JPS5941596B2 - Adaptive linear prediction device - Google Patents

Adaptive linear prediction device

Info

Publication number
JPS5941596B2
JPS5941596B2 JP52062328A JP6232877A JPS5941596B2 JP S5941596 B2 JPS5941596 B2 JP S5941596B2 JP 52062328 A JP52062328 A JP 52062328A JP 6232877 A JP6232877 A JP 6232877A JP S5941596 B2 JPS5941596 B2 JP S5941596B2
Authority
JP
Japan
Prior art keywords
prediction
predictor
coefficients
coefficient
prediction coefficients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52062328A
Other languages
Japanese (ja)
Other versions
JPS53147406A (en
Inventor
卓 荒関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP52062328A priority Critical patent/JPS5941596B2/en
Publication of JPS53147406A publication Critical patent/JPS53147406A/en
Publication of JPS5941596B2 publication Critical patent/JPS5941596B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To enable the analysis of the synchronism of the sound source, by increasing the degree of band compression, through performing the control of the amount of attenuation for the expected coefficient, in analysis or the like for audio signals.

Description

【発明の詳細な説明】 本発明は音声信号の分析あるいは帯域圧縮等に用いられ
、予測係数を逐次適応的に求める適応形線形予測装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adaptive linear prediction device that is used for audio signal analysis, band compression, etc., and that sequentially and adaptively obtains prediction coefficients.

近年、音声の分析および帯域圧縮のための有効な手段と
して線形予測法を用いたものが脚光をあびている。
In recent years, linear prediction methods have been attracting attention as an effective means for speech analysis and band compression.

これは音声信号がその過去の信号を用いてある程度予測
することができるという事実つまり冗長度を持つことに
よる。この場合求まつた予測係数は音声信号の特性を現
わすパラメータであると共に、予測係数と予測誤差をも
とに原信号を再生できるため帯域圧縮も可能となるもの
である。例えばDPCMあるいはΔMでは1サンプル過
去の信号をもとに現在の信号を推定し、その差成分(予
測信号差)のみを伝送する。このとき予測係数は固定の
値となつている。過去の1サンプルのみでなく複数個の
サンプル値を用いさらに予測係数を音声によつて最適な
値に選ぷならばより正確な予測ができ、伝送すべき予測
誤差がより小さくなることは想像に難くない。線形予測
に関しては例えばJ、Maldloulの解説的な論文
(’“LinearPrediction■ATut0
ria1Review゛’、Proceedingso
ftheIEEE、Vol。63、A6.4、pp、5
61−580、April1975)あるいはその他の
論文で述べられている。
This is due to the fact that the audio signal can be predicted to some extent using past signals, that is, it has redundancy. In this case, the determined prediction coefficient is a parameter representing the characteristics of the audio signal, and since the original signal can be reproduced based on the prediction coefficient and the prediction error, band compression is also possible. For example, in DPCM or ΔM, the current signal is estimated based on the signal of one sample past, and only the difference component (predicted signal difference) is transmitted. At this time, the prediction coefficient is a fixed value. You can imagine that if you use multiple sample values instead of just one sample in the past and select the optimal value for the prediction coefficient based on audio, you will be able to make more accurate predictions, and the prediction error that needs to be transmitted will be smaller. It's not difficult. Regarding linear prediction, for example, J. Maldloul's explanatory paper ('“Linear Prediction■ATut0
ria1Review', Proceedingso
ftheIEEE, Vol. 63, A6.4, pp, 5
61-580, April 1975) or other papers.

これらに従うと、音声信号系列をX。According to these, the audio signal sequence is X.

、x、、・・・・・・Xj−0とするとj時刻の音声信
号は 分■、ΣaiXj−1・・・・・・(1)1=1で近似
できる。
, x, . . . Xj-0, the audio signal at time j can be approximated by minutes ΣaiXj-1 (1) 1=1.

