JPS5941119B2 - Heat storage method using chemical reaction heat - Google Patents

Heat storage method using chemical reaction heat

Info

Publication number
JPS5941119B2
JPS5941119B2 JP55150432A JP15043280A JPS5941119B2 JP S5941119 B2 JPS5941119 B2 JP S5941119B2 JP 55150432 A JP55150432 A JP 55150432A JP 15043280 A JP15043280 A JP 15043280A JP S5941119 B2 JPS5941119 B2 JP S5941119B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
reaction
temperature
storage method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55150432A
Other languages
Japanese (ja)
Other versions
JPS5774591A (en
Inventor
博史 「とうげ」田
岑雄 小坂
正 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55150432A priority Critical patent/JPS5941119B2/en
Publication of JPS5774591A publication Critical patent/JPS5774591A/en
Publication of JPS5941119B2 publication Critical patent/JPS5941119B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 世界的なエネルギー不足の状勢を反映して、無尽蔵のク
リーン・エネルギーと言われる太陽熱の有効利用や、工
場廃熱の回収・活用の必要性が高まっている。
[Detailed Description of the Invention] Reflecting the global energy shortage situation, there is an increasing need to effectively utilize solar heat, which is said to be an inexhaustible source of clean energy, and to recover and utilize factory waste heat.

間欠的に発生する工場廃熱や天候に左右されやすい太陽
熱を、信頼性あるエネルギー源として利用して行くには
、高効率の蓄熱器の開発が不可欠とされている。
In order to utilize intermittent factory waste heat and solar heat, which is easily affected by the weather, as reliable energy sources, the development of highly efficient heat storage devices is essential.

現在、最もよく利用されつつある蓄熱材料は、水や岩石
、コンクリートのような、いわゆる顕熱利用型のもので
ある。
Currently, the most commonly used heat storage materials are those that utilize sensible heat, such as water, rock, and concrete.

その中で、最も比熱の高い水の場合を考えてみる。Let us consider the case of water, which has the highest specific heat.

いま、1トン(lrn’)の水を用意し、これを40℃
昇温させて蓄熱を行ったとすると、そこに得られる熱量
は4万日の程度であり、一般家庭用の熱源としても不十
分である。
Now, prepare 1 ton (lrn') of water and heat it to 40℃.
If heat is stored by raising the temperature, the amount of heat that can be obtained is about 40,000 days, which is insufficient even as a heat source for general household use.

このため、ソーラ・ハウスでは、小規模でも数トン容量
の蓄熱水槽を用意せねばならず、巨大な体積を蓄熱器が
占めることになっている。
For this reason, in solar houses, even on a small scale, it is necessary to prepare a heat storage water tank with a capacity of several tons, and the heat storage device occupies a huge volume.

本邦の住宅事情からすると、このように大容量の蓄熱水
槽を各戸に用意することは、施工上の困難が大きく、こ
のことが広範な太陽熱利用を阻害する一因となっている
Considering the housing situation in Japan, it is extremely difficult to install such a large-capacity heat storage water tank in each house, and this is one of the reasons that hinders widespread use of solar heat.

何らかの方法により、蓄熱槽の小容量化をはからなけれ
ばならないが、その解決策の一つが、いわゆる、潜熱利
用型蓄熱法である。
The capacity of the heat storage tank must be reduced by some method, and one solution is the so-called latent heat storage method.

この方法は、各種の無機水利化合物や、パラフィンなど
の有機物が、その融点において放出(または吸収)する
溶融潜熱を蓄熱に利用するものであり、融点という一定
温度が保たれると同時に、顕熱利用型に比較すると、少
なくとも数倍ないし10数倍の熱量を同一体積内に蓄積
でき、蓄熱器を非常にコンパクト化しうると言われてい
る。
This method uses the latent heat of melting released (or absorbed) by various inorganic water-use compounds and organic substances such as paraffin at their melting points to store heat. It is said that compared to the conventional type, at least several to ten times as much heat can be stored in the same volume, making it possible to make the heat storage device extremely compact.

