JPS5941136B2 - Gear wear amount detection method in gear coupling - Google Patents

Gear wear amount detection method in gear coupling

Info

Publication number
JPS5941136B2
JPS5941136B2 JP56211750A JP21175081A JPS5941136B2 JP S5941136 B2 JPS5941136 B2 JP S5941136B2 JP 56211750 A JP56211750 A JP 56211750A JP 21175081 A JP21175081 A JP 21175081A JP S5941136 B2 JPS5941136 B2 JP S5941136B2
Authority
JP
Japan
Prior art keywords
gear
pulse
rotation
coupling
gear coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56211750A
Other languages
Japanese (ja)
Other versions
JPS58109834A (en
Inventor
哲 森川
浩一 西根
司 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56211750A priority Critical patent/JPS5941136B2/en
Publication of JPS58109834A publication Critical patent/JPS58109834A/en
Publication of JPS5941136B2 publication Critical patent/JPS5941136B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/56Investigating resistance to wear or abrasion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、手数簡素、構成簡素にしてギヤーの摩耗量を
検出することを目的としたギヤーカップリングにおける
ギヤー摩耗量検出方法の提供に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the amount of gear wear in a gear coupling, which is intended to detect the amount of gear wear with simple steps and a simple configuration.

ほとんどすべての圧延ラインには、トルク伝達を行うカ
ップリングとしてギヤーカップリングが用いられ、その
大きさは、φ200〜φ1000ぐらいまで種々である
Gear couplings are used in almost all rolling lines as couplings for transmitting torque, and their sizes vary from about 200 to 1000.

このギヤーカップリングのギヤーの破損事故は、即、ラ
イン停止という事態を招くものであり、この事故を未然
に防止することは、極めて重要な課題である。従来、ギ
ヤーカップリングのギヤーの摩耗量検出は、日修時等の
ライン停止時にギヤーカップリングを分解し、主に目視
で行なわれている。
A breakage accident of the gear of this gear coupling will immediately lead to a line stoppage, and preventing this accident is an extremely important issue. Conventionally, the amount of wear on the gears of a gear coupling has been detected mainly visually by disassembling the gear coupling when the line is stopped, such as during daily maintenance.

然し乍ら、この従来方法では、ギヤーが摩耗しているか
健全であるかに拘わらず、特にギヤーの状態が健全であ
る場合にも、すべてのギヤーカップリングを分解する必
要があり、この手数は極めて煩雑であつた。本発明は、
かかる従来の問題点に鑑み、鋭意創成されたもので、従
つて、その特徴とする処は、ギヤーカップリングの駆動
側と負荷側の各々で1回転に1パルス検出するパルス検
出器を介し、正転時の駆動側パルス−負荷側パルスの時
間間隔と、逆転時の同時間間隔との差から駆動側、負荷
側の両ギヤー間のバックラッシュを測定して両ギヤーの
摩耗量を検出する点にある。
However, with this conventional method, it is necessary to disassemble all gear couplings, regardless of whether the gears are worn or healthy, especially when the gears are in good condition, which is extremely cumbersome. It was hot. The present invention
In view of the problems of the conventional gear coupling, it was created with great effort, and its characteristics are as follows. The amount of wear on both gears is detected by measuring the backlash between the drive side and load side gears based on the difference between the time interval between the drive side pulse and the load side pulse during forward rotation and the same time interval during reverse rotation. At the point.

以下、本発明の実施例を図に従い説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図及至第3図において、図は、例えば圧延ラインで
使用されるギヤーカップリング1を示し、駆動側2と負
荷側3の各軸4、5に夫々内ギヤー6、6が取着され、
これら内ギヤー6、6に夫々噛合する外ギヤー7、7が
設けられると共に、これら外ギヤー7、7はボルト8を
介して連結されている。上前内・外ギヤー6、7は両者
の軸方向の変動を吸収すべく軸方向相対摺動自在とされ
ている。ギヤーカップリング1の両端、即ち、駆動側2
と、負荷側3の各軸4、5の1回転毎に1パルスを検出
する光電式、磁気式等のパルス検出器9、9が固定的に
設けられている。
1 to 3, the figures show a gear coupling 1 used, for example, in a rolling line, and inner gears 6, 6 are attached to each shaft 4, 5 on the drive side 2 and load side 3, respectively. ,
Outer gears 7, 7 are provided which mesh with these inner gears 6, 6, respectively, and these outer gears 7, 7 are connected via bolts 8. The upper front inner and outer gears 6 and 7 are slidable relative to each other in the axial direction in order to absorb axial fluctuations between the two gears. Both ends of gear coupling 1, that is, drive side 2
Further, photoelectric or magnetic pulse detectors 9, 9, which detect one pulse every rotation of each shaft 4, 5 on the load side 3, are fixedly provided.