但し、a(i=1、2、・・・・・・N)は予測係数。
ここで予測値(と真の値父jとの差の二乗平均が最小と
なるような最適な予測係数を求める一つの方法は、音声
信号x・の自己相関係数ψo、φ、、・・・・・・φN
を求め、なる線形方程式を解くことである。
However, a (i=1, 2,...N) is a prediction coefficient.
Here, one way to find the optimal prediction coefficients that minimizes the square mean of the difference between the predicted value (and the true value father j) is to calculate the autocorrelation coefficients ψo, φ, . . . of the audio signal x. ...φN
, and solve the linear equation.

しかし、この方法では自己相関を求め方程式を解くため
に極めて大量で複雑な演算が必要となり実際に装置を作
るときに大きな難点となる。予測係数を求める他の方法
は予測係数の逐次修正を行なうものである。
However, this method requires an extremely large amount of complicated calculations to obtain the autocorrelation and solve the equations, which poses a major difficulty when actually building the device. Another method for determining prediction coefficients is to sequentially modify the prediction coefficients.

つまり、時刻jにおける予測誤差eをとすると、予測係
数A,は のごとくに修正される。
In other words, if the prediction error at time j is e, the prediction coefficient A is modified as follows.

ここでγは修正ゲイン、F.gは任意の非減少関数であ
る。(4)式を繰り返すことによりalは最適値に近づ
く。線形予測法を用いた音声帯域圧縮の例はAtal等
による(2)式を解く方式(B.S.AtalandM
.R.SehrOederl“′AdaptivePr
edictiveCOdingOfSpeachSig
nals..″BellSyst.Tech.J.、V
Ol、48、Pp.l973−1986、0ct.19
70)あるいは(4)式のごとく逐次法によるもの(J
,D.GibsOn.S.K.JOnesandJ.I
Melsal″SequentiallyAdapti
vePredictiOnandCOdingOfSp
eachSigrlals、“IEEETrans.C
OmmllniCatlOnS.VOl.COM−22
、應11、Pp.l789−1793、NOv.l97
4)が挙げられる。
Here γ is the correction gain, F. g is any non-decreasing function. By repeating equation (4), al approaches the optimal value. An example of voice band compression using the linear prediction method is the method of solving equation (2) by Atal et al.
.. R. SehrOederl“'AdaptivePr
editiveCOdingOfSpeechSig
nals. .. ``BellSyst.Tech.J.,V
Ol, 48, Pp. l973-1986, 0ct. 19
70) or by the sequential method as shown in equation (4) (J
,D. GibsOn. S. K. JOnesandJ. I
Melsal″SequentiallyAdapti
vePredictiOnandCOdingOfSp
eachSigrrals, “IEEETrans.C
OmmllniCatlOnS. Vol. COM-22
, 應11, Pp. l789-1793, NOv. l97
4).

いずれの場合も予測係数の数は10以下である。前者は
帯域圧縮比は大きいが装置が極めて複雑化するという欠
点を持つ。後者は圧縮比は前者よりも小さいが(2)式
のごとき方程式を解く必要がないこと、予測係数を送信
する必要がないこと等の理由で回路的にはかなり簡単と
なる。本発明は後者に関するものである。音声信号は母
音と子音から構成されており、母音は周期的な声帯の振
動による空気流の変化を音源としている。
In either case, the number of prediction coefficients is 10 or less. The former has a large band compression ratio, but has the disadvantage that the device becomes extremely complex. Although the latter has a smaller compression ratio than the former, it is considerably simpler in terms of circuitry because there is no need to solve equations such as equation (2), and there is no need to transmit prediction coefficients. The present invention relates to the latter. Speech signals are composed of vowels and consonants, and vowels originate from changes in airflow due to periodic vibrations of the vocal cords.