しかし、比較的安価とされる無機水利化合物には、一般
に、過冷・相分離と言った蓄熱に不都合な事象が付随し
ており、技術上の困難が犬である。
However, inorganic water use compounds, which are considered relatively inexpensive, are generally accompanied by phenomena that are inconvenient for heat storage, such as overcooling and phase separation, which poses technical difficulties.

また、パラフィンなどの有機物は、上記の不都合は少な
いものの、本質的に可燃性であり、防災上の問題を含む
上に、高コストとなることを免れない。
Further, although organic substances such as paraffin have few of the above-mentioned disadvantages, they are inherently flammable, which causes problems in terms of disaster prevention, and inevitably leads to high costs.

そこで、蓄熱方法の発想の転換が強く求められていたが
、本発明は、従来の顕熱または溶融潜熱という物理現象
の応用にとどまらず、化学的反応熱を積極的に利用する
ことで、安価かつ安全であると共に、高い蓄熱密度(単
位体積あたりの蓄熱量)を可能とする方法を提供するも
のである。
Therefore, there was a strong need for a change in the way of thinking about heat storage methods, and the present invention goes beyond the conventional physical phenomenon of sensible heat or latent heat of fusion, and actively utilizes chemical reaction heat to achieve low cost. The present invention provides a method that is safe and enables high heat storage density (heat storage amount per unit volume).

本発明方法は、少なくとも二種類の無機塩化合物の組合
せにおいて、化合物相互間のイオン交換反応と、それに
伴う発熱または吸熱の現象を、蓄熱の目的に利用するも
のである。
The method of the present invention utilizes the ion exchange reaction between the compounds and the accompanying exothermic or endothermic phenomenon for the purpose of heat storage in a combination of at least two types of inorganic salt compounds.

具体例として、次式の反応を考える。As a specific example, consider the reaction of the following equation.

ここで、AとCは陽イオン、BとDは陰イオンを表わす
Here, A and C represent cations, and B and D represent anions.

(1)式反応の進行方法と反応エンタルピーは、既に確
立されている熱力学的データから見積ることができるが
、(1)式が固体間反応である場合には、その進行速度
が非常に遅いため、蓄熱の目的に利用し難いことが多い
The progress method and reaction enthalpy of equation (1) can be estimated from already established thermodynamic data, but if equation (1) is a solid-solid reaction, the rate of progress is very slow. Therefore, it is often difficult to use it for heat storage purposes.

本発明者らは、化合物ABおよびCD(ADおよ CB
でも同じ)の混合物に、少量の液体(化合物に対する溶
解能を有する、例えば、水、アルコール類、ゲルコール
類もしくはそれらの適当な混合物)を添加すると、化学
反応が急速に進行すると同時に、空調または給湯の目的
に好適な範囲に蓄熱器の操作温度を設定できることを見
出した。
We investigated compounds AB and CD (AD and CB
When a small amount of liquid (e.g., water, alcohols, gelcols, or appropriate mixtures thereof) that has the ability to dissolve the compound is added to a mixture of 2000-200 It has been found that the operating temperature of the heat storage device can be set within a range suitable for the purpose.

この点につき、さらに詳細に説明する。This point will be explained in more detail.

第1図は、ある容器に化合物ABと化合物CDを混合、
粉末としたのち、少量の液体(ここでは水とする)と共
に封入した状態を示している。
Figure 1 shows compound AB and compound CD mixed in a container.
It is shown in a state where it is made into a powder and then sealed together with a small amount of liquid (water in this case).

当然ながら、ABとCDは、その溶解限まで水の中に溶
解するから、この容器内では、化合物、ABlCD、A
DおよびOBが化学的平衡に達し、水中ではイオンA+
、Er、ひおよびD−がそれぞれの飽和濃度に到達して
いる。
Of course, AB and CD dissolve in water up to their solubility limits, so in this container, the compounds ABlCD, A
D and OB reach chemical equilibrium, and in water the ion A+
, Er, human and D- have reached their respective saturation concentrations.

