JP4050848B2 - Electron beam evaporator - Google Patents

Electron beam evaporator Download PDF

Info

Publication number
JP4050848B2
JP4050848B2 JP19506999A JP19506999A JP4050848B2 JP 4050848 B2 JP4050848 B2 JP 4050848B2 JP 19506999 A JP19506999 A JP 19506999A JP 19506999 A JP19506999 A JP 19506999A JP 4050848 B2 JP4050848 B2 JP 4050848B2
Authority
JP
Japan
Prior art keywords
electron beam
magnetic field
acceleration voltage
substance
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19506999A
Other languages
Japanese (ja)
Other versions
JP2001020064A (en
Inventor
茂生 今野
英夫 峯岸
利夫 力武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP19506999A priority Critical patent/JP4050848B2/en
Publication of JP2001020064A publication Critical patent/JP2001020064A/en
Application granted granted Critical
Publication of JP4050848B2 publication Critical patent/JP4050848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する分野】
本発明は、電子銃からの電子ビームを曲線状に曲げて坩堝内の蒸発物質に照射するように成した電子ビーム蒸発装置に関する。
【0002】
【従来の技術】
真空蒸着装置やイオンプレーティング装置等には、電子ビーム蒸発装置が備えられており、例えば、基板に蒸着すべき材料(蒸発物質)を坩堝内に収容し、坩堝の横若しくは下側に設けられた電子銃からの電子ビームを磁場により曲線状に偏向させて坩堝内の蒸発物質に導き、蒸発物質を加熱蒸発させるようにしている。
【0003】
図1はこの様な電子ビーム蒸発装置の概略を示したもので、図2は図1のA−A線断面図である。
【0004】
図中1A,1Bは、永久磁石2を挟んで平行に配置された磁極板で、前記永久磁石2によりN極とS極に励磁されている。該磁極板間には、蒸発物質3が収容された坩堝4が設けられている。該坩堝の下には、電子銃5が設けられている。該電子銃はフィラメント6,グリッド7及びアノード8から成る。9はフイラメント加熱電源、10は加速電源である。尚、11はグリッド支持板である。12は環状鉄心にX方向走査用偏向コイルとY方向走査用偏向コイルが巻かれた走査用電磁コイル体で、前記電子銃5からの電子ビームの通路上に配置されている。尚、この走査用電磁コイル体は、例えば、磁極1A,1Bの間で坩堝4の近くに取り付けられた非磁性製のホルダー(図示せず)によって支持されている。13は該走査用電磁コイル体に走査用の電流を流すための走査用電源である。
【0005】
この様な装置において、電子銃5のフイラメント6から発生された電子ビームは、アノード8によって加速され、グリッド7とアノード8のビーム通過孔7H,8Hを通過する。この際、グリッド7とアノード8のビーム通過孔7H,8Hにより電子ビームの開き角が決定される。そして、アノード8のビーム通過孔8Hを出た電子は、磁極1A,1Bが作る磁場によりラーモァ円を描く様に、270°前後曲げられ坩堝4内に収容された蒸発物質3に照射される。この際、電子銃5からの電子ビームは走査用電磁コイル体12が作る二次元方向走査用磁場を通過するので、電子ビームは蒸発物質3上を二次元方向に走査することになる。この結果、蒸発物質3は電子ビームにより加熱されて蒸発し、その蒸発粒子が、例えば、坩堝4上方に配置された各基板(図示せず)上に付着する。
【0006】
【発明が解決しようとする課題】
この様な電子ビーム蒸発装置において、坩堝上方において、蒸発物質表面に垂直な軸に対して垂直な面における蒸発粒子の分布が所望の状態に近づけたいという要望がある。例えば、坩堝の上方に設けられたドーム状の基板支持板(図示せず)に支持された複数の基板(図示せず)への蒸着膜厚を均一に近づけたいという要望がある。この要望を実現するには、蒸発物質3の各位置から蒸発して上方の基板群に向かう蒸発粒子の放射角度が各々の位置において常にほぼ一定に保たれる必要がある。尚、この際、ドーム状の基板支持板はその中心を通る軸の周りで回転させている。
【0007】
その為には、蒸発物質3の各位置への電子ビームの入射が垂直近くに保たれ、蒸発物質3の各位置の蒸発の量を同一に近くすることが必要となる。通常、この様な電子ビーム蒸発装置では、ラーモァ円を描いて蒸発物質に入射する電子ビームの断面形状が丸状になるように磁極板1A,1Bの一部若しくは別に設けた磁極の形状等に工夫をこらしている。従って、電子ビームの蒸発物質に対する入射が垂直に近ければ、蒸発物質に照射される電子ビームの断面形状は丸状に近いものとなり、蒸発物質の各位置での蒸発量も常に一定に近くなる。しかし、電子ビームの蒸発物質に対する入射角がずれると、蒸発物質上での電子ビームの断面が丸状からずれ(例えば、楕円形乃至長楕円形など)、蒸発物質の蒸発量が一定でなくなる。