この周期的な音源のため第1図Xで示す音声の予測誤差
もやはり同図fで示すように周期的な信号となる。つま
り周期的に予測し難い部分が現われる。線形予測による
音声の帯域圧縮の限界つまり原音声信号と最適線形予測
したときの予測誤差信号との電力比(圧縮比)は14d
B程度となる。圧縮比をさらに上げるには予測係数の数
を増す方法、あるいは音源の周期をあらかじめ測定し第
1図eに示すごとく音源の周期性をとり除く前掲のAt
al等の方法が考えられる。しかし予測係数の個数を増
す方法は逐次法によると一般に予測係数の数の増加と共
に予測係数の音声の変化に対する追従性が悪くなること
、S/Nの悪化を防ぐため演算の精度を上げなければな
らないこと、予測係数の解が一義的でない等問題が多い
。一方Atal等の方法では周期性を求めるため相関係
数を求めなければならないこと、また検出した周期を送
信しなければならないこと等の理由で回路的に極めて複
雑となる。
Because of this periodic sound source, the speech prediction error shown in FIG. 1X also becomes a periodic signal as shown in FIG. 1F. In other words, parts that are difficult to predict appear periodically. The limit of audio band compression by linear prediction, that is, the power ratio (compression ratio) between the original audio signal and the prediction error signal when performing optimal linear prediction is 14d.
It will be about B. To further increase the compression ratio, there is a method of increasing the number of prediction coefficients, or the above-mentioned At method that measures the period of the sound source in advance and removes the periodicity of the sound source as shown in Figure 1e.
Possible methods include al. However, when increasing the number of prediction coefficients using the sequential method, generally speaking, as the number of prediction coefficients increases, the ability of the prediction coefficients to follow changes in the audio deteriorates, and in order to prevent deterioration of the S/N ratio, the accuracy of calculation must be increased. There are many problems, such as that the prediction coefficient is not unique, and that the solution to the prediction coefficient is not unique. On the other hand, the method of Atal et al. requires a correlation coefficient to be determined in order to determine the periodicity, and the detected period must be transmitted, resulting in an extremely complex circuit.

また音声分析においても、音源の周期を求めるためには
自己相関を求め方程式を解く等の複雑な計算が要求され
る。以上のごとき問題点を解決するために一般的に用い
られている線形予測器と多数個の予測係数を持っ適応形
線形予測器とを縦続接続した適応形縦続予測方式が提案
されている。(特願昭51−99116)この予測方式
では通常用いられる比較的小数個の予測係数を持つ適応
形線形予測器により音声信号の短時間スペクトラムを推
定し、多数個の予測係数を持つ別の適応形線形予測器に
より音源の周期性を推定し冗長度を取り除こうとするも
のである。次に従来の適応形縦続予測方式の説明を行な
う。第1図は音声信号および予測誤差を示す波形図、第
2図は従米の適応形線形予測装置の実施例を示すプロツ
ク図である。この従来の実施例においては、送信側では
量子化器と2段の線形予測器が縦続接続されループを作
つており、かつ伝送エラーを考慮し求められた予測係数
が自動的に減衰するように構成されている。つまり送信
側ではj時刻に原音声信号系列Xjは入力端子10から
与え送信側第1の減算回路60で予測値との差即ち△第
1の予測誤差Fj−Xj−Xjが求められる。
Furthermore, in speech analysis, complex calculations such as obtaining autocorrelation and solving equations are required in order to obtain the period of the sound source. In order to solve the above problems, an adaptive cascade prediction method has been proposed in which a commonly used linear predictor and an adaptive linear predictor having a large number of prediction coefficients are connected in cascade. (Japanese Patent Application No. 51-99116) In this prediction method, the short-time spectrum of the audio signal is estimated by a normally used adaptive linear predictor with a relatively small number of prediction coefficients, and another adaptive linear predictor with a large number of prediction coefficients is used. This method uses a linear predictor to estimate the periodicity of a sound source and remove redundancy. Next, a conventional adaptive cascade prediction method will be explained. FIG. 1 is a waveform diagram showing an audio signal and a prediction error, and FIG. 2 is a block diagram showing an embodiment of Jumei's adaptive linear prediction device. In this conventional embodiment, a quantizer and a two-stage linear predictor are cascaded to form a loop on the transmitting side, and the calculated prediction coefficients are automatically attenuated in consideration of transmission errors. It is configured. That is, on the transmitting side, at time j, the original audio signal sequence Xj is applied from the input terminal 10, and the first subtraction circuit 60 on the transmitting side calculates the difference from the predicted value, that is, the Δfirst prediction error Fj-Xj-Xj.

