジェクター内のスプール弁で燃料
油量の制御を行なうことなく、インジェクターとは別個
に燃料油量を制御することにより上記従来の問題を回避
しようとするもので、次に図面により説明する。
The present invention provides an electro-hydraulic control fuel injection system in which a hydraulic oil supply system and a fuel oil supply system are provided separately, and a fuel oil amount control mechanism is provided independent of one injector. This is an attempt to avoid the above-mentioned conventional problems by controlling the amount of fuel oil separately from the injector without controlling the amount.

ソレノイドへの電流通電時(燃料噴射行程)を示すへ第
1図において1はエンジン、Soは電気制御システム、
S2は作動油供給システム、S2aは燃料油供給システ
ム、S2bは燃料油制御システム、S3はインジェクタ
ーシステムである。電気制御システムS□内において、
エンジン1の7フイホイー/I/2には回転位相角セン
サー8が対向し、センサー8は信号路4を介してマイク
ロコンピュータ5に接続し、マイクロコンピュータ6の
各慨筒に対応した出力端子6は信号路7をへてインジェ
クターシステムS3内のコイ)V8 (ソレノイド)に
接続し、燃料制御用端子6aは信号路7aを経て燃料油
制御システムS2b内のコイ/l/70に接続している
In Figure 1, which shows when current is applied to the solenoid (fuel injection stroke), 1 is the engine, So is the electric control system,
S2 is a hydraulic oil supply system, S2a is a fuel oil supply system, S2b is a fuel oil control system, and S3 is an injector system. In the electrical control system S□,
A rotational phase angle sensor 8 is opposed to the 7th gear/I/2 of the engine 1, and the sensor 8 is connected to the microcomputer 5 via the signal path 4. The output terminals 6 corresponding to each cylinder of the microcomputer 6 are The fuel control terminal 6a is connected to the coil (solenoid) V8 (solenoid) in the injector system S3 via the signal path 7, and the fuel control terminal 6a is connected to the coil/l/70 in the fuel oil control system S2b via the signal path 7a.

作動油供給システムS2内にはエンジン1で駆動される
供給ポンプ9があり、ポンプ9の吸込口はフィルター1
0をへて、作動油タンク11Vc接続し、ポンプ9の吐
出口上油路12をへてインジェクターボディ13の、作
動油流入口14(油圧源)K接続している。ポンプ9に
並列に圧力調整弁15が配置され、これにより油路12
内の油圧が一定値に保持される。又油路12にはアキユ
ムレータ15が接続されるか又は油路12の一部がアキ
ュムレータ機能を発揮する集合管を形成している。
There is a supply pump 9 driven by the engine 1 in the hydraulic oil supply system S2, and the suction port of the pump 9 is connected to the filter 1.
0 is connected to a hydraulic oil tank 11Vc, and an oil passage 12 above the discharge port of the pump 9 is connected to a hydraulic oil inlet 14 (hydraulic source) K of the injector body 13. A pressure regulating valve 15 is disposed in parallel with the pump 9, and thereby the oil passage 12
The oil pressure inside is maintained at a constant value. Further, an accumulator 15 is connected to the oil passage 12, or a part of the oil passage 12 forms a collecting pipe that functions as an accumulator.