【0008】
所で、この様な電子ビーム蒸発装置においては、磁極等に蒸発した粒子が付着するので、時々これらの部品を分解してクリーニングしなければならない。しかし、クリーニング後に部品を組み立てて装置を作動させる毎に、磁極等の部品の位置ずれに基づいて蒸発物質3の各位置への電子ビームの入射角がずれる。即ち、クリーニング作業を挟む部品分解前と部品組立後での電子ビームの入射角の再現性が悪い。その為、その度に、磁極等の取り付け位置の精密調整を何度も繰り返す必要があり、極めて作業効率が悪い。
【0009】
又、加速電圧を変化させた場合、蒸発物質3の各位置への電子ビームの入射角がずれる。
【0010】
本発明は、この様な問題点を解決する為になされたもので、新規な電子ビーム蒸発装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明の電子ビーム蒸発装置は、少なくとも1対の偏向用磁極間に電子銃と蒸発物質を収容した坩堝を設け、前記電子銃から発せられた電子ビームが前記偏向用磁極が形成する磁場により偏向されて前記坩堝内の蒸発物質に照射されるように成しており、この電子ビームの通路上に走査用偏向器を設けて前記蒸発物質上を電子ビームで走査するように成した電子ビーム蒸発装置において、前記偏向磁極間に形成される磁場に磁気的影響を与えることが出来、且つ該磁場の方向と平行な方向に新たな磁場を形成することが出来る電磁コイルを設け、電子ビームの加速電圧値に応じて、該電磁コイルが形成する磁場をコントロールすることにより前記蒸発物質に入射する電子ビームの角度が所定の値になるように前記偏向用磁極が形成する磁場強度がコントロールされるように成したことを特徴とする。
【0012】
又、本発明の電子ビーム蒸発装置は、蒸発物質に入射する電子ビームの角度が所定の値になる標準加速電圧値と異なった各加速電圧値に対する電子ビーム入射角のずれを補正する磁場強度補正データを各加速電圧値に対応させて記憶したメモリを設けたことを特徴とする。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0014】
図3は本発明の電子ビーム蒸発装置の1概略例を示したもので、図中前記図1及び図2と同一記号の付されたものは同一構成要素を示す。
【0015】
図1及び図2に対して図3に示した電子ビーム蒸発装置の構成上の差異は次の通りである。
【0016】
図3においては、坩堝4の上部近傍に、磁極1A,1Bが作る磁場の磁力線とほぼ平行な磁力線の磁場を形成するための補正用電磁コイル20を設ける。21は該補正用電磁コイルへ励磁電流を流すための励磁電源で、電子計算機の如き制御装置22の指令に基づいて作動する。23は加速電圧値データに対する補正励磁電流値データが記憶されたメモリである。
【0017】
この様な構成の装置の動作を次に説明する。
【0018】
先ず、装置の初期状態として、標準加速電圧V0において、ラーモァ円を描いて蒸発物質に入射する電子ビームの断面形状が丸状になるように磁極板1A,1Bの一部若しくは別に設けた磁極の形状が工夫されており、蒸発物質3の各位置への電子ビームの入射が垂直近くに保たれている。
【0019】
又、予め、加速電圧を標準値V0と異なった電圧値に変えた場合、各電圧値に対する電子ビーム入射角のずれに対応するものを測定しておき、各ずれを補正するための磁場の補正値(励磁電流値)を求めておく。そして、各加速電圧値データと該電圧値データに対する磁場の補正値データ(励磁電流値データ)をテーブル化してメモリ23に記憶しておく。各加速電圧値に対する電子ビームの入射角のずれに対応するものは、次の様にして測定することが出来る。
【0020】
加速電圧値を標準値V0とは別の値に設定し、その時の坩堝4内の蒸発物質3の或る特定領域における蒸発物質の溶け具合からその加速電圧に対する電子ビームの入射角に対応するものが推定することが出来る。尚、この場合、電子ビームによる蒸発物質上の走査はしない状態で行う。
【0021】
さて、加速電圧が大きくなると、標準値V0との差に従って、磁極1A,1Bによる電子ビームの偏向がききにくくなり、電子ビームの蒸発物質に対する入射角が小さくなり標準時より少し手前側に入射し、蒸発物質上の断面形状が磁場方向に垂直な方向に伸びる。逆に、加速電圧が小さくなると、標準値V0との差に従って、磁極1A,1Bによる電子ビームの偏向がききやすく、電子ビームの蒸発物質に対する入射角が大きくなり、標準時より後ろ側に照射され、蒸発物質上の断面形状が磁場方向に垂直な方向に伸びる。例えば、図4(a)に示す様に、標準加速電圧がV0の場合、蒸発物質のX0の領域での電子ビームの断面は丸状であり、X0領域全体において蒸発物質の溶け具合が大きい。加速電圧を標準電圧値V0より大きくすると、蒸発物質上での電子ビームの照射位置が磁場の方向に垂直な方向で手前側(図の左側方向)にずれ、且つ、その断面が磁場の方向に垂直な方向に長い楕円形になる。図4の(b),(c)に示す様に、加速電圧を大きくしていく程この傾向が大きく現れる。従って、加速電圧がV1(V1>V0)の場合は、(b)に示す様に、X0の領域の手前半分の部分で蒸発物質が溶けており、その溶け具合は、標準時に比べより小さくなる。加速電圧がV2(V2>V1)の場合は、(c)に示す様に、X0の領域の手前1/4の部分で蒸発物質が溶けており、その溶け具合は更に小さくなる。逆に、加速電圧を標準値V0より小さくすると、蒸発物質上での電子ビームの照射位置が磁場の方向に垂直な方向で後ろ側(図の右側方向)にずれ、且つ、その断面が磁場の方向に垂直な方向に長い楕円形になる。図4の(d),(e)に示す様に、加速電圧を小さくしていく程この傾向が大きく現れる。従って、加速電圧がV3(V3<V0)の場合は、(d)に示す様に、X0の領域の後ろ側半分の部分で蒸発物質が溶けており、その溶け具合は、標準に比べより小さくなる。加速電圧がV4(V4<V3)の場合は、(e)に示す様に、X0の領域の後ろ側1/4部分で蒸発物質が溶けており、その溶け具合は更に小さくなる。この様にして、加速電圧を変えて、蒸発物質上の特定領域での蒸発物質の溶け具合を測定すれば、加速電圧値に対して、どの程度磁場の強さを変えれば、標準状態(図(a)の状態)に近づくかが分かる。この様にして、加速電圧値に対する磁場の補正強度(励磁電流値)を求めてテーブル化し、メモリ23に記憶しておく。尚、磁場の補正強度値は補正用電磁コイル20への補正励磁電流値に対応している。