予測値父jは第1の予測器30で過去の入力音声信号を
もとに次式により第1の予測器20において生成される
。但しX・−・ は送信側で再生された音声信号SJ−
1サンプルであり、Nは10程度の値である。
The predicted value father j is generated in the first predictor 20 by the following equation based on the past input audio signal in the first predictor 30. However, X・−・ is the audio signal SJ− reproduced on the transmitting side
1 sample, and N has a value of about 10.

hゼは次式のように逐次修正される。但しkは1より充
分小さな値で予測係数h瓢 の減衰の程度を表わし、k
が零に近い程減衰量は少ない。
hze is successively modified as shown in the following equation. However, k is a value sufficiently smaller than 1 and represents the degree of attenuation of the prediction coefficient h.
The closer to zero, the smaller the amount of attenuation.

ψ1、ψ2は任意の非減少関数である。Fjは送信側で
再生された第1の予測誤差である。第1の予測誤差f・
は第2の減算器61に入力されJ第2の予測誤差Ej−
Fj−η が求められる。
ψ1 and ψ2 are arbitrary non-decreasing functions. Fj is the first prediction error reproduced on the transmitting side. First prediction error f・
is input to the second subtractor 61 and the J second prediction error Ej-
Fj-η is found.

第2の予測値♀jは第2の予測器30において次式によ
り得られる。ここでFj−1は送信側で再生された第1
の予測誤差である。
The second predicted value ♀j is obtained by the second predictor 30 using the following equation. Here, Fj-1 is the first
is the prediction error.

またがは次式に従い修正される。但しlは1より充分小
さな値である。またφ3、ψ4は任意の非減少関数であ
る。第2の予測誤差e・ は量子化器70により量子化
され送信信号Jej′となつて送り出される。
or is modified according to the following formula: However, l is a value sufficiently smaller than 1. Further, φ3 and φ4 are arbitrary non-decreasing functions. The second prediction error e· is quantized by a quantizer 70 and sent out as a transmission signal Jej'.

送信信号Ej′は量子化器ROの逆特性を持つ逆量子化
器71に入力されjとなる。第1の加算器32において
Fj−j+jが得られ第2の予測器30の新しい入力信
号となる。また第1の加算器22によりX・一J了j+
父jが得られ第1の予測器20の新しい入力信号となる
The transmission signal Ej' is inputted to an inverse quantizer 71 having characteristics inverse to that of the quantizer RO, and becomes signal j. Fj-j+j is obtained in the first adder 32 and becomes the new input signal of the second predictor 30. Also, the first adder 22 adds
The father j is obtained and becomes the new input signal of the first predictor 20.

一方、受信側においては受信した信号e「は逆量子化装
置72により嘗・ に変換され第1の加算J器において
受信側第1の予測器40の出力との和j″一仝j+η・
が得られる。
On the other hand, on the receiving side, the received signal e' is converted by the inverse quantization device 72 into 嘗・, and in the first adder J, the sum j'' with the output of the first predictor 40 on the receiving side is j''1 j+η・
is obtained.

Fj″は受信側第1の予測器40により次式に従い求め
られる。さらに第2の加算器51により原音声信号の推
定値X1′一了』十文rが得られる。ここ憫は第2の予
測器50において次式により求められる。d瓢 および
H1の修正は送信側におけるp?およ1.11びh!の
修正と同じアルゴリズムによつて行なわれる。
Fj'' is obtained by the first predictor 40 on the receiving side according to the following equation.Furthermore, the second adder 51 obtains the estimated value X1'ichiryo''jubunr of the original audio signal. In the predictor 50, it is determined by the following equation.The correction of d? and H1 is performed by the same algorithm as the correction of p?, 1.11, and h! on the transmitting side.

以上の説明で明らかなように従来の実施例で用いられる
線形予測器はいずれも予測値を求めるための積和演算と
予測係数の修正だけであり、回路的に比較的簡単に構成
できかつ大きな帯域圧縮率が期待できる。
As is clear from the above explanation, all the linear predictors used in conventional embodiments only perform a product-sum operation and correction of prediction coefficients to obtain a predicted value, and can be configured relatively easily in terms of circuitry and have a large Bandwidth compression rate can be expected.