燃料油供給システムS2a内にはエンジン1で駆動され
る燃料供給ポンプ9aがあり、ポンプ9aの吸込口はフ
ィルター10aを経て燃料タンク11aに接続し、ポン
プ9aの吐出口は油路12aを経てソレノイドバルブボ
ディ71の流入ロア2に接続している。流入ロア2に連
通したソレノイドバルブ室73にはソレノイドコイルブ
74が昇降自在に嵌合し、バルブ74はアクティブコア
75に接続し、ソレノイドスプリング76により下方へ
付勢され、弁座77を通常閉塞している。弁座77に連
通した流出ロア8は油路12bを経てインジェクターボ
ディ18の燃料流入口14aに接続している。79はア
ジャヌトボルト、80はナツトである。この燃料油制御
システム82″bはコイfi776に電流が通電された
時コア75が上方へ吸引されて弁座77が開き、通電時
間に比例した燃料油が弁座77を通過するように構成さ
れている。ボンブ9aに並列に圧力調整弁15aが配置
され、仁夕機能を発揮する集合管を形成している。
In the fuel oil supply system S2a, there is a fuel supply pump 9a driven by the engine 1, the suction port of the pump 9a is connected to the fuel tank 11a via a filter 10a, and the discharge port of the pump 9a is connected to a solenoid via an oil path 12a. It is connected to the inflow lower 2 of the valve body 71. A solenoid coil valve 74 is fitted into a solenoid valve chamber 73 communicating with the inflow lower 2 so as to be able to rise and fall freely, and the valve 74 is connected to an active core 75 and is urged downward by a solenoid spring 76 to normally close the valve seat 77. are doing. Outflow lower 8 communicating with valve seat 77 is connected to fuel inlet 14a of injector body 18 via oil passage 12b. 79 is Ajanuto Bolt, 80 is Natsuto. This fuel oil control system 82″b is configured such that when current is applied to the carp fi 776, the core 75 is drawn upward, the valve seat 77 opens, and fuel oil proportional to the energization time passes through the valve seat 77. A pressure regulating valve 15a is arranged in parallel with the bomb 9a, forming a collecting pipe that performs a pressure control function.

インジェクターボディ13内において、作動油流入口1
4には第1油路17(一部を17°とする)と切換弁室
19が共に下向きに開口し7ており、又切換弁室19と
同窓の円錐弁座20と第8油路21が共に上向きに開口
している。、第1油路17.17′はスプール弁室23
を介して切換弁室19の7上端に接続し、流入「114
と連通しない位置の第2油路18(一部を18“とする
)は、サーボピストン室46を切換弁室19と流出口2
4をへて排出油路25に接続している。第2油路18.
18゜は切換弁41の外周溝48により開閉される。
Inside the injector body 13, the hydraulic oil inlet 1
4 has a first oil passage 17 (part of which has an angle of 17 degrees) and a switching valve chamber 19 that both open downward 7, and a conical valve seat 20 and an eighth oil passage 21 that are in the same window as the switching valve chamber 19. Both are open upward. , the first oil passage 17, 17' is the spool valve chamber 23
7 upper end of the switching valve chamber 19 through the inflow "114
The second oil passage 18 (partly designated as 18") located at a position that does not communicate with the servo piston chamber 46 and the switching valve chamber 19 and the outlet 2
4 and is connected to the discharge oil path 25. 2nd oil passage 18.
18° is opened and closed by the outer circumferential groove 48 of the switching valve 41.

スプール弁室28にはスプール弁26が昇降自在に嵌合
し、スプール弁室28の底面とスプール弁26の間に縮
設したソレノイドスプリング27により上方へ付勢され
、ソレノイドコイA/8に囲まれたアクティブコア28
に当接してコア28をソレノイドバルブスプリング29
0弾力に抗して上端位置て保持している。スプール弁2
6の中間高さ部分:て設けた外周溝8oは第1油路17
”i−流出口B1に接続している。又スプール弁26の
下方のばね室32は油路33を介してスプール弁室23
の上端部に接続し、更にボディ13内の孔34とコア室
85と、コア28内の孔36をへてコア室35の上端部
に連通している。スプリング29はストッパーを兼ねる
アジャストボルト37の上端部外周に嵌めてあり、アジ
ャストポル) 87 itボディ13の上端部に螺合し
、ナツト88によりロックされている。アジャストボル
ト37の中央の孔39はコア室85の上端部を排出油路
25 VC接続している。
A spool valve 26 is fitted into the spool valve chamber 28 so as to be able to move up and down, and is urged upward by a solenoid spring 27 compressed between the bottom of the spool valve chamber 28 and the spool valve 26, and is surrounded by a solenoid coil A/8. active core 28
The core 28 is in contact with the solenoid valve spring 29.
It is held at the upper end position against zero elasticity. Spool valve 2
6: The outer circumferential groove 8o provided at the middle height portion is connected to the first oil passage 17.
The spring chamber 32 below the spool valve 26 is connected to the spool valve chamber 26 through an oil passage 33.
It is connected to the upper end of the core chamber 35 and communicates with the upper end of the core chamber 35 through the hole 34 in the body 13, the core chamber 85, and the hole 36 in the core 28. The spring 29 is fitted onto the outer periphery of the upper end of an adjustment bolt 37 which also serves as a stopper, is screwed onto the upper end of the adjustment bolt body 13, and is locked by a nut 88. A hole 39 in the center of the adjustment bolt 37 connects the upper end of the core chamber 85 to the discharge oil passage 25 VC.