9aは駆動側の軸4に固定されたパルス検出対象(反射
テープ)であり、9bは負荷側の軸5に固定されたパル
ス検出対象(反射テープ)である。
9a is a pulse detection target (reflective tape) fixed to the shaft 4 on the drive side, and 9b is a pulse detection target (reflective tape) fixed to the load side shaft 5.

このパルス検出対象9a、9bが軸4、5と共に回転す
ることにより、固定側のパルス検出器9,9が軸4,5
の1回転毎に1パルスを検出する。また矢印Xは回転方
向を示している。第4図はギヤーカツプリング1の正転
時における各ギヤーの噛合状態を簡略図示したもので、
1駆動側2のギヤー6の正転方向前方側の歯面が負荷側
3のギヤー7の後方側の歯面に当接し、1駆動側2のギ
ヤー6の後方側歯面と、負荷11113のギヤー7の前
方側歯面との間にバツクラツシユlが生じている。
By rotating these pulse detection targets 9a and 9b together with the shafts 4 and 5, the fixed side pulse detectors 9 and 9 are rotated together with the shafts 4 and 5.
One pulse is detected every one rotation of the Further, arrow X indicates the direction of rotation. FIG. 4 is a simplified diagram of the meshing state of each gear when the gear coupling 1 rotates in the normal direction.
The front tooth surface of the gear 6 on the first drive side 2 in the normal rotation direction contacts the rear tooth surface of the gear 7 on the load side 3, and the rear tooth surface of the gear 6 on the first drive side 2 and the load 11113 A backlash l occurs between the gear 7 and the front side tooth surface.

上記正転時の噛合状態において、1駆動側の軸4に固定
されたパルス検出対象9aと、負荷側の軸5に固定され
たパルス検出対象9bとは、周方向に11の位置ずれを
有している。
In the above meshing state during forward rotation, the pulse detection object 9a fixed to the drive side shaft 4 and the pulse detection object 9b fixed to the load side shaft 5 have a positional deviation of 11 in the circumferential direction. are doing.

正転時においてパルス検出器9,9は、第6図に示す如
くパルスを検出する。
During normal rotation, the pulse detectors 9 detect pulses as shown in FIG.

則ち、駆動側のパルス検出対象9aと、負荷側のパルス
検出対象9bとは、各ギヤ6,7の正転噛合状態におい
て周方向の相対的な位置ずれ′,を有しているため、そ
の周方向の位置ずれ11により、5駆動側パルスAと負
荷側パルスBの発生時間差t1を生じさせる。
That is, since the pulse detection object 9a on the drive side and the pulse detection object 9b on the load side have a relative positional deviation in the circumferential direction when the gears 6 and 7 are in the normal rotation meshing state, This positional shift 11 in the circumferential direction causes a generation time difference t1 between the 5th drive side pulse A and the load side pulse B.