また伝送あるいは演算において誤動作が生じてもそれに
よる予測係数の誤差は自然に消えるようになつている。
しかしながら、多数個の予測係数を持つ予測器は雑音が
多いという欠点を持つ。
Furthermore, even if a malfunction occurs in transmission or calculation, the resulting error in the prediction coefficients will naturally disappear.
However, a predictor with a large number of prediction coefficients has the disadvantage of being noisy.

一般的に言つて(7)式に示されるようなトランスバー
サル形フイルタの出力の雑音はほぼタツプ数(M−L)
に比例する。従つて予測信号父jに雑音が含まれると予
測誤差e・ もある一定以上には小さくならないたJめ
帯域圧縮の効果はある程度以上期待できない。
Generally speaking, the output noise of a transversal filter as shown in equation (7) is approximately equal to the number of taps (M-L).
is proportional to. Therefore, if noise is included in the predicted signal (j), the prediction error (e) will not become smaller than a certain level, so the effect of band compression cannot be expected beyond a certain level.

本発明の目的は多数個の予測係数から成る適応形予測器
を持ちさらに高い音声信号の圧縮率を得ることのできる
適応形予測装?の実現にある。本発明の他の目的は音源
の周期までも正しく求めることのできる音声分析装置の
実現にある。本発明によれば予測誤差を用いて予測係数
を逐次修正する第1の適応形線形予測器と第1の適応形
予測器よりも多数の子測係数を持ち自らの予測誤差を用
いて前記多数個の予測係数を逐次修正する第2の適応形
予測器とを縦続接続した適応形線形予測装置において、
第2の適応形線形予測器の多数個の予測係数のうち最大
値を持つ予測係数の近傍以外の予測係数を他の予測係数
より早い速度で減衰させる手段を有することを特徴とす
る適応形線形予測装置が得られる。上述の説明で示した
ように、多数個の予測係数を持つ適応形予測器は音源の
周期性までも推定できるが、係数を増したことにより雑
音も増加し帯域圧縮の効果を薄めてしまうという欠点を
持つている。
SUMMARY OF THE INVENTION An object of the present invention is to provide an adaptive prediction device that has an adaptive predictor consisting of a large number of prediction coefficients and is capable of obtaining a higher audio signal compression rate. The goal lies in the realization of Another object of the present invention is to realize a speech analysis device that can accurately determine even the period of a sound source. According to the present invention, there is a first adaptive linear predictor that sequentially corrects prediction coefficients using prediction errors; In an adaptive linear prediction device that is cascade-connected with a second adaptive predictor that sequentially corrects prediction coefficients of
The adaptive linear predictor is characterized by having means for attenuating prediction coefficients other than those in the vicinity of the prediction coefficient having the maximum value among the plurality of prediction coefficients of the second adaptive linear predictor at a faster rate than other prediction coefficients. A prediction device is obtained. As shown in the above explanation, an adaptive predictor with a large number of prediction coefficients can even estimate the periodicity of the sound source, but increasing the number of coefficients also increases noise and weakens the effect of band compression. It has its drawbacks.

雑音の増加を抑える一つの方法は予測器の予測係数をイ
ンパルス的にすることである。つまり多数の子測係数の
うち1個あるいは数値のみを大きな値として残りはすべ
て零または零に近い値とすることである。このように予
測係数のインパルス比の妥当性は雑音低減ということか
らもまた音声源の周期性からもうなづける。実際前述の
Atal等の分献においては1つの予測係数のみが零以
外の値を持つ。このような理想的な予測係数を得るため
に本発明においては予測係数のうち最大値を示す予測係
数の近傍以外の係数の減衰効果を大きくするという手法
を用いた。
One way to suppress the increase in noise is to make the prediction coefficients of the predictor impulsive. In other words, only one or a numerical value out of a large number of submeasurement coefficients is set to a large value, and the remaining coefficients are all set to zero or values close to zero. In this way, the validity of the impulse ratio of the prediction coefficient can be derived from the fact that it reduces noise and from the periodicity of the speech source. In fact, in the Atal et al. partition mentioned above, only one prediction coefficient has a non-zero value. In order to obtain such ideal prediction coefficients, the present invention uses a method of increasing the attenuation effect of coefficients other than those in the vicinity of the prediction coefficient having the maximum value among the prediction coefficients.