切換弁室19内には上開きカップ状の差動型切換弁41
が摺動自在に嵌合し、切換弁室19の上端部と切換弁4
1の間に縮設したスプリング42により下方へ付勢され
ている。切換弁41は下半部の外径が圧力肩部43を境
に減少し、更に下端近傍の円錐形フェース部44で下方
にゆくにっれて縮径し、その下方に小径の絞り部45が
形成されている。フェース部44は円錐弁座2OK着座
する部分であり、紋り部45は弁座2oとサーボピスト
ン室46をつなぐ孔47に僅かな隙間をへだてて嵌合す
る部分である。切換弁41の外周溝48は第1図の状態
(後述する@2切換位置)において第2油路18,18
’を遮断している。
Inside the switching valve chamber 19 is a cup-shaped differential switching valve 41 that opens upward.
is slidably fitted into the upper end of the switching valve chamber 19 and the switching valve 4.
1 is biased downward by a spring 42 compressed between the two. The outer diameter of the lower half of the switching valve 41 decreases at the pressure shoulder 43, and further decreases in diameter at the conical face 44 near the lower end. is formed. The face portion 44 is a portion on which the conical valve seat 2O is seated, and the ridge portion 45 is a portion that fits into a hole 47 connecting the valve seat 2o and the servo piston chamber 46 with a slight gap. The outer circumferential groove 48 of the switching valve 41 is connected to the second oil passages 18, 18 in the state shown in FIG.
' is blocked.

サーボピストン室46内のサーボピストン5゜には、プ
ランジャ室51内のプランジャ52が接続(当接又は固
着)されている。サーボピストン室4.6の下端部は流
出口58をへて排出油路25aK接続する。
A plunger 52 in a plunger chamber 51 is connected (abutted or fixed) to the servo piston 5° in the servo piston chamber 46. The lower end of the servo piston chamber 4.6 is connected to the discharge oil passage 25aK through the outlet 58.

プランジャ室51の下端は燃料油路54をへて/ズw5
5のノズル油溜室56に接続し、又プランジャ室51と
並列のサプライバルブ室57の下端にも接続している。
The lower end of the plunger chamber 51 passes through the fuel oil passage 54/Z w5
5, and also connected to the lower end of a supply valve chamber 57 parallel to the plunger chamber 51.

バルブ室57は下端が第4油路22を介して燃料流入口
14aに接続し、室57内には上端に円錐形フェース部
58を有する下開きカップ状のサプライバルブ59が嵌
合し圧縮スプリング60により上方へ付勢され、フェー
ス部58が第4油路22の下端の弁座に着座して第4油
路22を閉塞している。室57の下端部はサプライバル
ブ59内の孔61を介して室57の下端部に連通してい
る。
The lower end of the valve chamber 57 is connected to the fuel inlet 14a via the fourth oil passage 22, and a downwardly opening cup-shaped supply valve 59 having a conical face portion 58 at the upper end is fitted into the chamber 57, and a compression spring is connected to the valve chamber 57. 60 , the face portion 58 is seated on the valve seat at the lower end of the fourth oil passage 22 and closes the fourth oil passage 22 . The lower end of the chamber 57 communicates with the lower end of the chamber 57 via a hole 61 in the supply valve 59 .