即ち、第6図に示す如く、正転時において、1回転ごと
にまずパルスAが先に発生し、その後T,時間遅れてパ
ルスBが発生する。逆に君つて、上記時間差t1に周速
を掛ければ、両パルス検出対象9a,9bの周方向位置
ずれ距離が計算できる。即ち、回転数をF,とし、パル
ス検出対象9a,9bの軸上取付半径をRとすると、周
方向位置ずれ距離1,は、2πRf,tlとなる。第5
図はギヤーカツプリング1の逆転時における各ギヤーの
噛合状態を簡略図示したもので、上記第4図で示した歯
面の当接部にバツクラツシユlが生じている。上記逆転
時の噛合状態において、両パルス検出対象9a,9bの
周方向位置ずれは2,となり、前記1,との関係は、第
4,5図から明らかな通り12=1,+lとなる。
That is, as shown in FIG. 6, during normal rotation, pulse A is first generated for each rotation, and then pulse B is generated after a time delay of T. Conversely, by multiplying the time difference t1 by the circumferential speed, the circumferential positional deviation distance of both pulse detection targets 9a and 9b can be calculated. That is, when the rotational speed is F and the on-axis mounting radius of the pulse detection objects 9a and 9b is R, the circumferential positional deviation distance 1 is 2πRf,tl. Fifth
The figure is a simplified diagram of the meshing state of each gear when the gear coupling 1 is reversed, and a backlash l occurs at the abutting portion of the tooth surface shown in FIG. 4 above. In the meshing state during the above-mentioned reverse rotation, the circumferential positional deviation of both pulse detection objects 9a and 9b is 2, and the relationship with the above 1 is 12=1, +l, as is clear from FIGS. 4 and 5.

第5図及び第7図に示す如く逆転時における両パルス検
出対象9a,9bの周方向位置ずれ距離12は、パルス
発生時間差をT2とし、回転数をF2とすると、前記同
様、2πRf2t2で計算できる。
As shown in FIGS. 5 and 7, the circumferential positional deviation distance 12 of both pulse detection targets 9a and 9b during reverse rotation can be calculated as 2πRf2t2, as described above, where the pulse generation time difference is T2 and the rotation speed is F2. .

この逆転時の周方向位置ずれ距離1,は、正転時に比べ
、ギヤ6,7のバツクラツシユ2分だけ変化している。
従つて、正逆転時の位置ずれ距離11との差を求めれば
、バツクラツシユlを計算することができる。しかして
、ギヤ6,7の摩耗量を測定するには、バツクラツシユ
2を測定すればよいので、まず、正転時の回転数f1及
びその時のパルス検出時間差t1を測定する。
The circumferential positional deviation distance 1 during the reverse rotation is changed by 2 times the backlash of the gears 6 and 7 compared to the normal rotation.
Therefore, by finding the difference from the positional deviation distance 11 during forward and reverse rotation, the backlash l can be calculated. Therefore, in order to measure the wear amount of the gears 6 and 7, it is sufficient to measure the backlash 2, so first, the rotation speed f1 during normal rotation and the pulse detection time difference t1 at that time are measured.

次に、カツプリングを逆回転させ、その逆転時の回転数
F2、及びその時のパルス検出時間差T2を測定する。
Next, the coupling is rotated in the reverse direction, and the rotational speed F2 during the reverse rotation and the pulse detection time difference T2 at that time are measured.

然して、以上のデータから、バツクラツシユを算出する
が、計算の便宜上、初期バツクラツシユをOとすれば、
バツクラツシユ、即ち摩耗量Δxが次式により算出され
る。
However, from the above data, the backlash is calculated, but for convenience of calculation, if the initial backlash is set to O, then
The backlash, that is, the amount of wear Δx is calculated by the following equation.

Δx=2πr・1f,・T,−F2・T2lただし、r
:ギヤ一径(ピッチ円半径)。
Δx=2πr・1f,・T,−F2・T2l However, r
: Gear diameter (pitch circle radius).

向、より正確な結果を得るために、第1に、回転軸の回
転ムラ、電気的なノイズ及びパルス検出器の振動に対し
、データ数を多く取り込み、統計的な処理で、その影響
を低減することが好ましい。
In order to obtain more accurate results, firstly, we need to acquire a large amount of data and reduce the effects of uneven rotation of the rotating shaft, electrical noise, and vibration of the pulse detector through statistical processing. It is preferable to do so.