つまりエラー対策として採用されている(8)式の減衰
量1を次に述べるように制御する。適応動作開始時には
予測係数Pi(M≦1≦L)はすべて零に近い値となつ
ておりその時減衰量1は比較的小さい一定値となつてい
る。適応動作が続けられ予測係数が生成されある定めら
れた値θ例えば0.5を越えたならばθを越えた予測係
数のうち最大の値のものを選び出し、その近傍の予測係
数については減衰量1を比較的小さい一定値とし、それ
以外の予測係数の減衰量1をより大きな値として(8)
式に示す修正を行ない予測係数が零に近づく傾向を強め
る。次に図を参照して本発明を詳細に説明する。
In other words, the attenuation amount 1 in equation (8), which is adopted as an error countermeasure, is controlled as described below. At the start of the adaptive operation, all the prediction coefficients Pi (M≦1≦L) have values close to zero, and at that time, the attenuation amount 1 has a relatively small constant value. The adaptive operation continues and prediction coefficients are generated, and if it exceeds a certain predetermined value θ, for example 0.5, the one with the largest value is selected from among the prediction coefficients that exceed θ, and the attenuation amount is determined for the prediction coefficients in the vicinity. Set 1 to a relatively small constant value, and set the attenuation amount 1 of other prediction coefficients to larger values (8)
The correction shown in the formula is performed to strengthen the tendency of the prediction coefficient to approach zero. Next, the present invention will be explained in detail with reference to the drawings.

第3図は本発明による実施例であり、多数個の予測係数
を持つ第2の予測器30を中心に表わしてある。逆量子
化器71の出力η は第2の加算器32と係数修正部3
04に入力される。また第2の加算器32の出力Fj−
1(1−1〜N)はスイツチ302によりシフトレジス
タを用いて構成される信号記憶部301に貯えられ、1
サンプリング周期の間に信号記憶部301出力端子に順
次現われる。予測係数pl (1−1〜N)は係数記憶
部303に格納されており1サンプリング周期の間にN
個の係数は順次読み出され修正されて再び入力される。
信号記憶部301と係数記憶部303の出力を乗算器3
05と積分器306で操作して(7)式が実行される。
信号記憶部301の出力η−1(1−1〜N)と予測誤
差j、予測係数,!(1−1〜N)は係数脩正部304
に印加さ1j+1れ(8)式が実行されて新しいPi(
1−1〜N)が出力される。
FIG. 3 shows an embodiment according to the present invention, mainly showing a second predictor 30 having a large number of prediction coefficients. The output η of the inverse quantizer 71 is sent to the second adder 32 and the coefficient correction unit 3.
04 is input. Further, the output Fj- of the second adder 32
1 (1-1 to N) are stored in the signal storage unit 301 configured using a shift register by the switch 302, and the 1
The signals appear sequentially at the output terminal of the signal storage unit 301 during the sampling period. The prediction coefficients pl (1-1 to N) are stored in the coefficient storage unit 303, and the prediction coefficients pl (1-1 to N) are
The coefficients are sequentially read out, modified, and input again.
The outputs of the signal storage section 301 and the coefficient storage section 303 are applied to the multiplier 3.
05 and the integrator 306 to execute equation (7).
The output η-1 (1-1 to N) of the signal storage unit 301, the prediction error j, the prediction coefficient, ! (1-1 to N) is the coefficient 304
is applied to 1j+1 and formula (8) is executed to obtain a new Pi(
1-1 to N) are output.