ノズル55内のニードル弁68の上端部はばね室64内
に突出し、ばね室64内の圧縮スプリング65により下
方へ付勢されている。ばね室64は第8油路21に接続
している。
The upper end of the needle valve 68 within the nozzle 55 protrudes into the spring chamber 64 and is biased downward by a compression spring 65 within the spring chamber 64 . The spring chamber 64 is connected to the eighth oil passage 21 .

次に作動を説明する。第1図はソレノイドコイ/1/8
への電流通電時(燃料噴射行程)を示しており、エンジ
ン1の回転中における所定タイミングにマイクロコンピ
ュータ5の出方端子6から信号路γをへてコイ/I/8
に信号が送られ、コイ/V 8 K所定時間通電される
。但しコイル8への通電時間は、燃料油制御□システム
s、bからプランジャ室51へ供給されている燃料油量
に対応して可及的に少なくなるように制御される。即ち
燃料油制御システムS2bにおいては、コイル7oに対
する通電時間により油路12a、12bを経てプランジ
ャ室51へ供給される燃料油量がエンジンの運転状態に
応じて定められ、プランジャ室51内に供給された燃料
油量に見合う最短時間だけソレノイドコイ/I/8に通
電が行なわれる。即ちエンジン1の運転中に(弓作動油
供給システムS2の作動によね、作動油流入口14に常
時所定圧の作動油が供給されており、その状態において
コイ/L/8に通電され、アクティブコア28がスプリ
ング290弾力に抗して矢印方向に第1図の上死点位置
迄上昇すると、スプール弁26もソレノイドスプリング
27の弾力によりアクティブコア28に追従して上昇し
、これによりスプール弁26は第1油路17を第1図の
如く遮断すると共K、第1油路11°を外周溝80を介
して流出口31に接続する。こrt Kより切換弁室1
9内の油圧は消滅するため差動型切換弁41が流入口1
4内の油圧によりスプリング420弾力に抗して上昇し
、切換弁41が第2油路18.18゛を遮断すると同時
に円錐弁座20を開放する(第2切換位置)。これによ
り66人口14内の作動油は孔47をへてサーボピスト
ン室46へ流入し、サーボピストン50を介してプラン
ジャ52^1A を押し下げる。プランジャ室51内の燃料油は油路54
をへてノズル油溜室56に供給され、ニードル弁68を
スプリング65の弾力に抗して押し上げ、ノズル55か
ら噴出する。その間サプライバルブ59はスプリング6
0の弾力及び燃料油の圧力により第4油路22を閉2(
状態に保つ。
Next, the operation will be explained. Figure 1 shows solenoid carp/1/8
This figure shows when current is applied to (fuel injection stroke), and at a predetermined timing while the engine 1 is rotating, it passes from the output terminal 6 of the microcomputer 5 through the signal path γ to the carp/I/8.
A signal is sent to the carp/V 8 K for a predetermined period of time. However, the energization time to the coil 8 is controlled to be as short as possible in accordance with the amount of fuel oil being supplied from the fuel oil control system s, b to the plunger chamber 51. That is, in the fuel oil control system S2b, the amount of fuel oil supplied to the plunger chamber 51 via the oil passages 12a and 12b is determined according to the operating state of the engine depending on the energization time to the coil 7o, and the amount of fuel oil supplied to the plunger chamber 51 is determined according to the operating state of the engine. The solenoid coil/I/8 is energized for the shortest time commensurate with the amount of fuel oil added. That is, while the engine 1 is operating (due to the operation of the bow hydraulic oil supply system S2, hydraulic oil at a predetermined pressure is constantly supplied to the hydraulic oil inlet 14, and in this state, the coil/L/8 is energized and activated. When the core 28 rises in the direction of the arrow to the top dead center position in FIG. K shuts off the first oil passage 17 as shown in Fig. 1, and connects the first oil passage 11° to the outlet 31 via the outer circumferential groove 80.
Since the hydraulic pressure in 9 disappears, the differential type switching valve 41 switches to the inlet 1.
The spring 420 rises against the elastic force due to the oil pressure in the valve 4, and the switching valve 41 closes off the second oil passage 18.18' and at the same time opens the conical valve seat 20 (second switching position). As a result, the hydraulic oil in the 66 cylinder 14 flows into the servo piston chamber 46 through the hole 47, and pushes down the plunger 52^1A via the servo piston 50. The fuel oil in the plunger chamber 51 flows through the oil passage 54.
The oil is supplied to the nozzle oil reservoir chamber 56, pushes up the needle valve 68 against the elasticity of the spring 65, and is ejected from the nozzle 55. Meanwhile, the supply valve 59 is operated by the spring 6.
The fourth oil passage 22 is closed due to the elasticity of 0 and the pressure of the fuel oil 2 (
keep it in good condition.

