JPS5941473A - Electron impact heating evaporation source - Google Patents

Electron impact heating evaporation source

Info

Publication number
JPS5941473A
JPS5941473A JP15241682A JP15241682A JPS5941473A JP S5941473 A JPS5941473 A JP S5941473A JP 15241682 A JP15241682 A JP 15241682A JP 15241682 A JP15241682 A JP 15241682A JP S5941473 A JPS5941473 A JP S5941473A
Authority
JP
Japan
Prior art keywords
evaporation
evaporation material
electron
scanning
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15241682A
Other languages
Japanese (ja)
Other versions
JPS6217025B2 (en
Inventor
Shuichi Ichikawa
修一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP15241682A priority Critical patent/JPS5941473A/en
Publication of JPS5941473A publication Critical patent/JPS5941473A/en
Publication of JPS6217025B2 publication Critical patent/JPS6217025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Abstract

PURPOSE:To provide the titled evaporation source for attaining to uniformize the melting mode of an evaporation material and evaporation distribution, constituted so as to be capable of appropriately varying the step time and/or the step position of electron beam subjecting the evaporation material to step scanning. CONSTITUTION:In an electron impact heating evaporation source wherein electron beam emitted from an electron gun 1 is deflected about 180 deg. by a permanent magnet 2 to be guided onto the evaporation material 4 in a crucible 3 and said evaporation material 4 is evaporated by scanning and heating to form films on substrate 5a-5c by vapor deposition, signals are outputted from digital scanning signal generators 7X, 7Y in directions X, Y on the basis of a step position setting device 10 appropriately made variable by a digital controller 12 and a stop time setting device 11 to control deflecting coils 6X, 6Y in directions X, Y through DA converters 8S, 8Y and amplifiers 9X, 9Y and the evaporation material 4 is scanned. In addition, a step time and/or a step position is appropriately altered by a beam scanning locus.

Description

【発明の詳細な説明】 本発明は電子ビームを適宜な角度偏向させて蒸発材料に
導き、更に該蒸発材料上を該ビームで走査りるJζうに
した電子衝撃加熱蒸発源に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron impact heating evaporation source in which an electron beam is guided to an evaporation material by deflecting it at an appropriate angle, and the beam is scanned over the evaporation material.

真空蒸着装置や高周波イオンプレーテング等においては
、例えば月1堝に蒸発材料を入れ、該坩堝を陽極とし、
陰極フィラメン1〜からの電子を該蒸発材料上に導いて
該材料をビームで衝撃して蒸発させている。この際、こ
の蒸気が陰極フィラメントに当たることによる該フィラ
メン1〜の破IV!ど汚れを免れる為に、該陰極フィラ
メントを直接蒸気に晒されない位置に配置し、該フィラ
メントからの電子を磁場又は電場により曲げて蒸発材料
に導く様にしている。又、同時に蒸発材料全面を一様に
衝撃するように、電子ビームで材料上全面をラスク状に
走査している。
In vacuum evaporation equipment, high frequency ion plating, etc., for example, the evaporation material is placed in a crucible once a month, and the crucible is used as an anode.
Electrons from the cathode filaments 1 are directed onto the evaporation material to bombard the material with the beam and evaporate it. At this time, the vapor hits the cathode filament, causing the filament 1 to break IV! To avoid contamination, the cathode filament is placed in a location where it is not directly exposed to steam, and the electrons from the filament are bent by a magnetic or electric field and guided to the evaporation material. At the same time, the entire surface of the evaporated material is scanned in a rask shape with an electron beam so as to uniformly impact the entire surface of the evaporated material.

しかし、フィラメントからの電子を大きい角度(例90
’〜360’ )偏向させる為に設計される磁極構造か
ら、蒸発材料上でビームの形状が歪んだり、ビームの走
査方向が歪み、これらの結果、蒸発材料上の場所場所に
おいて電子ビームの衝撃■に差が生じ、各場所において
溶は方に差が生じ°る。この為、蒸発材料の蒸発分布が
経時的に変化してしまい、基板上に形成される膜の成膜
状態が変化してしまう。又、蒸発分布が変化して来た場
合、坩堝ごと新しいものに取り換えるので、元の坩堝の
蒸発材料中に全く溶けていない部分や少量しか溶けてい
ない部分が残存し、蒸発材料の有効利用に反し、不経済
であった。
However, the electrons from the filament can be moved at a large angle (e.g. 90
'~360') Due to the magnetic pole structure designed for deflection, the shape of the beam is distorted on the evaporation material, and the scanning direction of the beam is distorted, resulting in the impact of the electron beam at certain locations on the evaporation material. There will be differences in the amount of water, and there will be differences in the rate of melting at each location. For this reason, the evaporation distribution of the evaporation material changes over time, and the state of the film formed on the substrate changes. In addition, if the evaporation distribution changes, the whole crucible is replaced with a new one, so some parts that are not dissolved at all or only a small amount remain in the evaporation material of the original crucible, making it difficult to use the evaporation material effectively. On the contrary, it was uneconomical.