このとき、化合物ABの溶解度積を、 KAB−CA+)CB ) とする〔〔〕でイオンの濃度を表わす。At this time, the solubility product of compound AB is KAB-CA+)CB) Let [[] represent the concentration of ions.

また、化合物CDの溶解度積を、次式で示す。Moreover, the solubility product of compound CD is shown by the following formula.

KOD−〔C+〕〔D−〕 同様にして、イオン交換反応後の化合物、ADおよびO
Bの溶解度積を KAD =(−A+) CD ) KOB=(0+)CB 、] で表せるものとする。
KOD-[C+][D-] Similarly, the compound after ion exchange reaction, AD and O
Assume that the solubility product of B can be expressed as KAD = (-A+) CD ) KOB = (0+) CB , ].

(1)式に代表される交換反応は非常に多数考えられる
が、蓄熱の目的に利用する化学反応は、系の温度変化に
より、左右いずれの方向にも進行しうる(いわゆる可逆
反応である)ことが必要である。
There are many possible exchange reactions represented by equation (1), but the chemical reactions used for heat storage can proceed in either the left or right direction depending on the temperature change of the system (this is a so-called reversible reaction). It is necessary.

上記の可逆反応を次のようにして見出した。The above reversible reaction was discovered as follows.

(1)式左辺に関する溶解度積、〔KABxKoD〕と
右辺のそれ、〔KADxKoB〕を温度(横軸)に対し
てプロットすると、第2図のように、ある温度Xにおい
て−(KAB xKOD )と〔KADXKcB〕を示
す曲線が交差する関係が得られることがある。
When the solubility product on the left side of equation (1), [KABxKoD], and that on the right side, [KADxKoB] are plotted against temperature (horizontal axis), as shown in Figure 2, at a certain temperature X, -(KAB xKOD) and [ A relationship in which the curves representing KADXKcB] intersect may be obtained.

熱力学的には、溶解度積のより小さい方がより安定な化
合物と考えられるので、第2図の点線より左の温度域で
は化合物ABとCDが、また、右の温度域ではADとO
Bが優先的に存在しうろことがわかる。
Thermodynamically, the smaller the solubility product, the more stable the compound, so in the temperature range to the left of the dotted line in Figure 2, compounds AB and CD, and in the temperature range to the right, AD and O.
It can be seen that B exists preferentially.

故に、同図の点線より左の温度域では(1)式の反応が
左辺の方向に、また、右の温度域では(1)式が右辺の
方向に進行することになる。
Therefore, in the temperature range to the left of the dotted line in the figure, the reaction of equation (1) proceeds in the direction of the left side, and in the temperature range to the right, equation (1) proceeds in the direction of the right side.

このような化合物の組合せのみが蓄熱の目的に利用でき
るのであり、第2図において、適当な温度域に交差の得
られない化合物の組合せは蓄熱に利用しえない。
Only such combinations of compounds can be used for the purpose of heat storage, and in FIG. 2, combinations of compounds that do not cross over the appropriate temperature range cannot be used for heat storage.

一方、(1)式反応の標準自由エネルギー△Hは、既に
確立されている各化合物の生成自由エネルギーから計算
できる。
On the other hand, the standard free energy ΔH of the reaction of formula (1) can be calculated from the already established free energy of formation of each compound.

△Hがあまりにも小さい反応は、蓄熱器をコンパクト化
すると言う当初の目的からも採用しえないのは当然であ
る。
It goes without saying that a reaction in which ΔH is too small cannot be adopted, even for the original purpose of making the heat storage device more compact.

以上、説明を加えた観点から、非常に多数の化学反応に
検討を加え、有望と考えられるものを集録したのが、第
1表である。
From the above-mentioned viewpoint, we have examined a large number of chemical reactions and have compiled the ones that are considered to be promising in Table 1.

第2図のX点に相当する温度およびモルあたりの反応熱
△Hを表中に示した。
The temperature corresponding to point X in FIG. 2 and the heat of reaction ΔH per mole are shown in the table.