【0022】
この様な構成の装置において、例えば、加速電圧が標準値V0に設定されているとした場合、電子銃5のフイラメント6から発生された電子ビームは、アノード8によって加速され、グリッド7とアノード8のビーム通過孔7H,8Hを通過する。この際、グリッド7とアノード8のビーム通過孔7H,8Hにより電子ビームの開き角が決定される。そして、アノード8のビーム通過孔8Hを出た電子は、磁極1A,1Bが作る磁場によりラーモァ円を描く様に、270°前後曲げられ坩堝4内に収容された蒸発物質3に照射される。この際、電子銃5からの電子ビームは走査用電磁コイル体12が作る二次元方向走査用磁場を通過するので、電子ビームは蒸発物質3上を二次元方向に走査することになる。この結果、蒸発物質3は電子ビームにより加熱されて蒸発し、その蒸発粒子が、例えば、坩堝4上方に配置された各基板(図示せず)上に付着する。
【0023】
さて、この様な電子ビーム蒸発装置においては、前記した様に、磁極等に蒸発した粒子が付着するので、時々これらの部品を分解してクリーニングしている。そして、クリーニング後に部品を組み立てて装置を再び作動させてるようにしている。この再作動の前に、標準値V0のままで電子ビームを加速して電子ビームを蒸発物質の特定領域に当て(この場合には、電子ビームの走査はしない状態で行なう)、その特定領域の溶け具合を測定する。そして、この溶け具合が、部品組立前の標準状態の場合の溶け具合に近づくように、補正用電磁コイル20への励磁電流値を変えていき、特定領域の溶け具合が標準状態と同じ様になる励磁電流値を部品組立後の設定値とする。尚、この励磁電流を変える場合には、制御装置22に繋がったキーボード(図示せず)により励磁電流値データを入力することにより行う。従って、クリーニング後に磁極などの部品を組み立てた後、磁極等の取り付け位置の精密調整を行う必要がなく、極めて作業効率が良くなる。
【0024】
又、制御装置22の指令により加速電源10から標準値と異なった加速電圧をアノード8,フィラメント6間に印加した場合には、制御装置22はこの設定した加速電圧値に対し与えられている励磁電流の補正値データをメモリ23から呼び出し、標準時の励磁電流にこの補正値が加算されたものが補正用電磁コイル20に流れる様に励磁電源21に指令を送る。それにより、今回設定した加速電圧に基づいて変化しようとする磁極1A,1Bによる磁場が標準時の状態に補正され、その結果、坩堝の上方に設けられた基板群(図示せず)への蒸着膜厚が均一になる。
【0025】
尚、前記例では、電子ビームを270°前後偏向させる電子銃を備えた装置を示したが、この様な電子銃に限定されないことは言うまでもない。
【0026】
又、前記例では、磁極板1A,1Bは永久磁石2で励磁されているので、磁極板間に形成される磁場は固定されたものであり、その磁場の強度を補正するために新たに補正用電磁コイル20を設けるように成したが、前記磁極板を電磁コイルで励磁するように成し、該磁極板を励磁する電磁コイルに補正用励磁電流を流す様にしても良い。
【図面の簡単な説明】
【図1】 従来の電子ビーム蒸発装置の1概略例を示している。
【図2】 図1のA−A線断面図である。
【図3】 本発明の電子ビーム蒸発装置の1概略例を示している。
【図4】 図3に示した装置の動作を理解の一助となる図である。
【符号の説明】
1A,1B…磁極板
2…永久磁石
3…蒸発物質
4…坩堝
5…電子銃
6…フイラメント
7…グリッド
8…アノード
7H,8H…ビーム通過孔
9…フイラメント加熱電源
10…加速電源
11…グリッド支持板
12…走査用電磁コイル体
13…走査用電源
20…補正用電磁コイル
21…励磁電源
22…制御装置
23…メモリ
[0001]
[Field of the Invention]
The present invention relates to an electron beam evaporation apparatus configured to bend an electron beam from an electron gun in a curved shape and irradiate an evaporation substance in a crucible.
[0002]
[Prior art]
A vacuum vapor deposition apparatus, an ion plating apparatus, and the like are provided with an electron beam evaporation apparatus. For example, a material (evaporation substance) to be vapor deposited on a substrate is accommodated in a crucible and provided on the side or the lower side of the crucible. The electron beam from the electron gun is deflected in a curved line by a magnetic field and guided to the evaporated material in the crucible, and the evaporated material is heated and evaporated.