本発明はこの様な点に鑑みてなされたもので、電子ビー
ムを適宜な角度偏向させて蒸発材料上に導き、該蒸発月
利上を該ビームで走査するにうになした蒸発源において
、前記蒸発材料上をビームC′ステップ走査させるよう
になし、各ステップ時間及び若しくは各ステップ位置を
適宜に可変出来るようになした新規な電子衝撃加熱蒸発
源を提供するものぐある。
The present invention has been made in view of these points, and includes an evaporation source in which an electron beam is deflected at an appropriate angle, guided onto the evaporation material, and the beam is scanned over the evaporation material. A novel electron impact heating evaporation source is provided in which the beam C' is scanned over the evaporation material in steps, and the time and/or position of each step can be varied as appropriate.

第1図は本発明の一実施例を示した電子@撃加熱蒸発源
の概略を示すものである。図中1は直接空気に晒されな
い位置に配置された電子銃で、該電子銃からの電子ビー
ムは、永久磁石2の磁場により、例えば180度偏向さ
れ、用堝3に入れられた蒸発材料4上に導かれる。5a
 、5b、5c 。
FIG. 1 schematically shows an electron percussion evaporation source showing an embodiment of the present invention. In the figure, reference numeral 1 denotes an electron gun placed in a position not directly exposed to air, and the electron beam from the electron gun is deflected by, for example, 180 degrees by the magnetic field of a permanent magnet 2, and the evaporation material 4 placed in a pot 3 is deflected by 180 degrees. be led upwards. 5a
, 5b, 5c.

・・・は基板で、前記材料4の蒸気により膜が形成され
る。6X、6Yは各々X方向偏向コイル、Y方向偏向コ
イルで、ビームは該偏向コイルの倒1きにJ:り前記材
料4上を走査する。以上説明した電子銃1〜偏向コイル
6X、6Yは真空容器の中に配置される。7X、7Yは
各々X方向、Y方向デジタル走M信号発生器で各々の出
力信号はDA変換器8X、8Y及びアンプ9X、9Yを
介して前記偏向コイル6X、6Yに送られる。10はス
テップ位置設定器で、前記ビームの材料4上での位置を
設定するものである。11は停滞時間設定器で、前記デ
ジタル走査信号の各ステップの長さを設定するものであ
る。尚、これらの停滞時間設定器11とステップ位置設
定器10を図に示す様にデジタル電子計算機の如きデジ
タル制御器12でコントロールする様にしてもよい。
. . . is a substrate on which a film is formed by the vapor of the material 4. 6X and 6Y are an X-direction deflection coil and a Y-direction deflection coil, respectively, and the beam is scanned over the material 4 by turning the deflection coils. The electron gun 1 to deflection coils 6X and 6Y described above are arranged in a vacuum container. 7X and 7Y are X-direction and Y-direction digital running M signal generators, respectively, and their respective output signals are sent to the deflection coils 6X and 6Y via DA converters 8X and 8Y and amplifiers 9X and 9Y. Reference numeral 10 denotes a step position setting device, which sets the position of the beam on the material 4. Reference numeral 11 denotes a dwell time setter for setting the length of each step of the digital scanning signal. Incidentally, the stagnation time setting device 11 and the step position setting device 10 may be controlled by a digital controller 12 such as a digital computer as shown in the figure.