また、パルス検出器と軸との距離変化等によるパルス幅
の変化があつた場合、バツクラツシユがOであつても、
駆動側パルスAと負荷側パルスBの両立上り点の時間間
隔は、正転時の時間間隔Tmと逆転時の時間間隔Tnと
の間に差異を生じ、結局、バツクラツシユの測定に誤差
を生じることとなる。この誤差を解消するために、正・
逆転時のいずれにおいても、駆動側パルスAと負荷側パ
ルスBの両センター間の時間間隔Tcを測定し、パルス
幅の変化に無関係なパルス時間間隔を測定することが好
ましい。第9図においては、図は本検出方法の信号処理
回路を示し、統計処理等を考慮し、1チツプマイコンを
導入し、さらに汎用化を図つており、パルス検出器9→
増幅回路10→波形成形回路11→カウンタ回路12→
ギヤー径、データ取込数等を設定した1チツプマイコン
13→表示装置14、の如く処理する。
Also, if the pulse width changes due to a change in the distance between the pulse detector and the axis, even if the backlash is O,
The time interval between the rising points of both the drive-side pulse A and the load-side pulse B causes a difference between the time interval Tm during forward rotation and the time interval Tn during reverse rotation, resulting in an error in the measurement of backlash. becomes. In order to eliminate this error, the positive
In any case of reverse rotation, it is preferable to measure the time interval Tc between the centers of the drive-side pulse A and the load-side pulse B, and measure the pulse time interval unrelated to changes in pulse width. In Fig. 9, the figure shows the signal processing circuit of this detection method, and considering statistical processing etc., a 1-chip microcomputer is introduced, and further versatility is sought, and the pulse detector 9→
Amplifier circuit 10 → waveform shaping circuit 11 → counter circuit 12 →
Processing is performed as follows: 1-chip microcomputer 13 in which gear diameter, number of data to be taken, etc. are set → display device 14.

第10図において、図は本検出方法による検出例を示し
、横軸を検出変位、縦軸をバツクラツシユとしたもので
、各種回転数(30,90,180r.p.m)の下で
両者は略同値を採る。
In Fig. 10, the figure shows an example of detection by this detection method, where the horizontal axis is the detected displacement and the vertical axis is the bump. Approximately the same value is taken.

本発明によれば、ギヤーカツプリングを何ら分解するこ
となく、そのギヤーのバツクラツシユ、即ち摩耗量を容
易に検出し得るのであり、従つて、ギヤーカツプリング
の点検が手数簡素、かつ正確に行なわれる結果、その破
損が未然に防止されることとなり有益である。
According to the present invention, the backlash of the gear, that is, the amount of wear can be easily detected without disassembling the gear coupling, and therefore, the gear coupling can be inspected easily and accurately. As a result, the damage can be prevented, which is beneficial.

しかも、この点検がパルス検出器等により構成簡素に達
成されることとも相俟つて優れた発明である。
Furthermore, this inspection is accomplished with a simple configuration using a pulse detector or the like, which makes this invention an excellent invention.

【図面の簡単な説明】 図は本発明の実施例を示し、第1図はギヤーカツプリン
グの側面部分断面図、第2図は第1図の−線矢視部分断
面図、第3図はギヤーカツプリングの組付図、第4図は
正転時のギヤー噛合簡略断面図、第5図は逆転時のギヤ
ー噛合簡略断面図、第6図は正転時のパルス図、第7図
は逆転時のパルス図、第8図は時間間隔測定のより好ま
しい他の実施例を示すパルス図、第9図は回路図、第1
0図は検出例図である。 1・・・ギヤーカツプリング、2・・・駆動側、3・・
・負荷側、6・・・内ギヤー、7・・・外ギヤー、9・
・・パルス検出器、A・・・駆動側パルス、B・・・負
荷側パルス、tピ・・正転時の両パルスの時間間隔、T
2・・・逆転時の両パルス時間間隔、l・・・バツクラ
ツシユ。
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings show an embodiment of the present invention, in which FIG. 1 is a side partial sectional view of a gear coupling, FIG. 2 is a partial sectional view taken along the line - in FIG. 1, and FIG. An assembly diagram of the gear coupling ring, Fig. 4 is a simplified cross-sectional view of the gear mesh during forward rotation, Fig. 5 is a simplified cross-sectional view of the gear mesh during reverse rotation, Fig. 6 is a pulse diagram during normal rotation, and Fig. 7 is the reverse rotation. FIG. 8 is a pulse diagram showing another preferred embodiment of time interval measurement, FIG. 9 is a circuit diagram, and FIG.
Figure 0 is a diagram of a detection example. 1...Gear coupling spring, 2...Drive side, 3...
・Load side, 6...Inner gear, 7...Outer gear, 9.
...Pulse detector, A...Drive side pulse, B...Load side pulse, tpi...Time interval between both pulses during forward rotation, T
2... Time interval between both pulses during reverse rotation, l... Backlash.