[0003]
FIG. 1 shows an outline of such an electron beam evaporation apparatus, and FIG. 2 is a sectional view taken along line AA of FIG.
[0004]
In the figure, 1A and 1B are magnetic pole plates arranged in parallel with the permanent magnet 2 in between, and are excited by the permanent magnet 2 to the N pole and the S pole. A crucible 4 in which the evaporating substance 3 is accommodated is provided between the magnetic pole plates. An electron gun 5 is provided under the crucible. The electron gun comprises a filament 6, a grid 7 and an anode 8. 9 is a filament heating power source and 10 is an acceleration power source. Reference numeral 11 denotes a grid support plate. Reference numeral 12 denotes a scanning electromagnetic coil body in which an X-direction scanning deflection coil and a Y-direction scanning deflection coil are wound around an annular iron core, which is disposed on the electron beam path from the electron gun 5. The scanning electromagnetic coil body is supported by, for example, a non-magnetic holder (not shown) attached near the crucible 4 between the magnetic poles 1A and 1B. Reference numeral 13 denotes a scanning power source for supplying a scanning current to the scanning electromagnetic coil body.
[0005]
In such an apparatus, the electron beam generated from the filament 6 of the electron gun 5 is accelerated by the anode 8 and passes through the grid 7 and the beam passage holes 7H and 8H of the anode 8. At this time, the opening angle of the electron beam is determined by the beam passage holes 7H and 8H of the grid 7 and the anode 8. Then, the electrons exiting the beam passage hole 8H of the anode 8 are irradiated to the evaporating substance 3 which is bent around 270 ° and accommodated in the crucible 4 so as to draw a Ramor circle by the magnetic field generated by the magnetic poles 1A and 1B. At this time, since the electron beam from the electron gun 5 passes through the two-dimensional scanning magnetic field created by the scanning electromagnetic coil body 12, the electron beam scans the evaporation substance 3 in the two-dimensional direction. As a result, the evaporating substance 3 is heated by the electron beam to evaporate, and the evaporated particles adhere to, for example, each substrate (not shown) disposed above the crucible 4.