所定の通電時間が経過するとコイ/1/8による上方へ
の吸引力が消え、アクティブコア28u、xプリング2
90弾力によ如第2図のように下降し、スプール弁26
もアクティブコア28にtillされて下降する(第1
切換位置)。そうすると第1油路17.17°は外周溝
80を介し7て連通し、切換弁室19には流入口14内
の加圧作動油が供給され、切換弁41に作用する作動油
圧が相殺され、スプリング420弾力により切換弁41
は下降してフェース部44が弁座20 VC着座し、同
時に第2油路18.18°は外周溝48を介して連通し
、従ってサーボピストン室46内の油圧は消滅する。こ
のため第4油路22内の燃料油圧によりザブライバルブ
59がスプリング600弾力に抗して下降し、プランジ
ャ室51内へ燃料流入口14a内の加圧燃料油が充填さ
れる。このように第2図はソレノイドコイ/L’8への
電流遮断時(燃料充填行程)を示している。
After the predetermined energization time has passed, the upward suction force by the carp/1/8 disappears, and the active core 28u and x-pring 2
90 is lowered by elasticity as shown in Fig. 2, and the spool valve 26
is also tilled by the active core 28 and descends (first
switching position). Then, the first oil passage 17.17° communicates with each other through the outer circumferential groove 80, the pressurized hydraulic oil in the inlet 14 is supplied to the switching valve chamber 19, and the hydraulic pressure acting on the switching valve 41 is offset. , the switching valve 41 due to the elasticity of the spring 420
is lowered and the face portion 44 is seated on the valve seat 20 VC, and at the same time, the second oil passage 18.18° is communicated via the outer circumferential groove 48, so that the oil pressure in the servo piston chamber 46 disappears. Therefore, the fuel oil pressure in the fourth oil passage 22 causes the Xabli valve 59 to move downward against the elasticity of the spring 600, and the plunger chamber 51 is filled with the pressurized fuel oil in the fuel inlet 14a. As described above, FIG. 2 shows the time when the current to the solenoid carp/L'8 is cut off (fuel filling process).

以上説明したように本発明においては、インジェクター
のプランジャ52作動用サーボピストン50と、サーボ
ピストン50の嵌合したサーボピストン室46を作動油
油田源(作動油流入口14)と作動油流出口24に択一
的に接続する切換弁機構(差−動型切換弁41と、切換
弁室工9を作動油油圧源と作動油流出口に択一的に接続
するパイロット用スプール弁26)と、切換弁機構に連
結されたソレノイドアクティブコア28と、プランジャ
室51への燃料油供給機構(燃料油供給システA S2
a )と、インジェクターシステムS3カラ独立した燃
料油量制御機構(燃料油制御システム52b)とを備え
、ソレノイドへの電流通電と電流遮断によりサーボピス
トン50を作動油により動作させるように構成してあり
、次のような効果を期待することができる。
As explained above, in the present invention, the servo piston 50 for actuating the plunger 52 of the injector and the servo piston chamber 46 into which the servo piston 50 is fitted are connected to the hydraulic oil field source (hydraulic oil inlet 14) and the hydraulic oil outlet 24. a switching valve mechanism (a differential type switching valve 41 and a pilot spool valve 26 that alternatively connects the switching valve chamber 9 to a hydraulic oil pressure source and a hydraulic oil outlet); A solenoid active core 28 connected to the switching valve mechanism and a fuel oil supply mechanism (fuel oil supply system A S2) to the plunger chamber 51
a) and a fuel oil amount control mechanism (fuel oil control system 52b) independent of the injector system S3, and is configured to operate the servo piston 50 using hydraulic oil by applying and interrupting current to the solenoid. , the following effects can be expected.