先ず、蒸発材料上でビームの形状が全く歪まず又、ビー
ムの走査方向う全く歪まないものと仮定し、第2図に示
す様に蒸発材料上でビームがPl(Xl、Vl)、Pg
  (X2.V2’)、Pa  (X3 、V3 >、
P4 (X4 、V4 )−・と全面を規則正しいステ
ップで走査するようにデジタル信号(第3図(a>、(
b)参照)を作成する。それにはステップ位置設定器1
0から、X方向、Y方向の各デジタル走査信号の各ステ
ップ間の高さが全て等しくなる様な指令と、停滞時間設
定器11から、X方向、Y方向の各デジタル走査信号の
各ステップ幅が全て等しくなる様な指令をそれぞれ、X
方向、)1方向デジタル走査化号発生器7X、7Yへ送
る。該X方向デジタル走査信号発生器7xは該指令に基
づいて第3図(a )に示す如きデジタル走査信号を発
生し、又Y方向デジタル走査信号発生器7Yは該指令に
基づいC第3図(b)に示づ如きデジタル走査信号を発
生して、夫々X方向偏向コイル6X、Y方向偏向=1イ
ル6Yに送る。
First, assuming that the shape of the beam is not distorted at all on the evaporation material, and that the scanning direction of the beam is not distorted at all, the beam is shaped like Pl (Xl, Vl), Pg on the evaporation material as shown in Fig. 2.
(X2.V2'), Pa (X3, V3 >,
P4 (X4, V4)--... The digital signal (Fig. 3 (a>, (
b) Reference). For that, step position setter 1
0, a command such that the height between each step of each digital scanning signal in the X direction and Y direction is all equal, and each step width of each digital scanning signal in the X direction and Y direction from the stagnation time setting device 11. For each command such that all are equal,
direction, ) is sent to the one-way digital scanning signal generators 7X and 7Y. The X-direction digital scanning signal generator 7x generates a digital scanning signal as shown in FIG. 3(a) based on the command, and the Y-direction digital scanning signal generator 7Y generates a digital scanning signal as shown in FIG. 3(a) based on the command. A digital scanning signal as shown in b) is generated and sent to the X-direction deflection coil 6X and Y-direction deflection=1 coil 6Y, respectively.

この様にして蒸発材料上におけるビームの走査軌跡と、
蒸発材料の各位置(P+ 、Pg 、Pa 、・・・)
の溶(ブ具合を観察する。ビームの走査軌跡は蒸発材料
4の位置に該材料に代えて蛍光板を配置し、該蛍光板上
を前記デジタル走査信号に従って電子ビーl\を走査し
、該ビームの走査軌跡を観察りる。
In this way, the scanning trajectory of the beam on the evaporated material,
Each position of evaporation material (P+, Pg, Pa,...)
The scanning locus of the beam is determined by placing a fluorescent screen in place of the evaporated material 4, scanning the electronic beam over the fluorescent screen according to the digital scanning signal, and observing the progress of the beam. Observe the scanning trajectory.

又、蒸発材料4の各位置の溶は具合は、前記デジタル走
査信号に従って該材料上を走査し、該材料上の各位置(
P+ 、Pg 、・・・)での月利の溶【J具合を実際
に観察する。そして前記ビームの走査軌跡の観察に基づ
いて、ステップ位置設定器10にJ、リデジタル走査信
号の各ステップの高さを制御し、前記材わl上の各位置
(P+ 、Pg 、・・・)での材料の溶は具合の観察
に基づいて、停滞時間設定器11によりデジタル走査信
号の各ステップの幅を制御する。例えば、第4図に示す
様にビームが所定の位置(P+ 、 Pg 、 Pa 
、 P4 、 Ps 、 Pg 、 P7 、 Pa 
、 )・・・を移動ぜずにP+ ’ 、Pg。
Further, the melting condition of each position of the evaporation material 4 is determined by scanning the material according to the digital scanning signal and determining the melting condition of each position (
P+, Pg,...) [Actually observe how the monthly interest rate changes. Then, based on the observation of the scanning locus of the beam, the height of each step of the digital scanning signal is controlled by the step position setting device 10, and each position (P+, Pg, . . . ) The width of each step of the digital scanning signal is controlled by the dwell time setter 11 based on the observation of the melting condition of the material. For example, as shown in FIG.
, P4, Ps, Pg, P7, Pa
, )... without moving P+ ', Pg.