[0006]
[Problems to be solved by the invention]
In such an electron beam evaporation apparatus, there is a demand for the distribution of the evaporated particles in a plane perpendicular to the axis perpendicular to the surface of the evaporated substance to be close to a desired state above the crucible. For example, there is a demand for uniform deposition film thickness on a plurality of substrates (not shown) supported by a dome-shaped substrate support plate (not shown) provided above the crucible. In order to realize this demand, it is necessary to always keep the radiation angle of the evaporated particles evaporating from each position of the evaporating substance 3 toward the upper substrate group substantially constant at each position. At this time, the dome-shaped substrate support plate is rotated around an axis passing through the center thereof.
[0007]
For this purpose, it is necessary that the incidence of the electron beam at each position of the evaporating substance 3 is kept close to the vertical, and the amount of evaporation at each position of the evaporating substance 3 is made close to the same. Usually, in such an electron beam evaporation apparatus, the shape of a magnetic pole provided in a part of or separately from the magnetic pole plates 1A and 1B so that the cross-sectional shape of the electron beam incident on the evaporating substance is drawn circularly is drawn. I am devised. Therefore, if the incidence of the electron beam on the evaporating substance is close to the vertical, the cross-sectional shape of the electron beam irradiated on the evaporating substance is almost round, and the evaporation amount at each position of the evaporating substance is always nearly constant. However, when the incident angle of the electron beam with respect to the evaporating substance is deviated, the cross section of the electron beam on the evaporating substance is deviated from a round shape (for example, an ellipse or an ellipse), and the evaporation amount of the evaporating substance is not constant.
[0008]
By the way, in such an electron beam evaporation apparatus, evaporated particles adhere to the magnetic pole and the like, so these parts must be disassembled and cleaned from time to time. However, every time the parts are assembled and the apparatus is operated after cleaning, the incident angle of the electron beam to each position of the evaporating substance 3 is shifted based on the positional deviation of the parts such as the magnetic poles. That is, the reproducibility of the incident angle of the electron beam before the parts disassembly and after the parts assembly sandwiching the cleaning operation is poor. Therefore, it is necessary to repeat the precise adjustment of the mounting position of the magnetic poles and the like every time, and the working efficiency is extremely poor.
[0009]
When the acceleration voltage is changed, the incident angle of the electron beam to each position of the evaporating substance 3 is shifted.
[0010]
The present invention has been made to solve such problems, and an object of the present invention is to provide a novel electron beam evaporation apparatus.
[0011]
[Means for Solving the Problems]
The electron beam evaporation apparatus according to the present invention is provided with a crucible containing an electron gun and an evaporated substance between at least one pair of deflection magnetic poles, and the electron beam emitted from the electron gun is deflected by a magnetic field formed by the deflection magnetic poles. The evaporating material in the crucible is irradiated, and an electron beam evaporation system is provided in which a scanning deflector is provided on the electron beam path to scan the evaporating material with the electron beam. In the apparatus, acceleration of the electron beam is provided by providing an electromagnetic coil that can magnetically affect the magnetic field formed between the deflection magnetic poles and can form a new magnetic field in a direction parallel to the direction of the magnetic field. depending on the voltage value, the magnetic field strength of the electron beam angles a deflecting magnetic pole to a predetermined value that is incident on the evaporation material by the electromagnetic coil to control the magnetic field to be formed is formed There is characterized in that form as the control.
[0012]
Further, the electron beam evaporation apparatus of the present invention corrects the magnetic field intensity correction for correcting the deviation of the electron beam incident angle with respect to each acceleration voltage value different from the standard acceleration voltage value at which the angle of the electron beam incident on the evaporation substance becomes a predetermined value. A memory storing data corresponding to each acceleration voltage value is provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 3 shows one schematic example of the electron beam evaporation apparatus of the present invention. In the figure, the same reference numerals as those in FIGS. 1 and 2 denote the same components.
[0015]
The difference in configuration of the electron beam evaporation apparatus shown in FIG. 3 with respect to FIGS. 1 and 2 is as follows.
[0016]
In FIG. 3, a correction electromagnetic coil 20 is provided in the vicinity of the upper portion of the crucible 4 to form a magnetic field having a magnetic field line substantially parallel to the magnetic field lines generated by the magnetic poles 1 </ b> A and 1 </ b> B. Reference numeral 21 denotes an excitation power source for supplying an excitation current to the correction electromagnetic coil, which operates based on a command from a control device 22 such as an electronic computer. A memory 23 stores correction excitation current value data for acceleration voltage value data.