(1)  インジェクターコイ/L/8への通電時間が
減り、コイ/I/8の昇’61LKよるソレノイド特性
の劣化(作用時期の遅れ、作用力の減少等)が少なくな
る。
(1) The time for energizing the injector Coil/L/8 is reduced, and deterioration of solenoid characteristics (delay in activation time, decrease in acting force, etc.) due to the rise of the Coil/I/8 is reduced.

(2)燃料油に低重質油を使用した場合の、パイロット
パルプ(スプール弁26)fx、らびにメインバルブ(
切換弁41)の作動障害、即ち高粘度による作動抵抗大
、摩耗増大、固着、燃料加熱によるソレノイド部昇温に
起因する作動特性の劣化等を防止すふことができる。
(2) When using low-heavy fuel oil, the pilot pulp (spool valve 26) fx and main valve (
It is possible to prevent operational failures of the switching valve 41), such as large operating resistance due to high viscosity, increased wear, sticking, and deterioration of operating characteristics due to temperature rise of the solenoid due to fuel heating.

(3)  パイロット弁としてスプール弁26を採用す
ると、弁開閉時の油圧荷重がポペット弁に比較して小さ
い。又スプール弁26の移動ストロークを小さく設定で
きるので、パイロット弁(スプール弁26)の速度も増
大する。スプール弁26の流出入口面積がポペット弁と
比較して大きく設定できるので、メインバルブ(切換弁
41)並びにサーボピストン50の応答性が速い。更に
ソレノイド(コイ/l/ 8 )の昇温か少ないので、
昇温対策が容易になる。又実施例図面の如く、アシヤス
トポμト87を採用すると、ヌプール弁26のメトロ−
りの設定が容易になる。又スプール弁26の両端が油路
331てよシ連通しているだめ、スプール弁26の作動
がスムーズになる。スプール弁26部分からの漏油がソ
レノイド内を貫流するので、ソレノイド運動部の耐摩耗
と冷却に有効である。
(3) When the spool valve 26 is used as the pilot valve, the hydraulic load when opening and closing the valve is smaller than that of a poppet valve. Furthermore, since the movement stroke of the spool valve 26 can be set small, the speed of the pilot valve (spool valve 26) can also be increased. Since the inlet/outlet area of the spool valve 26 can be set larger than that of the poppet valve, the response of the main valve (switching valve 41) and the servo piston 50 is fast. Furthermore, since the temperature rise of the solenoid (Koi/l/8) is small,
Measures against temperature rise become easier. In addition, as shown in the drawings of the embodiment, if the assist stop port 87 is adopted, the metro of the Nupur valve 26
settings are easier. Also, since both ends of the spool valve 26 are in communication with the oil passage 331, the operation of the spool valve 26 becomes smooth. Since oil leaking from the spool valve 26 flows through the inside of the solenoid, it is effective in preventing wear and cooling the moving parts of the solenoid.