(ただし、液体として水を用いた場合の数値である。(However, this is a value when water is used as the liquid.

)いま、第1表中のA1の反応、 2KNOB +B a (OH) 2 ・8 H2O→
2KOH”H20+Ba(NO3)2+6H20(2)
を例にとると、その反応熱△Hは38.6 kcil/
mo lに達し、(2)式左辺のモル体積から、蓄熱密
度が160kCaI/lと求まる。
) Now, the reaction of A1 in Table 1, 2KNOB +B a (OH) 2 ・8 H2O→
2KOH”H20+Ba(NO3)2+6H20(2)
For example, the reaction heat △H is 38.6 kcil/
mol, and the heat storage density is found to be 160 kCaI/l from the molar volume on the left side of equation (2).

(2)式に関するX点は65℃である。The X point regarding equation (2) is 65°C.

この数値は、゛例えばN a 2820g ・5H2
0(融点48℃)を用いた溶融潜熱型蓄熱のs3v/l
よりもかなり大きく、優秀な蓄熱方法と言える。
This value is ``For example, Na 2820g ・5H2
s3v/l of molten latent heat type heat storage using 0 (melting point 48℃)
It is considerably larger than the previous model, and can be said to be an excellent method of storing heat.

第1表には、いくつかの平衡温度Xが示されているが、
いずれも、太陽熱利用の空調・給湯に好適な範囲にある
Table 1 shows several equilibrium temperatures X.
All of these values are within the range suitable for air conditioning and hot water supply using solar heat.

このX点は溶媒として添加された液体の種類によっても
大きく変動するので、所要の温度にX点を細かく調節す
ることが可能である。
Since this X point varies greatly depending on the type of liquid added as a solvent, it is possible to finely adjust the X point to the required temperature.

さらに、2種類以上の化合物に同様な交換反応を行わせ
たり、また、一部に反応熱、一部に溶融潜熱を利用した
蓄熱方法も採用できる。
Furthermore, it is also possible to adopt a heat storage method in which two or more types of compounds undergo a similar exchange reaction, or in which heat of reaction is partially utilized and latent heat of fusion is partially utilized.

このため、本発明方法の適用範囲は、第1表の例示にと
どまらない。
Therefore, the scope of application of the method of the present invention is not limited to the examples shown in Table 1.

また、このような反応熱利用型蓄熱材の熱容量Qは、第
3図の曲線Aに示すように、平衡温度Xを中心として比
較的ゆるやかに上昇するが、潜熱利用型蓄熱材では曲線
Bのように、その融点Mの前後で急に変化する。
In addition, the heat capacity Q of such a heat storage material utilizing reaction heat increases relatively slowly around the equilibrium temperature X, as shown by curve A in Fig. As such, it changes suddenly around its melting point M.

顕熱型利用蓄熱材では曲線Cに示すごとく、温度に対し
て直接的な変化となる。
In the case of a sensible heat type heat storage material, as shown by curve C, there is a direct change in temperature.