[0017]
Next, the operation of the apparatus having such a configuration will be described.
[0018]
First, as an initial state of the apparatus, at a standard acceleration voltage V 0 , a magnetic pole provided partially or separately on the magnetic pole plates 1A and 1B so that a cross-sectional shape of an electron beam incident on the evaporated substance is drawn circularly at a standard acceleration voltage V 0 . The shape of this is devised, and the incidence of the electron beam at each position of the evaporating substance 3 is kept close to the vertical.
[0019]
In addition, when the acceleration voltage is changed to a voltage value different from the standard value V 0 in advance, the one corresponding to the deviation of the electron beam incident angle with respect to each voltage value is measured, and the magnetic field for correcting each deviation is measured. A correction value (excitation current value) is obtained in advance. Each acceleration voltage value data and magnetic field correction value data (excitation current value data) for the voltage value data are tabulated and stored in the memory 23. What corresponds to the deviation of the incident angle of the electron beam with respect to each acceleration voltage value can be measured as follows.
[0020]
The acceleration voltage value is set to a value different from the standard value V 0, and corresponds to the incident angle of the electron beam with respect to the acceleration voltage from the melting state of the evaporation substance in a specific region of the evaporation substance 3 in the crucible 4 at that time. Things can be estimated. In this case, the evaporating substance is not scanned by the electron beam.
[0021]
As the acceleration voltage increases, the deflection of the electron beam by the magnetic poles 1A and 1B becomes difficult to follow according to the difference from the standard value V 0, and the incident angle of the electron beam with respect to the evaporating material becomes smaller and enters slightly before the standard time. The cross-sectional shape on the evaporating material extends in a direction perpendicular to the magnetic field direction. On the other hand, when the acceleration voltage decreases, the electron beam is easily deflected by the magnetic poles 1A and 1B according to the difference from the standard value V 0 , the incident angle of the electron beam with respect to the evaporating substance increases, and is irradiated to the rear side from the standard time. The cross-sectional shape on the evaporating material extends in a direction perpendicular to the magnetic field direction. For example, as shown in FIG. 4 (a), if the standard acceleration voltage is V 0, the electron beam cross section in the region of X 0 of the evaporation material is a round shape, melted state of the evaporated substance in the entire X 0 region Is big. When the acceleration voltage is larger than the standard voltage value V 0, the irradiation position of the electron beam on the evaporated substance is shifted to the near side (left side in the figure) in the direction perpendicular to the magnetic field direction, and the cross section is the direction of the magnetic field. It becomes a long ellipse in the direction perpendicular to. As shown in FIGS. 4B and 4C, this tendency becomes more significant as the acceleration voltage is increased. Therefore, when the acceleration voltage is V 1 (V 1 > V 0 ), as shown in (b), the evaporated substance is dissolved in the front half of the X 0 region, and the degree of dissolution is at the standard time. It becomes smaller than comparison. When the acceleration voltage is V 2 (V 2 > V 1 ), as shown in (c), the evaporated substance is melted at a quarter of the area before X 0 , and the degree of melting is further reduced. . On the other hand, when the acceleration voltage is made smaller than the standard value V 0, the irradiation position of the electron beam on the evaporating substance is shifted to the rear side (right direction in the figure) in the direction perpendicular to the magnetic field direction, and the cross section is a magnetic field. It becomes a long ellipse in a direction perpendicular to the direction of. As shown in FIGS. 4D and 4E, this tendency becomes more significant as the acceleration voltage is decreased. Therefore, when the acceleration voltage is V 3 (V 3 <V 0 ), as shown in (d), the evaporated substance is melted in the rear half of the X 0 region, and the degree of melting is the standard. Smaller than When the acceleration voltage is V 4 (V 4 <V3), as shown in (e), the evaporated substance is melted in the rear quarter portion of the X 0 region, and the degree of melting is further reduced. In this way, if the acceleration voltage is changed and the degree of evaporating substance melting in a specific region on the evaporating substance is measured, how much the magnetic field strength changes with respect to the acceleration voltage value, the standard state (Fig. It can be seen whether the state (a) is approached. In this way, the correction intensity (excitation current value) of the magnetic field with respect to the acceleration voltage value is obtained and tabulated, and stored in the memory 23. The correction intensity value of the magnetic field corresponds to the correction excitation current value to the correction electromagnetic coil 20.