第8図、第4図は第1図、第2図中のソレノイドアクテ
ィブコア28がコイ/I/8へ通電時上昇するのに対し
、通電時下降する形式を採用した場合の別の実施例であ
り、第3図はソレノイドへ電流通電時(燃料噴射行程)
、第4図はソレノイドへの電流遮断時(燃料充填行程)
を示しており、第1、第2図中の符号と同一符号は対応
部分である。
FIGS. 8 and 4 are another embodiment in which the solenoid active core 28 in FIGS. 1 and 2 is raised when energized to the coil/I/8, but lowered when energized. Figure 3 shows when current is applied to the solenoid (fuel injection stroke)
, Figure 4 is when the current to the solenoid is cut off (fuel filling process)
The same reference numerals as those in FIGS. 1 and 2 indicate corresponding parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電子油圧制御燃料噴射装置の構造
略図(ソレノイドへの電流通電時)であり、第2図はソ
レノイドへの電流遮断時におけるインジェクターの縦断
面図、第3図、第4図1/:、t:別の実施例を示すだ
めの第1、第2図に対応する図面である。8・−・コイ
ル(ソレノイド)、19・・・切換弁室、24・−・作
動油流出口、26.4】・−・スプール弁、作動型切換
弁(切換弁機構)、28・・・アクティブコア、46・
・・サーボピストン室、5o・・・サーボピストン、5
2・・・ブランジャ、S2・・・作動油供給システム、
S2a・・・燃料油供給システム、S2b・・・燃料油
制御システム、S3・・・インジェクター特 許 出 
願 人  ヤンマーディーゼル株式会社特開昭59−4
1659 (7) 2図 手続補正書(白和 1.事件の表示 昭和、S7年 竹餠 願第 /♂2≠J&号2、柊 明
 の名称 双1軒鑵権鯨り 3、補正をする者 事件との関係         特?F  出願人4、
代 理 人 5、補正命令の日付 (発送日)昭和  年   月 
  日6、補正の対象 明細書 7、補正の内容  明細書の浄書(内容に変更なし)。 8 添附書類の目録 明細書          1通
以」二
Fig. 1 is a schematic structural diagram of the electro-hydraulic control fuel injection system according to the present invention (when current is applied to the solenoid), Fig. 2 is a vertical cross-sectional view of the injector when current is cut off to the solenoid, Figs. FIG. 1/:, t: A drawing corresponding to FIGS. 1 and 2 showing another embodiment. 8... Coil (solenoid), 19... Switching valve chamber, 24... Hydraulic oil outlet, 26.4]... Spool valve, actuated switching valve (switching valve mechanism), 28... Active core, 46・
...Servo piston chamber, 5o...Servo piston, 5
2... Blunger, S2... Hydraulic oil supply system,
S2a...Fuel oil supply system, S2b...Fuel oil control system, S3...Injector Patented
Applicant: Yanmar Diesel Co., Ltd. JP-A-59-4
1659 (7) 2 drawing procedural amendment (Hakuwa 1. Indication of the case Showa, S7 year Takekugo Gan No. /♂2≠J&No. 2, Hiiragi Akira's name Double 1 Kenkan Gonjiri 3, Person making the amendment Relationship to the case Special?F Applicant 4,
Agent 5, Date of amendment order (Date of dispatch) Month, Showa
Day 6, Subject of amendment Description 7, Contents of amendment Engraving of the description (no change in content). 8 List of attached documents Specification 1 copy or more”2

Claims (2)