Pa、P4 、Ps 、Pg、P7 、P8’ ・・・
を移動したとすれば、第5図の実線で示したデジタル走
査信号中のPlのステップ位@(Xl、Vl)信号がP
1″のステップ位置(Xo、V2)信号になる様に、P
aのステップ位置(x B 、 V l )信号がP、
b のステップ位置(X7.l/2)信号になる様にス
テップ信号設定器10からX、Y方向デジタル走査信号
発生器7X、7Yには指令を送り、又材料上の各位置の
平均的溶1プ具合に対し、位置P4が平均の2/3しか
溶けなく、位置P sが平均に対し2倍溶けたとすれば
、第5図の実線で示したデジタル走査信号中のP4のス
テップ位置(xa、y4)のステップ幅が1.5倍にな
る様に、Psのステップ幅が0.5倍になる様に停滞時
間設定器′11からX、Y方向デジタル走査信号発生器
に指令を送る。すると、該X、)’7j向デジタル信号
発生器からの信号が各々第5図(a)。
Pa, P4, Ps, Pg, P7, P8'...
, the step position of Pl in the digital scanning signal shown by the solid line in Fig. 5 @ (Xl, Vl) signal becomes P
P so that the step position (Xo, V2) signal is 1".
The step position (x B , V l ) signal of a is P,
A command is sent from the step signal setter 10 to the digital scanning signal generators 7X and 7Y in the X and Y directions so that the step position (X7.l/2) signal of b is obtained, and the average melting at each position on the material is If position P4 melts only 2/3 of the average for one step, and position Ps melts twice as much as the average, then the step position of P4 in the digital scanning signal shown by the solid line in Fig. 5 ( Send a command from the dwell time setter '11 to the X and Y direction digital scanning signal generator so that the step width of xa, y4) becomes 1.5 times, and the step width of Ps becomes 0.5 times. . Then, the signals from the digital signal generator for the X, )'7j directions are shown in FIG. 5(a).

(1))の破線で示す如き波形の信号となり、その結果
、ビームは所定位置(P+ 、 P2 、 Pa 、 
P4、Ps、P6.P7.Pa、=1を移動し、しかも
、位置P4で平均の1.5倍停滞し、位置P5で平均の
1X2倍停滞するので、材料上の各位置での材料の溶は
具合も均一化する。従って、蒸発材わ1の蒸発部分が経
時的に変化することがなくなるので基板への材料の成膜
状態が変化しない。
(1)) The signal has a waveform as shown by the broken line, and as a result, the beam moves to a predetermined position (P+, P2, Pa,
P4, Ps, P6. P7. Pa,=1, and in addition, it stagnates at 1.5 times the average at position P4, and stagnates at 1X2 times the average at position P5, so that the melting of the material at each position on the material becomes uniform. Therefore, since the evaporated portion of the evaporator material 1 does not change over time, the state of the material deposited on the substrate does not change.

又、蒸発材料が有効に使用されることになる。Also, the evaporated material will be used effectively.

尚、前記実施例ではステップ位置とスデツブ時間とをコ
ントロールする様にしているが、何れか一つのコン]・
ロールによっても従来に比べるとか4Tり効果が上る。
In the above embodiment, the step position and step time are controlled, but if any one of the controllers is
The roll also increases the 4T effect compared to the conventional method.

又、本発明によれば(i意な位置に任意な時間ビームを
停滞させることが出来るので、非常に有効である。例え
ば二種の材料からなる蒸発材料を溶かす場合、材料によ
って溶かす部分と溶かす割合をコン1−ロールしたり、
円形状の材料を均一に溶したりできる。
Also, according to the present invention, it is very effective because the beam can be stagnated at any arbitrary position for any time.For example, when melting an evaporation material made of two materials, the part to be melted and the part to be melted depend on the material. Control the ratio,
Can evenly melt circular materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示した電子衝撃加熱蒸発源
、第2図〜第5図は本発明の詳細な説明を補fd する
為の図である。 1:電子銃、2:永久磁石、3:坩堝、4:蒸発材料、
=6X:X方向偏向コイル、6Y:YZj向偏向]」イ
ル、7X:X方向デジタル走査信号発生器、7Y:Y方
向デジタル走査信号発生器、10ニステップ位置設定器
、11:停滞時間設定器。 特許出願人 日本電子株式会社 代表者 伊藤 −夫 第3図
FIG. 1 is an electron impact heating evaporation source showing an embodiment of the present invention, and FIGS. 2 to 5 are diagrams for supplementing the detailed explanation of the present invention. 1: Electron gun, 2: Permanent magnet, 3: Crucible, 4: Evaporation material,
=6X: X-direction deflection coil, 6Y: YZJ-direction deflection], 7X: X-direction digital scanning signal generator, 7Y: Y-direction digital scanning signal generator, 10 two-step position setter, 11: Stagnation time setter . Patent applicant JEOL Ltd. Representative Ito-husband Figure 3