係数修正部304においては(8)式を基にした予測係
数の修正と予測係数の最大値の検出、減衰量1の制御2
仔う。.係数修正部304で作られた係数Pi(ト)−
1〜N)のうちある一定値θ(例えば0.5)を越すも
のがあつた場合そのうちの最大の予測係数を探しその位
置を記憶する。最大値を持つ予測係数の近傍の係数を修
正する場合には減衰量1を小さな値とし、それ以外の予
測係数を修正する場合には減衰量1をより大きな値とす
る。但し、音源の周期が変化した場合に予測係数を新た
に作るためには減衰量1をあまり大きくしてはいけない
。以上述べたように減衰量1を制御することにより第2
の予測器30内に作られる予測係数はインパルス的にな
り予測器出力での雑音は少なくなり予測の精度があがる
The coefficient correction unit 304 corrects the prediction coefficient based on equation (8), detects the maximum value of the prediction coefficient, and controls the attenuation amount 1.
Baby. .. Coefficient Pi(g)- created by the coefficient correction unit 304
1 to N) that exceeds a certain constant value θ (for example, 0.5), the largest prediction coefficient among them is found and its position is stored. When modifying a coefficient near the prediction coefficient having the maximum value, the attenuation amount 1 is set to a small value, and when modifying other prediction coefficients, the attenuation amount 1 is set to a larger value. However, in order to create a new prediction coefficient when the period of the sound source changes, the attenuation amount 1 must not be made too large. As mentioned above, by controlling the attenuation amount 1, the second
The prediction coefficients generated in the predictor 30 become impulse-like, reducing noise at the predictor output and improving prediction accuracy.

また本発明では予測係数の減衰量を制御するだけなので
音源の周期の変動にも充分追従できる。本実施例におい
て信号記憶部301と係数記憶部303としてシフトレ
ジスタを用いたが、ランダムアクセスメモリ(RAM)
を用いてもよい。
Further, in the present invention, since only the attenuation amount of the prediction coefficient is controlled, it is possible to sufficiently follow fluctuations in the period of the sound source. In this embodiment, a shift register was used as the signal storage section 301 and the coefficient storage section 303, but a random access memory (RAM)
may also be used.

その場合にはスイツチ302は不要である。本実施例で
の第1の予測器20および第2の予測器30の順序は説
明の都合上採用したものであり逆に接続した方がより良
い特性の得られることが多い。また本実施例の送信部の
みを用いることにより音声の分析を行なうことができる
。つまり本実施例の第1の予測器20は音声の短時間ス
ペクトラムに関する情報を表わし、第2の予測器30は
音源の周期を表わす。以上述べたごとく本発明によれば
、帯域圧縮の程度の極めて大きい予測符号化装置が得ら
れ、また音源の周期までも分析できる音声分析装置が得
られる。
In that case, switch 302 is not necessary. The order of the first predictor 20 and the second predictor 30 in this embodiment is adopted for convenience of explanation, and better characteristics can often be obtained by connecting them in the opposite direction. Furthermore, voice analysis can be performed by using only the transmitter of this embodiment. That is, the first predictor 20 in this embodiment represents information regarding the short-time spectrum of the sound, and the second predictor 30 represents the period of the sound source. As described above, according to the present invention, it is possible to obtain a predictive encoding device that achieves an extremely high degree of band compression, and also to obtain a speech analysis device that can analyze even the period of the sound source.

【図面の簡単な説明】 第1図は音声信号および予測誤差を示す波形図、第2図
は従来の適応形線形予測装置の実施例、第3図は本発明
による実施例で第2図の線形予測器30を中心に示して
いる。 図において、10は送信側入力端子、11は送信側出力
端子、12は受信側入力端子、13は受信側出力端子、
14は通信チヤンネルであり、送信部において20は第
1の予測器、22は第1の加算器、30は第2の予測器
、32は第2の加算器、60は第1の減算器、61は第
2の減算器、70は量子化器、71は逆量子化器であり
、受信部において40は第1の予測器、41は第1の加
算器、50は第2の予測器、51は第2の加算器、72
は逆量子化器であり、301は信号記憶部、302はス
イツチ、303は係数記憶部、304は係数修正部、3
0は乗算器、306は積分器である。
[Brief Description of the Drawings] Fig. 1 is a waveform diagram showing an audio signal and a prediction error, Fig. 2 is an embodiment of a conventional adaptive linear prediction device, and Fig. 3 is an embodiment according to the present invention. The linear predictor 30 is mainly shown. In the figure, 10 is a transmitting side input terminal, 11 is a transmitting side output terminal, 12 is a receiving side input terminal, 13 is a receiving side output terminal,
14 is a communication channel; in the transmission section, 20 is a first predictor, 22 is a first adder, 30 is a second predictor, 32 is a second adder, 60 is a first subtracter, 61 is a second subtracter, 70 is a quantizer, 71 is an inverse quantizer, and in the receiving section, 40 is a first predictor, 41 is a first adder, 50 is a second predictor, 51 is a second adder, 72
is an inverse quantizer, 301 is a signal storage section, 302 is a switch, 303 is a coefficient storage section, 304 is a coefficient correction section, 3
0 is a multiplier, and 306 is an integrator.