【特許請求の範囲】[Claims] (1)  インジェクターのプランジャ作動用サーボピ
ストンと、サーボピストンの嵌合したサーボピストン室
を作動油油圧源と作動油流出口に択一的に接続する切換
弁機構と、切換弁機構に連結したソレノイドアクティブ
コアと、プランジャ室への燃料油供給機構と、インジェ
クターから独立した燃料油量制御機構とを備え、ソレノ
イドへの電流通電と電流遮断によりサーボピストンを作
動油により動作させるようKしたことを特徴とする燃料
噴射装置。
(1) A servo piston for actuating the plunger of the injector, a switching valve mechanism that selectively connects the servo piston chamber in which the servo piston is fitted to a hydraulic oil pressure source and a hydraulic oil outlet, and a solenoid connected to the switching valve mechanism. Features include an active core, a fuel oil supply mechanism to the plunger chamber, and a fuel oil amount control mechanism independent from the injector, and the servo piston is operated by hydraulic oil by energizing and cutting off current to the solenoid. Fuel injection device.
(2)切換弁機構がサーボピストン室を作動油油圧源と
作動油流出口に択一的に接続する差動型切換弁と、切換
弁室を作動油油圧源と作動油流出口に択一的だ接続する
パイ☆ット用スプーμ弁で構成され、スプール弁がその
外周溝で開閉される第1油路を介して作動油油圧源と切
換弁室を接続し、切換弁がその外周溝で開閉される第2
油路を介してサーボピストン室と作動油流出口を接続し
、第1油路開放時のみに切換弁が作動油油圧源とサーボ
ピストン室間を遮断し、第2油路が開放するようにした
特許請求の範囲第1項記載の〆料噴射装置。
(2) A differential type switching valve in which the switching valve mechanism selectively connects the servo piston chamber to the hydraulic oil pressure source and the hydraulic oil outlet; The spool valve connects the hydraulic oil pressure source and the switching valve chamber via the first oil passage that is opened and closed in the groove on its outer periphery, and the switching valve The second one opens and closes with a groove.
The servo piston chamber and the hydraulic oil outlet are connected via an oil passage, and only when the first oil passage is opened, the switching valve shuts off between the hydraulic oil pressure source and the servo piston chamber, and the second oil passage is opened. A finishing material injection device according to claim 1.
JP57152435A 1982-08-31 1982-08-31 Fuel injection unit Granted JPS5941659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152435A JPS5941659A (en) 1982-08-31 1982-08-31 Fuel injection unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152435A JPS5941659A (en) 1982-08-31 1982-08-31 Fuel injection unit

Publications (2)

Publication Number Publication Date
JPS5941659A true JPS5941659A (en) 1984-03-07
JPS6314187B2 JPS6314187B2 (en) 1988-03-29

Family

ID=15540466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152435A Granted JPS5941659A (en) 1982-08-31 1982-08-31 Fuel injection unit

Country Status (1)

Country Link
JP (1) JPS5941659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236523A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Intensified electric-controlled fuel injector peculiar to vessel
CN113250876A (en) * 2021-06-18 2021-08-13 中国北方发动机研究所(天津) Slide valve type common rail oil sprayer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791368A (en) * 1980-11-29 1982-06-07 Yanmar Diesel Engine Co Ltd Fuel injection device of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791368A (en) * 1980-11-29 1982-06-07 Yanmar Diesel Engine Co Ltd Fuel injection device of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236523A (en) * 2018-07-26 2019-01-18 哈尔滨工程大学 Intensified electric-controlled fuel injector peculiar to vessel
CN113250876A (en) * 2021-06-18 2021-08-13 中国北方发动机研究所(天津) Slide valve type common rail oil sprayer

Also Published As

Publication number Publication date
JPS6314187B2 (en) 1988-03-29

Similar Documents

Publication Publication Date Title
EP0050053B1 (en) Fuel injection pump for controlling the duration and timing of the injection
EP1042607B1 (en) Fuel supply system of an internal combustion engine
EP1042608B1 (en) Fuel supply system of an internal combustion engine
US6021760A (en) Fuel injection device for internal combustion engines
JP3598610B2 (en) Solenoid valve and fuel pump using the same
JPH0650047B2 (en) Valve controller for a reciprocating piston internal combustion engine
US4538576A (en) Diesel fuel injector with double dump configuration
US4957084A (en) Fuel injection apparatus for internal combustion engines
US4073277A (en) Fuel injection pump for internal combustion engines
US4019481A (en) Fuel injection systems
US4437444A (en) Fuel injection pump for a diesel engine
JPS6112108B2 (en)
US4167373A (en) Fuel injection pumping apparatus
JPH0416631B2 (en)
US4082481A (en) Fuel injection pumping apparatus
JPH08921A (en) Edge filter for high pressured fluid pressure device
JPS5941659A (en) Fuel injection unit
JPH0116338B2 (en)
US20020170535A1 (en) Fuel injection device for internal combustion engines
US4763873A (en) Fluid control valves
US3603705A (en) Check valves
JPS5941658A (en) Fuel injection unit
EP0130310B1 (en) Improved unit injector
JPS6313023B2 (en)
US7261090B2 (en) Electromagnetic controlled fuel injector