Claims (1)

【特許請求の範囲】[Claims] 1 ギヤーカップリングの駆動側と負荷側の各々に1回
転で1パルス検出するパルス検出器を設け、正転時の駆
動側パルスと負荷側パルスの検出時間間隔と、逆転時の
同時間間隔との差から駆動側、負荷側のギヤー間のバッ
クラッシュを測定してギヤーの摩耗量を検出するギヤー
カップリングにおけるギヤー摩耗量検出方法。
1 A pulse detector that detects one pulse per rotation is installed on each of the drive side and load side of the gear coupling, and the detection time interval of the drive side pulse and load side pulse during forward rotation and the same time interval during reverse rotation are determined. A gear wear amount detection method in a gear coupling that measures the backlash between the drive side and load side gears based on the difference in the amount of gear wear.
JP56211750A 1981-12-23 1981-12-23 Gear wear amount detection method in gear coupling Expired JPS5941136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211750A JPS5941136B2 (en) 1981-12-23 1981-12-23 Gear wear amount detection method in gear coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211750A JPS5941136B2 (en) 1981-12-23 1981-12-23 Gear wear amount detection method in gear coupling

Publications (2)

Publication Number Publication Date
JPS58109834A JPS58109834A (en) 1983-06-30
JPS5941136B2 true JPS5941136B2 (en) 1984-10-04

Family

ID=16610957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211750A Expired JPS5941136B2 (en) 1981-12-23 1981-12-23 Gear wear amount detection method in gear coupling

Country Status (1)

Country Link
JP (1) JPS5941136B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006396A1 (en) * 2007-02-05 2008-08-07 Provita Gmbh Motor drive device stop controlling device for e.g. roller blind, has sensors for detecting relative change of local position or temporal sequence of periodic signals delivered from signal generators
JP2010281582A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Method for determining use limit of gear-type shaft coupling
CN109187003A (en) * 2018-08-29 2019-01-11 成都迅达光电有限公司 Focusing gear drive return difference test macro, device and method and storage medium

Also Published As

Publication number Publication date
JPS58109834A (en) 1983-06-30

Similar Documents

Publication Publication Date Title
US3699806A (en) Early detection of damage to machine elements in rolling engagement
EP0124530B1 (en) Apparatus for determining the condition of a rolling bearing
CA2100226A1 (en) Method of determining the direction of rotation of a member
US4590806A (en) Monopole digital vernier torque meter
JPS5941136B2 (en) Gear wear amount detection method in gear coupling
JP2006292498A (en) Backlash of gearing measuring device
JP2978377B2 (en) Gear tooth groove runout measuring device
JPH07505226A (en) Device for measuring torque in gear transmissions for transmitting rotary motion
JP2002168619A (en) Method and device for measuring error such as eccentricity of gear
JP2848151B2 (en) Backlash shim selection method for differential equipment
WO2017069099A1 (en) Contactless method for measuring torque
JPH0443932A (en) Driving force measuring instrument for actual traveling automobile
JP2510856B2 (en) Belt slip rate meter
JP2580125Y2 (en) Effective diameter measuring device for female thread
JPS61181904A (en) Measuring or monitoring axial displacement of rotating body without contacting
JPH0337701B2 (en)
JPH01165929A (en) Method and apparatus for measuring backlash of gear
US3214843A (en) Gear gauging
JPS5896208A (en) Measuring method for tooth profile error
KR100535895B1 (en) System for measuring gear noise
CN215296211U (en) Monitoring system for gearbox
JP3369958B2 (en) Rotational axis torsion measuring device and measuring method
JPH07116920A (en) Tooth groove runout correcting method of master gear for automatic gear selector
JPH0639318Y2 (en) Gear mesh tester
JPS6259766B2 (en)