このため、潜熱利用型はM点以上の温度が供給されない
限り、蓄熱量はむしろ、顕熱利用型を下回る結果となる
のに対し、反応熱利用型(A曲線)では、もし供給熱が
X点以下であっても、ある程度大(顕熱型よりは、はる
かに大)きな蓄熱が得られる特長があり、天候などによ
り、熱源温度が不安定となりがちな太陽熱利用の目的に
は、特に好都合と考えられる。
For this reason, in the latent heat utilization type, unless a temperature higher than point M is supplied, the amount of heat storage will actually be lower than that of the sensible heat utilization type, whereas in the reaction heat utilization type (curve A), if the supplied heat is It has the feature of being able to store a certain amount of heat (much more than a sensible heat type) even if the temperature is below 1000 yen. It is considered convenient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、化合物ABおよびCDを水と共に容器内に封
入したときの状態の説明図、第2図は、溶解度積、〔K
ABXKoD〕および(KADXKOD)の温度依存性
を示した線図、第3図は、反応熱利用型蓄熱材、潜熱利
用型蓄熱材および顕熱利用型蓄熱材の熱容量の温度に対
する変化を示した線図である。
Figure 1 is an explanatory diagram of the state when compounds AB and CD are sealed together with water in a container, and Figure 2 is a diagram showing the solubility product, [K
ABXKoD] and (KADXKOD). Figure 3 is a diagram showing the temperature dependence of the heat capacity of reaction heat storage materials, latent heat storage materials, and sensible heat storage materials. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも2種類の無機塩とそれらを飽和した液体
を使用し、無機塩間のイオン交換反応熱を利用すること
を特徴とする蓄熱方法。
1. A heat storage method characterized by using at least two types of inorganic salts and a liquid saturated with them, and utilizing the heat of ion exchange reaction between the inorganic salts.
JP55150432A 1980-10-27 1980-10-27 Heat storage method using chemical reaction heat Expired JPS5941119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55150432A JPS5941119B2 (en) 1980-10-27 1980-10-27 Heat storage method using chemical reaction heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55150432A JPS5941119B2 (en) 1980-10-27 1980-10-27 Heat storage method using chemical reaction heat

Publications (2)

Publication Number Publication Date
JPS5774591A JPS5774591A (en) 1982-05-10
JPS5941119B2 true JPS5941119B2 (en) 1984-10-04

Family

ID=15496791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55150432A Expired JPS5941119B2 (en) 1980-10-27 1980-10-27 Heat storage method using chemical reaction heat

Country Status (1)

Country Link
JP (1) JPS5941119B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216119U (en) * 1988-07-15 1990-02-01
JPH0321284U (en) * 1989-07-12 1991-03-01
JPH068736Y2 (en) * 1988-07-15 1994-03-09 株式会社東海理化電機製作所 Key holding member for card type key holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216119U (en) * 1988-07-15 1990-02-01
JPH068736Y2 (en) * 1988-07-15 1994-03-09 株式会社東海理化電機製作所 Key holding member for card type key holder
JPH0321284U (en) * 1989-07-12 1991-03-01

Also Published As

Publication number Publication date
JPS5774591A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
Spinner Ammonia-based thermochemical transformers
Biswas Thermal energy storage using sodium sulfate decahydrate and water
Lane et al. Solar heat storage: latent heat materials
N’Tsoukpoe et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage
Naumann et al. Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials
Bradshaw et al. High-temperature stability of ternary nitrate molten salts for solar thermal energy systems
US4421661A (en) High-temperature direct-contact thermal energy storage using phase-change media
US20130180519A1 (en) Heat transfer medium, use thereof, and method for operating a solar thermal power plant
Ushak et al. Characterization of calcium chloride tetrahydrate as a phase change material and thermodynamic analysis of the results
Gutierrez et al. High carnallite-bearing material for thermochemical energy storage: Thermophysical characterization
Tamme et al. Thermal energy storage
JPS60501967A (en) High temperature absorbent for water vapor
US4360442A (en) Ethylene carbonate as a phase-change heat storage medium
JPS6343992A (en) Reversible phase transfer composition of calcium bromide hydrate
US5585174A (en) Heat-accumulating material and use thereof
JPS5941119B2 (en) Heat storage method using chemical reaction heat
Mazur Boosting power of salt hydrates for heat storage
Hariri et al. A review of thermal storage systems used in building applications
Mazur et al. Revisiting salt hydrate selection for domestic heat storage applications
JP2005036197A (en) Heat-utilizing material and its application
Alatabe Crystallization in phase change materials
JPS6096892A (en) Method of regenerating heat
EP0005009A1 (en) A method of storing thermal energy and an apparatus for collecting and storing thermal energy
Palacios et al. Water sorption-based thermochemical storage materials: A review from material candidates to manufacturing routes
Ulman et al. Investigations of sodium acetate trihydrate for solar latent heat storage, controlling the melting point