[0022]
In the apparatus having such a configuration, for example, when the acceleration voltage is set to the standard value V 0 , the electron beam generated from the filament 6 of the electron gun 5 is accelerated by the anode 8, and the grid 7 and anode It passes through 8 beam passage holes 7H and 8H. At this time, the opening angle of the electron beam is determined by the beam passage holes 7H and 8H of the grid 7 and the anode 8. Then, the electrons exiting the beam passage hole 8H of the anode 8 are irradiated to the evaporating substance 3 which is bent around 270 ° and accommodated in the crucible 4 so as to draw a Ramor circle by the magnetic field generated by the magnetic poles 1A and 1B. At this time, since the electron beam from the electron gun 5 passes through the two-dimensional scanning magnetic field created by the scanning electromagnetic coil body 12, the electron beam scans the evaporation substance 3 in the two-dimensional direction. As a result, the evaporating substance 3 is heated by the electron beam to evaporate, and the evaporated particles adhere to, for example, each substrate (not shown) disposed above the crucible 4.
[0023]
In such an electron beam evaporation apparatus, as described above, evaporated particles adhere to the magnetic pole and the like, so these parts are sometimes disassembled and cleaned. Then, after cleaning, the parts are assembled and the apparatus is operated again. Prior to this reactivation, the electron beam is accelerated with the standard value V 0 maintained, and the electron beam is applied to a specific area of the evaporated substance (in this case, the electron beam is not scanned). Measure the degree of melting. Then, the excitation current value to the correction electromagnetic coil 20 is changed so that the melting condition approaches the melting condition in the standard state before parts assembly, and the melting condition in the specific region is the same as the standard condition. This excitation current value is the set value after parts assembly. The excitation current is changed by inputting excitation current value data using a keyboard (not shown) connected to the control device 22. Therefore, after assembling parts such as magnetic poles after cleaning, it is not necessary to perform precise adjustment of the mounting position of the magnetic poles, etc., and the working efficiency is extremely improved.
[0024]
When an acceleration voltage different from the standard value is applied from the acceleration power source 10 between the anode 8 and the filament 6 according to a command from the control device 22, the control device 22 applies the excitation given to the set acceleration voltage value. Current correction value data is called from the memory 23, and a command is sent to the excitation power source 21 so that the standard excitation current plus this correction value flows to the correction electromagnetic coil 20. Thereby, the magnetic field by the magnetic poles 1A and 1B to be changed based on the acceleration voltage set this time is corrected to the standard state, and as a result, the deposited film on the substrate group (not shown) provided above the crucible The thickness becomes uniform.
[0025]
In the above example, an apparatus including an electron gun that deflects an electron beam around 270 ° is shown, but it is needless to say that the present invention is not limited to such an electron gun.
[0026]
In the above example, since the magnetic pole plates 1A and 1B are excited by the permanent magnet 2, the magnetic field formed between the magnetic pole plates is fixed, and a new correction is made to correct the strength of the magnetic field. The electromagnetic coil 20 is provided, but the magnetic pole plate may be excited by an electromagnetic coil, and a correction exciting current may be supplied to the electromagnetic coil that excites the magnetic pole plate.
[Brief description of the drawings]
FIG. 1 shows a schematic example of a conventional electron beam evaporation apparatus.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 shows a schematic example of an electron beam evaporation apparatus according to the present invention.