Claims (1)

【特許請求の範囲】[Claims] 1 予測誤差を用いて予測係数を逐次修正する第1の適
応形線形予測器と第10適応形線形予測器よりも多数の
予測係数を持ち自らの予測語差を用いて前記多数個の予
測係数を逐次修正する第2の適応形線形予測器とを縦続
接続した適応形線形予測装置において、第2の適応形線
形予測器の多数個の予測係数のうち最大値を持つ予測係
数の近傍以外の予測係数を他の予測係数より早い速度で
減衰させる手段を有することを特徴とする適応形線形予
測装置。
1 A first adaptive linear predictor that sequentially corrects prediction coefficients using prediction errors and a tenth adaptive linear predictor that has a larger number of prediction coefficients and uses its own prediction word difference to correct the plurality of prediction coefficients. In an adaptive linear prediction device that is cascade-connected with a second adaptive linear predictor that sequentially corrects the An adaptive linear prediction device comprising means for attenuating a prediction coefficient at a faster rate than other prediction coefficients.
JP52062328A 1977-05-27 1977-05-27 Adaptive linear prediction device Expired JPS5941596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52062328A JPS5941596B2 (en) 1977-05-27 1977-05-27 Adaptive linear prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52062328A JPS5941596B2 (en) 1977-05-27 1977-05-27 Adaptive linear prediction device

Publications (2)

Publication Number Publication Date
JPS53147406A JPS53147406A (en) 1978-12-22
JPS5941596B2 true JPS5941596B2 (en) 1984-10-08

Family

ID=13196951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52062328A Expired JPS5941596B2 (en) 1977-05-27 1977-05-27 Adaptive linear prediction device

Country Status (1)

Country Link
JP (1) JPS5941596B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287399A (en) * 1989-04-28 1990-11-27 Fujitsu Ltd Vector quantization control system

Also Published As

Publication number Publication date
JPS53147406A (en) 1978-12-22

Similar Documents

Publication Publication Date Title
EP0500096B1 (en) Method and apparatus for controlling coefficients of adaptive filter
US8594173B2 (en) Method for determining updated filter coefficients of an adaptive filter adapted by an LMS algorithm with pre-whitening
JP2008146081A (en) Redundancy reducing method
JP2007316658A (en) Method and device for processing stereo audio signal
EP0529556B1 (en) Vector-quatizing device
Liu et al. Adaptive filtering for intelligent sensing speech based on multi-rate LMS algorithm
JPH04264597A (en) Voice encoding device and voice decoding device
JPS5941596B2 (en) Adaptive linear prediction device
JPS5917839B2 (en) Adaptive linear prediction device
JP2002258897A (en) Device for suppressing noise
KR100754558B1 (en) Periodic signal enhancement system
Yatrou et al. Ensuring predictor tracking in ADPCM speech coders under noisy transmission conditions
JP2603065B2 (en) Prediction filter
JPH08102644A (en) Adaptive filter system
JP2008131593A (en) Method of deciding double talk state, echo eraser using same and its, program and recording medium therefore
CN105632504B (en) ADPCM codec and method for hiding lost packet of ADPCM decoder
US11361746B2 (en) Audio playback apparatus and method having noise-canceling mechanism
EP0715407B1 (en) Method and apparatus for controlling coefficients of adaptive filter
Fabry et al. Online secondary path estimation with masked auxiliary noise for active noise control
JP2001007738A (en) Echo canceller and method for initializing the same
KR19990001296A (en) Adaptive Noise Canceling Device and Method
CN117690446A (en) Echo cancellation method, device, electronic equipment and storage medium
JP3183743B2 (en) Linear predictive analysis method for speech processing system
JPH0483300A (en) Noise suppression type voice detector
Alexander Adaptive reduction of interfering speaker noise using the least mean squares algorithm