Claims (1)

【特許請求の範囲】[Claims] 電子ビーl\を適宜な角度偏向させて蒸発材料上に導き
、該蒸発材料上を該ビームで走査するようになした蒸発
源にJ3いて、前記蒸発材料上をビームでステップ走査
させるようになし、各ステップ時間及び若しくは各ステ
ップ位置を適宜に可変出来るようになした電子衝撃加熱
蒸発源。
The electron beam is deflected at an appropriate angle and guided onto the evaporation material, and placed in an evaporation source J3 that scans the evaporation material with the beam, so that the beam scans the evaporation material in steps. , an electron impact heating evaporation source in which each step time and/or each step position can be varied as appropriate.
JP15241682A 1982-09-01 1982-09-01 Electron impact heating evaporation source Granted JPS5941473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15241682A JPS5941473A (en) 1982-09-01 1982-09-01 Electron impact heating evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15241682A JPS5941473A (en) 1982-09-01 1982-09-01 Electron impact heating evaporation source

Publications (2)

Publication Number Publication Date
JPS5941473A true JPS5941473A (en) 1984-03-07
JPS6217025B2 JPS6217025B2 (en) 1987-04-15

Family

ID=15540029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15241682A Granted JPS5941473A (en) 1982-09-01 1982-09-01 Electron impact heating evaporation source

Country Status (1)

Country Link
JP (1) JPS5941473A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346554A (en) * 1990-04-12 1994-09-13 Seiko Instruments Inc. Apparatus for forming a thin film
EP1275750A2 (en) * 2001-07-11 2003-01-15 Carl Zeiss Vapor deposition apparatus
KR101164872B1 (en) * 2004-12-27 2012-07-19 주식회사 포스코 Plating device for producing high quality steel plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290481A (en) * 1976-01-27 1977-07-29 Asahi Optical Co Ltd Electronic beam scanner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290481A (en) * 1976-01-27 1977-07-29 Asahi Optical Co Ltd Electronic beam scanner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346554A (en) * 1990-04-12 1994-09-13 Seiko Instruments Inc. Apparatus for forming a thin film
EP1275750A2 (en) * 2001-07-11 2003-01-15 Carl Zeiss Vapor deposition apparatus
EP1275750A3 (en) * 2001-07-11 2007-04-04 Carl Zeiss Vapor deposition apparatus
US7544399B2 (en) 2001-07-11 2009-06-09 Carl Zeiss Vision Gmbh Method for vapor depositing a material utilizing an electron beam
KR101164872B1 (en) * 2004-12-27 2012-07-19 주식회사 포스코 Plating device for producing high quality steel plate

Also Published As

Publication number Publication date
JPS6217025B2 (en) 1987-04-15

Similar Documents

Publication Publication Date Title
EP0666933B1 (en) Device for plasma-supported electron beam high-rate vapour deposition
JPS5941473A (en) Electron impact heating evaporation source
JP2899310B2 (en) Evaporation source assembly with crucible
US3526206A (en) Coating apparatus including electron beam evaporating means
US3467057A (en) Electron beam evaporator
JPS6093742A (en) Display device
US4260893A (en) Device for directing electrically charged particles towards a target
JP4246373B2 (en) Electron beam generation apparatus and electron beam exposure apparatus
JPH0785812A (en) Crt electron gun having electron-beam-divergence-angle controlled by current quantity
JPS6142845A (en) Method and device for controlling focused state of deflectedelectron beam
GB2247856A (en) Controling vapor deposition.
JP4050848B2 (en) Electron beam evaporator
JP3143801B2 (en) Ion plating equipment
JP3961158B2 (en) Electron beam evaporator
JP3902250B2 (en) Winding type thin film forming equipment
JP2005276520A (en) Electron gun
JP3741160B2 (en) Continuous vacuum deposition apparatus and continuous vacuum deposition method
DE3834154A1 (en) Electron beam evaporator
JPH0762240B2 (en) Electron gun for electron beam evaporation
JP4421846B2 (en) Electron source device and electron source device adjustment method
JPS59111241A (en) Beam scanning apparatus of heater
JPH05287512A (en) Multidimensional vacuum vapor deposition device
JPH11335837A (en) Magnetic medium producing device
KR960032599A (en) Ion implanter
JPH0689684A (en) Charged particle beam device