4 is a diagram for assisting in understanding the operation of the apparatus shown in FIG. 3; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1A, 1B ... Magnetic pole plate 2 ... Permanent magnet 3 ... Evaporation substance 4 ... Crucible 5 ... Electron gun 6 ... Filament 7 ... Grid 8 ... Anode 7H, 8H ... Beam passage hole 9 ... Filament heating power supply 10 ... Acceleration power supply 11 ... Grid support Plate 12 ... Scanning electromagnetic coil body 13 ... Scanning power supply 20 ... Correction electromagnetic coil 21 ... Excitation power supply 22 ... Control device 23 ... Memory

Claims (2)

少なくとも1対の偏向用磁極間に電子銃と蒸発物質を収容した坩堝を設け、前記電子銃から発せられた電子ビームが前記偏向用磁極が形成する磁場により偏向されて前記坩堝内の蒸発物質に照射されるように成しており、この電子ビームの通路上に走査用偏向器を設けて前記蒸発物質上を電子ビームで走査するように成した電子ビーム蒸発装置において、前記偏向磁極間に形成される磁場に磁気的影響を与えることが出来、且つ該磁場の方向と平行な方向に新たな磁場を形成することが出来る電磁コイルを設け、電子ビームの加速電圧値に応じて、該電磁コイルが形成する磁場をコントロールすることにより前記蒸発物質に入射する電子ビームの角度が所定の値になるように前記偏向用磁極が形成する磁場強度がコントロールされるように成したことを特徴とする電子ビーム蒸発装置。A crucible containing an electron gun and an evaporating substance is provided between at least one pair of deflecting magnetic poles, and an electron beam emitted from the electron gun is deflected by a magnetic field formed by the deflecting magnetic pole to form an evaporating substance in the crucible. In an electron beam evaporation apparatus, wherein a scanning deflector is provided on the electron beam path so as to scan the evaporated material with an electron beam, it is formed between the deflection magnetic poles. An electromagnetic coil capable of magnetically affecting the magnetic field generated and capable of forming a new magnetic field in a direction parallel to the direction of the magnetic field is provided, and the electromagnetic coil according to the acceleration voltage value of the electron beam formed as but the angle of the electron beam incident on the evaporation material by controlling the magnetic field formation is the magnetic field strength control of the deflection magnetic pole is formed to a predetermined value Electron beam evaporation apparatus characterized by a. 前記蒸発物質に入射する電子ビームの角度が所定の値になる標準加速電圧値と異なった各加速電圧値に対する電子ビーム入射角のずれを補正する磁場強度補正データを各加速電圧値に対応させて記憶したメモリを設けたことを特徴とする請求項1記載の電子ビーム蒸発装置。 The magnetic field intensity correction data for correcting the deviation of the electron beam incident angle with respect to each acceleration voltage value different from the standard acceleration voltage value at which the angle of the electron beam incident on the evaporating material becomes a predetermined value is associated with each acceleration voltage value. 2. The electron beam evaporation apparatus according to claim 1 , further comprising a stored memory .
JP19506999A 1999-07-08 1999-07-08 Electron beam evaporator Expired - Fee Related JP4050848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19506999A JP4050848B2 (en) 1999-07-08 1999-07-08 Electron beam evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19506999A JP4050848B2 (en) 1999-07-08 1999-07-08 Electron beam evaporator

Publications (2)

Publication Number Publication Date
JP2001020064A JP2001020064A (en) 2001-01-23
JP4050848B2 true JP4050848B2 (en) 2008-02-20

Family

ID=16335049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19506999A Expired - Fee Related JP4050848B2 (en) 1999-07-08 1999-07-08 Electron beam evaporator

Country Status (1)

Country Link
JP (1) JP4050848B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5254055B2 (en) * 2009-01-19 2013-08-07 日本電子株式会社 Electron gun for electron beam evaporation
CN203373418U (en) * 2012-04-09 2014-01-01 株式会社新柯隆 Electronic gun device
JPWO2013153604A1 (en) * 2012-04-09 2015-12-17 株式会社シンクロン Electron gun equipment
DE102020124269A1 (en) * 2020-09-17 2022-03-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Device and method for depositing hard carbon layers

Also Published As

Publication number Publication date
JP2001020064A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
US8330344B2 (en) Electron gun minimizing sublimation of electron source and electron beam exposure apparatus using the same
JP2010503964A (en) Beam angle adjusting system and adjusting method in ion implantation apparatus
US8803110B2 (en) Methods for beam current modulation by ion source parameter modulation
JP2007522622A (en) Cathode head with focus control
JP4050848B2 (en) Electron beam evaporator
US7062017B1 (en) Integral cathode
US20090294281A1 (en) Plasma film forming apparatus and film manufacturing method
JP3961158B2 (en) Electron beam evaporator
WO2008035587A1 (en) Vacuum processing system
JP2015007269A (en) Electron gun device for electron beam vapor deposition
JP5254055B2 (en) Electron gun for electron beam evaporation
JP3814114B2 (en) Electron beam equipment
US3446934A (en) Electron beam heating apparatus
JP3143801B2 (en) Ion plating equipment
JP3527843B2 (en) Electron beam deflector
JPH07138743A (en) Ion plating device
JP2004349168A (en) Wehnelt electrode and charged particle gun
JP4073158B2 (en) Electron beam equipment
JP4421846B2 (en) Electron source device and electron source device adjustment method
JP2012044191A (en) Electron gun and electron beam exposure apparatus
JP2000328238A (en) Electron beam evaporator
JP4235048B2 (en) Electron source device and method of adjusting electron source device
JPH0451438A (en) Electron beam exposure device and method
JPS6217025B2 (en)
JP3962965B2 (en) Neutral beam injection device and ion beam process device for ion source and fusion reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees