JPS5941111B2 - rotary heat exchanger - Google Patents

rotary heat exchanger

Info

Publication number
JPS5941111B2
JPS5941111B2 JP12417476A JP12417476A JPS5941111B2 JP S5941111 B2 JPS5941111 B2 JP S5941111B2 JP 12417476 A JP12417476 A JP 12417476A JP 12417476 A JP12417476 A JP 12417476A JP S5941111 B2 JPS5941111 B2 JP S5941111B2
Authority
JP
Japan
Prior art keywords
paths
hollow
heat exchanger
return
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12417476A
Other languages
Japanese (ja)
Other versions
JPS5349362A (en
Inventor
修一 井上
正明 安立
幸助 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12417476A priority Critical patent/JPS5941111B2/en
Publication of JPS5349362A publication Critical patent/JPS5349362A/en
Publication of JPS5941111B2 publication Critical patent/JPS5941111B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は回転式熱交換器に関するものであり、その目的
とする所は、回転式熱交換器の中空羽根内に熱源側流体
を供給分配する給排液ヘッダー内に2個の往路を回転中
心に対しその位置が180゜異なるよう配置し、2個の
復路を回転中心に対しその位置が180°異なるようか
つ前記2個の往路に隣接して設ける事により、前記内部
流体に冷媒のような相変化を行なう流体を使用した場合
、回転時の動的バランスを保つ事である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary heat exchanger, and its purpose is to provide a fluid supply/drainage header for supplying and distributing heat source fluid to hollow blades of the rotary heat exchanger. By arranging the two outward paths so that their positions differ by 180 degrees with respect to the center of rotation, and by providing the two return paths so that their positions differ by 180 degrees with respect to the center of rotation and adjacent to the two outward paths, When using a fluid that undergoes a phase change, such as a refrigerant, as the internal fluid, it is important to maintain dynamic balance during rotation.

近年、第1図に示す如く送風機の羽根1を中空羽根とし
、その内部に熱源側流体(例えば水や冷媒)2を流す事
により、中空羽根外部の流体(例えば空気)3と熱交換
を行なう回転式熱交換器4が注目されている。
In recent years, as shown in Figure 1, the blades 1 of a blower are hollow blades, and by flowing a heat source fluid (e.g., water or refrigerant) 2 inside the blades, heat exchange is performed with a fluid (e.g., air) 3 outside the hollow blades. The rotary heat exchanger 4 is attracting attention.

これは、送風機と熱交換器の機能を同時に有する他、伝
熱面の回転による熱交換能力の著しい向上が得られるた
め、空気調和機の高性能化、小型化の手段として非常に
有望視されているものである。
In addition to having the functions of an air blower and a heat exchanger at the same time, this device also significantly improves the heat exchange capacity by rotating the heat transfer surface, so it is seen as a very promising means of improving the performance and downsizing of air conditioners. It is something that

従来、回転式熱交換器の代表的な構成としては第2図お
よび第3図に示す如きものがあった。
Conventionally, typical configurations of rotary heat exchangers have been as shown in FIGS. 2 and 3.

第2図は中空羽根5の両端を熱源側流体(以下内部流体
と記す)6の供給ヘッダー7および排出ヘッダー8で支
持せしめ多翼回転子を構成(7ている。
In FIG. 2, both ends of the hollow blades 5 are supported by a supply header 7 and a discharge header 8 for a heat source side fluid (hereinafter referred to as internal fluid) 6 to form a multi-blade rotor.

送液室9から入った内部流体6は実線矢印の如く中空回
転軸10.供給ヘッダー7、中空羽根5.排出ヘッダー
8.中空回転軸11および排液室12の順に流れ、中空
羽根5を横切る空気と熱交換する。
The internal fluid 6 entering from the liquid feeding chamber 9 flows through the hollow rotating shaft 10 as shown by the solid arrow. Supply header 7, hollow vane 5. Discharge header8. The liquid flows through the hollow rotating shaft 11 and the drain chamber 12 in this order, and exchanges heat with the air that crosses the hollow blades 5 .

13は多翼回転子を回転させる電動機、14は複数個の
中空羽根5を周方向に連結する環状フィンである。
13 is an electric motor that rotates the multi-blade rotor, and 14 is an annular fin that connects the plurality of hollow blades 5 in the circumferential direction.

この欠点としては、送液室9、多翼回転子、排液室12
、および電動機13が回転軸上に直列に配置されている
ため、軸方向全長が長くなりすぎ小型化に結びつかない
事があげられる。
The disadvantages of this are that the liquid feeding chamber 9, the multi-blade rotor, the liquid drainage chamber 12
, and the electric motor 13 are arranged in series on the rotating shaft, the overall length in the axial direction becomes too long, which does not lead to miniaturization.

又、送液室10および排液室12収方に空気中への内部
流体6の洩れを防ぐシール部15,16,17が必要と
なりコスト上昇および回転トルク増大という点でも欠点
があった。
Furthermore, seals 15, 16, and 17 are required to prevent the internal fluid 6 from leaking into the air on both sides of the liquid feeding chamber 10 and the liquid draining chamber 12, resulting in an increase in cost and rotational torque.

以上第2図の従来例に於ける全長りの短縮化対策として
第3図の如き従来例がある。
As a countermeasure for shortening the total length in the conventional example shown in FIG. 2, there is a conventional example shown in FIG. 3.

これは中空回転軸18を二重管構造とし内部流体6の往
路18aおよび復路18bを形成したもので、中空羽根
5の両端は給排液ヘッダー19およびリターンヘッダ2
0で支持されている。
This has a hollow rotary shaft 18 having a double pipe structure to form an outgoing path 18a and a returning path 18b for the internal fluid 6, and both ends of the hollow blade 5 are connected to a liquid supply/drain header 19 and a return header 2.
Supported at 0.

送液室9から中空回転軸往路18aに流入した内部流体
は給排液ヘッダー19から中空羽根5に流入し、リター
ンヘッダー20、中空羽根5′および給排ヘッダー19
を経て中空回転軸復路18bに流入する。
The internal fluid that has flowed into the hollow rotary shaft forward path 18a from the liquid feeding chamber 9 flows into the hollow blade 5 from the liquid supply/drainage header 19, and is then transferred to the return header 20, the hollow blade 5', and the supply/drainage header 19.
, and flows into the hollow rotary shaft return path 18b.

その後、排液室12から排出される。以上のよ・うに、
送液室9および排液室12がシール装置21を隔てて一
つの軸封装置22内に納まっている為、第2図の従来例
より全長りが短くなり、小型化される。
Thereafter, the liquid is discharged from the drain chamber 12. Above all,
Since the liquid feeding chamber 9 and the liquid draining chamber 12 are housed in one shaft sealing device 22 with the sealing device 21 in between, the overall length is shorter than that of the conventional example shown in FIG. 2, resulting in a smaller size.

しかし、第3図の従来例は次の欠点を有している。However, the conventional example shown in FIG. 3 has the following drawbacks.

一つは、中空回転軸18の構造が二重管方式であるため
、復路18bの流体通過断面積を確保するために外管外
径18Dが大きくなる事である。
One is that since the structure of the hollow rotating shaft 18 is a double pipe type, the outer diameter 18D of the outer pipe becomes large in order to ensure a fluid passage cross-sectional area of the return path 18b.

これは、排液室12と外部空間の軸封に用いられるメカ
ニカルシール23の径を大きくし、そのシール摺動面2
4の径が大きくなるため、電動機13の出力を犬としな
ければならない。
This increases the diameter of the mechanical seal 23 used for shaft sealing between the drain chamber 12 and the external space, and the seal sliding surface 2
Since the diameter of the motor 4 becomes large, the output of the electric motor 13 must be made equal to the output of the electric motor 13.

又、軸受部25の径も大きくなりコスト上昇を招くもの
であった。
Furthermore, the diameter of the bearing portion 25 also increases, leading to an increase in cost.

二つ目には、二重管方式であるため、シール装置21お
よびメカニカルシール23を取り付ける軸部の許容取付
寸法等を満足させるためには高精度の加工を要し、製造
コストが上昇する原因となっていた。
Second, since it is a double pipe system, high-precision machining is required to satisfy the allowable mounting dimensions of the shaft portion to which the seal device 21 and mechanical seal 23 are attached, which increases manufacturing costs. It became.

前記第2図および第3図の従来例の欠点を解消する対策
として、第4図に示す回転式熱交換器が既に考えられ公
知となっている。
As a measure to eliminate the drawbacks of the conventional examples shown in FIGS. 2 and 3, a rotary heat exchanger shown in FIG. 4 has already been considered and is known.

以下第4図の構成を説明する。第3図と大きく異なる点
は、内部を仕切板26により二分割され内部流体の往路
27および復路28を有する中空回転軸29が多翼回転
子の給排液ヘッダー19に接続されている事である。
The configuration of FIG. 4 will be explained below. The major difference from FIG. 3 is that a hollow rotary shaft 29 whose interior is divided into two by a partition plate 26 and has an outward passage 27 and an incoming passage 28 for the internal fluid is connected to the liquid supply/drain header 19 of the multi-blade rotor. be.

他は基本的に第3図と同じ部品で構成されている。The rest is basically composed of the same parts as in Fig. 3.

また、30は多翼回転子を納めた送風ケーシングであり
一端には軸封装置22、他端には軸受部31が夫夫取付
けられている。
Further, 30 is a blower casing housing a multi-blade rotor, and a shaft sealing device 22 is attached to one end and a bearing portion 31 is attached to the other end.

運転時の動作は以下の如くである。The operation during operation is as follows.

送液室21に流入した内部流体6は、中空回転軸29の
往路27に入り往路出口27aから給排液ヘッダー19
に流入する。
The internal fluid 6 that has flowed into the liquid feeding chamber 21 enters the outgoing path 27 of the hollow rotating shaft 29 and passes through the outgoing path outlet 27a to the liquid supply/drainage header 19.
flows into.

その後適当数の中空羽根5内に分流され対向端のリター
ンヘッダー20jこ流入する。
Thereafter, the flow is divided into a suitable number of hollow blades 5 and flows into the return header 20j at the opposite end.

その後残りの中空羽根5′に導ひかれ、給排液ヘッダー
19に流入した後、中空回転軸29の復路人口28aか
ら復路出口28bに達し排液室12から排出される。
Thereafter, the liquid is guided by the remaining hollow blades 5' and flows into the liquid supply/drainage header 19, and then reaches the return path outlet 28b from the return passage port 28a of the hollow rotation shaft 29, and is discharged from the liquid drainage chamber 12.

以上のように第4図の従来例では中空回転軸29を仕切
板26で二分割し、内部流体の往路27および復路28
を形成しているため、中空回転軸29の外径は大きくな
らず、第3図の従来例の欠点を解消している。
As described above, in the conventional example shown in FIG.
3, the outer diameter of the hollow rotating shaft 29 does not increase, and the drawbacks of the conventional example shown in FIG. 3 are solved.

しかしながら、中空回転軸29を二分割したために、前
記給排液ヘッダー19は構造的制約を受ける事になり、
以下の欠点を有していた。
However, since the hollow rotating shaft 29 is divided into two parts, the liquid supply/drainage header 19 is subject to structural restrictions.
It had the following drawbacks.

従来、前記給排ヘッダー19の構成とじて第5図および
第6図の如きものが提案され公知となっている(第5図
は第4図のA−A断面図、第6図は第4図のB−B断面
図)。
Conventionally, configurations of the supply/discharge header 19 as shown in FIGS. 5 and 6 have been proposed and known (FIG. 5 is a sectional view taken along line A-A in FIG. 4, and FIG. 6 is a cross-sectional view taken along line A-A in FIG. (B-B sectional view in the figure).

以下、内部流体の流れを説明すると、中空回転軸往路出
口27aから給排液ヘッダー19内の往路32に入った
内部流体は中空羽根5−1 、5−2 、5−13 、
5−14に流入し、リターンヘッダー20に達する。
Hereinafter, to explain the flow of the internal fluid, the internal fluid that entered the outward path 32 in the liquid supply/drain header 19 from the hollow rotary shaft outward path outlet 27a flows through the hollow blades 5-1, 5-2, 5-13,
5-14 and reaches the return header 20.

ここでは、中空羽根5−1,5−2は中継路33に連通
し、中空羽根5−13,5−14は中継路38に連通し
ている。
Here, the hollow blades 5-1 and 5-2 communicate with the relay path 33, and the hollow blades 5-13 and 5-14 communicate with the relay path 38.

このように一旦中空回転軸29を出た内部流体は給排液
ヘッダ一山往路32′1ハら中空羽根5に流入した時点
で第5図工面から見て左右対称に分岐される事になり、
その後左方は実線矢印の如く中継路33.34,35,
36,37と中空羽根5−1,5−2〜5−11,5−
12を交互に介して給排液ヘッダー内の復路43に至り
、左方は点線矢印の如く中継路38,39,40゜4L
42と中空羽根5−13,5−14〜5−23.5−2
4を交互に介して復路43に至り、最終的には前記左右
対称の流れは給排液ヘッダー内復路で合流し、中空回転
軸29に設けられた復路人口28aから流出する。
In this way, once the internal fluid has exited the hollow rotating shaft 29 and flows into the hollow blade 5 through the supply/drain header 1 outgoing path 32'1, it is branched symmetrically when viewed from the drawing surface of Drawing 5. ,
After that, to the left are relay routes 33, 34, 35, as shown by solid arrows.
36, 37 and hollow blades 5-1, 5-2 to 5-11, 5-
12 alternately to the return path 43 in the supply/drainage header, and on the left, as indicated by the dotted arrow, there are relay paths 38, 39, 40° 4L.
42 and hollow blades 5-13, 5-14 to 5-23.5-2
4 alternately to the return path 43, and finally the symmetrical flows merge in the return path inside the liquid supply/drain header and flow out from the return path 28a provided in the hollow rotation shaft 29.

この回転式熱交換器の内部流体として、例えば冷媒のよ
うな相変化を行なう流体を使用し、冷凍装置の凝縮器ま
たは蒸発器として使用すると以下の不都合が生じる。
If a fluid that undergoes a phase change, such as a refrigerant, is used as the internal fluid of this rotary heat exchanger and used as a condenser or evaporator of a refrigeration system, the following disadvantages occur.

例として冷凍装置の凝縮器として第4.5,6図の従来
方式を採用した場合、凝縮器内の冷媒の状態は過熱ガス
、飽和域および、過冷却液の三つの状態が存在する。
For example, when the conventional system shown in FIGS. 4, 5 and 6 is adopted as a condenser for a refrigeration system, there are three states of refrigerant in the condenser: superheated gas, saturated region, and supercooled liquid.

即ち第5図に示す中空羽根の内、5−1 、5−2 、
5−13 、5−14等、往路32近くの中空羽根の一
部又は全部は比重量が小さい過熱ガスで占められる。
That is, among the hollow blades shown in FIG. 5, 5-1, 5-2,
5-13, 5-14, etc., a part or all of the hollow blades near the outgoing path 32 are occupied by superheated gas having a small specific weight.

また、中空羽根5−11゜5−12 、5−23 、5
−24等、復路43近くの中空羽根の一部又は全部は比
重量が大きい過冷却冷媒液で占められる。
Also, hollow blades 5-11゜5-12, 5-23, 5
A part or all of the hollow blades near the return path 43, such as -24, are occupied by supercooled refrigerant liquid having a large specific weight.

ちなみにR−12の飽和液と飽和ガスの比重量の比は約
50:1である。
Incidentally, the ratio of the specific weight of R-12 saturated liquid to saturated gas is about 50:1.

このように、回転中心に対し、略対称位置にその比重量
が著しく異なる内部流体が同時に存在すると、回転時に
重心の移動が生じ、動的バランスが取れなくなる。
In this way, if internal fluids with significantly different specific weights are present at substantially symmetrical positions with respect to the center of rotation, the center of gravity will shift during rotation, making it impossible to maintain dynamic balance.

これは中空回転軸29の偏心や振動を招き、軸封装置2
2や軸受部25,31の耐久性を著しく低下させるもの
である。
This causes eccentricity and vibration of the hollow rotating shaft 29, and the shaft sealing device 2
2 and bearing parts 25 and 31 are significantly reduced.

最悪な場合、回転式熱交換器の破壊さえも起こり得るも
のである。
In the worst case, even the rotary heat exchanger may be destroyed.

本発明は前述の従来例第2,3,4,5,6図の欠点を
全て解消するものである。
The present invention eliminates all the drawbacks of the conventional examples shown in FIGS. 2, 3, 4, 5, and 6.

具体的には第4.5,6図の改善によりこの目標は達せ
られる。
Specifically, this goal can be achieved through the improvements shown in Figures 4.5 and 6.

第7図は本発明の一実施例を示す給排液ヘッダー44で
ある。
FIG. 7 shows a liquid supply/drainage header 44 showing one embodiment of the present invention.

これは2個の往路45,46および2個の復路47.4
8を有し、前記2個の往路4546は回転中心に対し、
その位置が1800異なる様装置され、前記2個の復路
47,48は回転中心に対しその位置が180°異なり
、かつ前記2個の往路45.46に隣接して設けられて
いる。
This consists of two outbound trips 45, 46 and two inbound trips 47.4.
8, and the two outgoing paths 4546 are relative to the center of rotation,
The two return paths 47, 48 have positions different by 180 degrees with respect to the center of rotation, and are located adjacent to the two outward paths 45, 46.

第8図はリターンヘッダ49であり構造的には従来と同
じである。
FIG. 8 shows a return header 49, which is structurally the same as the conventional one.

第9図は前記給排液ヘッダー44に接続される中空回転
軸50であり、内部を十字形に組まれた仕切板51によ
り4つに等分割されている。
FIG. 9 shows a hollow rotary shaft 50 connected to the liquid supply/drainage header 44, whose interior is equally divided into four parts by a cross-shaped partition plate 51.

そして内部流体の往路52,53および復路54,55
が交互に配置され、前記往路5253は送液室9(第4
図参照)に開口する往路人口52a、53aおよび、前
記給排液ヘッダー44内往路45,46に対応して開口
する往路出口52b、53bを有し、前記復路54,5
5は排液室12に開口する復路出口54b t 55b
および前記給排液ヘッダー44内復路47.48に対応
して開口する復路人口54a 、55aを有している。
And internal fluid outward routes 52, 53 and return routes 54, 55
are arranged alternately, and the outgoing path 5253 is connected to the liquid feeding chamber 9 (fourth
The outgoing ports 52a and 53a are opened to the outgoing ports 52a and 53a (see figure), and the outgoing ports 52b and 53b are opened corresponding to the outgoing ports 45 and 46 in the liquid supply/drainage header 44, and the incoming ports 54 and 5
5 is a return path outlet 54b t 55b that opens into the drain chamber 12
Also, return passages 54a and 55a are opened corresponding to the return passages 47 and 48 in the liquid supply/drainage header 44.

他は全て第4図に同じである。以上の構成にてなる本発
明を、例えば冷凍装置の凝縮器として使用した場合の冷
媒の状態変化を第7および8図にて説明する。
Everything else is the same as in FIG. Changes in the state of the refrigerant when the present invention having the above configuration is used, for example, as a condenser of a refrigeration system will be explained with reference to FIGS. 7 and 8.

圧縮機から中空回転軸50往路52を介し給排液ヘッダ
ー44往路45に流入した高温の過熱冷媒ガスは、実線
矢印の如く中空羽根5−1,5−2内に流入する。
The high-temperature superheated refrigerant gas that has flowed from the compressor into the outgoing path 45 of the liquid supply/drainage header 44 via the outgoing path 52 of the hollow rotary shaft 50 flows into the hollow blades 5-1 and 5-2 as indicated by solid arrows.

そして、中継路56.57,58,59,60および中
空羽根5−3,5−4〜5−11.5−12を交互に経
て復路47に至る。
Then, it reaches the return route 47 through the relay routes 56, 57, 58, 59, 60 and the hollow blades 5-3, 5-4 to 5-11.5-12 alternately.

その間、冷媒は過熱ガス、二相域および過冷却液の三状
態が、ある比率で存在する。
During this period, the refrigerant exists in three states, superheated gas, two-phase region, and supercooled liquid, in a certain ratio.

一方中空回転軸50往路46に流入した高温の過熱冷媒
ガスは点線矢印の如く中空羽根5−1:3,5−14・
−5−23,5−24および中継路61.62,63,
64,65を交互に介し復路48に至る。
On the other hand, the high-temperature superheated refrigerant gas flowing into the outgoing path 46 of the hollow rotating shaft 50 flows through the hollow blades 5-1:3, 5-14, as shown by the dotted arrows.
-5-23, 5-24 and relay paths 61, 62, 63,
64 and 65 alternately to reach the return route 48.

その間、冷媒は過熱ガス、二相域および過冷却液の状態
が前述の比率と同じ比率で存在する。
Meanwhile, the refrigerant is present in the same proportions as the above-mentioned proportions: superheated gas, two-phase region and subcooled liquid.

即ち、第10図に簡略化して示すように、回転中心に対
してその位置が180°異なる任意の点EとFに於ける
冷媒の状態(例えば、温度、比重量など)は同じになる
That is, as shown in a simplified manner in FIG. 10, the states (for example, temperature, specific weight, etc.) of the refrigerant at arbitrary points E and F, whose positions differ by 180 degrees with respect to the center of rotation, are the same.

この現象は、例えば運転中に於いて何らかの原因により
前記比率が変fヒしても維持される。
This phenomenon is maintained even if the ratio changes due to some reason, for example, during driving.

従って回転時に於いて、180°位置が異なる2点の遠
心力は釣り合い重心の移動は生じなくなる。
Therefore, during rotation, the centrifugal forces at two points that are 180 degrees apart are balanced, and no movement of the center of gravity occurs.

以上述べたように、本発明の回転式熱交換器は内部に流
体の往路52.53および復路54,55を有する中空
回転軸50と、中空羽根5にて形成された多翼回転子と
を、2個の往路45.46および2個の復路47,48
と複数個の中継路を有する給排液ヘッダー44を介して
接続すると共に、前記給排液ヘッダー44中の2個の往
路45.46を回転中心に対しその位置が180°異な
るよう配置し、前記2個の復路47,48を回転中心に
対しその位置が180°異なりかつ前記2個の往路45
,46に隣接して設けているため、内部流体に冷媒のよ
うな相変化を行なう流体を使用した場合でも、回転中心
に対してその位置が180゜異なる任意の2点に於ける
冷媒の状態は同じとなり、従って、回転時は於ける前記
任意の2点の遠心力が釣り合い動的バランスは良好に保
たれる。
As described above, the rotary heat exchanger of the present invention includes a hollow rotating shaft 50 having internal fluid outgoing paths 52, 53 and incoming fluid paths 54, 55, and a multi-blade rotor formed by hollow blades 5. , two outbound trips 45,46 and two return trips 47,48
and are connected via a liquid supply and drainage header 44 having a plurality of relay paths, and the two outgoing paths 45 and 46 in the liquid supply and drainage header 44 are arranged so that their positions differ by 180 degrees with respect to the center of rotation, The positions of the two return paths 47 and 48 differ by 180 degrees with respect to the center of rotation, and the two outward paths 45
, 46, so even if a fluid that undergoes a phase change such as a refrigerant is used as the internal fluid, the state of the refrigerant at any two points whose positions differ by 180 degrees with respect to the center of rotation can be determined. are the same, therefore, during rotation, the centrifugal forces at the two arbitrary points are balanced and a good dynamic balance is maintained.

その結果、中空回転軸50の偏心や振動がなくなり軸封
装置22や軸受部25,31の耐久性を向上せ17める
ことかできる。
As a result, the eccentricity and vibration of the hollow rotating shaft 50 are eliminated, and the durability of the shaft sealing device 22 and the bearings 25 and 31 can be improved.

また、中空回転軸50内をn室に分割した場合の流体の
損失水頭Δhは、流体摩擦係数をλ、中空回転軸50の
軸長をl、流量をVo、重力加速度gとした時、往路ま
たは復路の全流路断面積、A()は、分割数nに関係な
く、中空回転軸内径dここでは、分割するために必要な
仕切板51の板厚がAoにおよぼす影響はわずかである
ため無視している。
In addition, the head loss Δh of the fluid when the inside of the hollow rotating shaft 50 is divided into n chambers is calculated by setting the fluid friction coefficient to λ, the axial length of the hollow rotating shaft 50 to l, the flow rate to Vo, and the gravitational acceleration to g. Or, the total flow path cross-sectional area of the return path, A(), is the inner diameter of the hollow rotating shaft d, regardless of the number of divisions n.Here, the thickness of the partition plate 51 required for division has a slight influence on Ao. Therefore, it is ignored.

流路を流れる流体の流速Vは、 で表わされる。The flow velocity V of the fluid flowing through the flow path is It is expressed as

損失水頭Δhはよく知られた式 で表わされる。Head loss Δh is a well-known formula It is expressed as

ここでd、はn室に分割された内の1室の流路水力直径
であり、1室の流路断面積An、および流路濡れ長さl
nとすれば、1.2,4式を3式に代入すると、 となる。
Here, d is the flow passage hydraulic diameter of one chamber divided into n chambers, the flow passage cross-sectional area An of one chamber, and the flow passage wetting length l
If n, then substituting equation 1.2,4 into equation 3 yields the following.

5式から、中空回転軸50内の内割数nが増すと損失水
頭Δhは増加する。
From Equation 5, as the internal division number n in the hollow rotating shaft 50 increases, the water head loss Δh increases.

したがって損失水頭Δhを小さくするためには中空回転
軸50内の分割数が少ない方が良いと言える。
Therefore, in order to reduce the water head loss Δh, it is better to have a smaller number of divisions in the hollow rotating shaft 50.

そして最も少ない分割数nはn −2であるがこれは第
4図から第6図に示した従来例に他ならず、内部流体に
冷媒のような相変化を行なう流体を使用し、冷凍装置の
凝縮器または蒸発器として使用すると、多翼回転子の回
転時における動的バランスが取れなくなるという入点を
有している。
The smallest number of divisions n is n -2, but this is nothing but the conventional example shown in Figs. When used as a condenser or evaporator, it has the disadvantage that the multi-blade rotor cannot be dynamically balanced during rotation.

従って従来例の欠点を解消する分割数nはn > 2で
あると同時に前述の損失水頭Δhを最少限にするという
観点からはn = 4が最良であり、中空回転軸を十字
形にすなわち四室に分割するのが良い。
Therefore, the number of divisions n to eliminate the drawbacks of the conventional example is n > 2, and at the same time, n = 4 is the best from the viewpoint of minimizing the above-mentioned water head loss Δh. It is better to divide it into rooms.

また中空回転軸50の構造は、内部を十字形に組まれた
仕切板51によって4室に分割し、内部流体の往路52
.53および復路54,55を形成しているために、例
えば第4図の従来例に見られるような2室分割型中空回
転軸29に比較して、静止時および回転時に於ける機械
的強度(ねじれ、たわみ等)も著しく向上する等、種種
の優れた効果がある。
Further, the structure of the hollow rotating shaft 50 is such that the interior is divided into four chambers by a cross-shaped partition plate 51, and an outgoing path 52 for internal fluid.
.. 53 and return paths 54 and 55, the mechanical strength ( It has various excellent effects, such as significantly improving twisting, deflection, etc.).

加えて第2図、第3図の従来例の欠点をも解消している
のは言うまでもない。
In addition, it goes without saying that the drawbacks of the conventional examples shown in FIGS. 2 and 3 are also eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回転式熱交換器の一部切欠を有する斜視
図、第2図は従来の回転式熱交換器の説明図、第3図は
同側断面図、第4図は他の従来の回転式熱交換器の説明
図、第5図は給排液ヘッダの説明図、第6図はリターン
ヘッダの説明図、第7図は本発明の一実施例における回
転式熱交換器に使用する給排液・・・ラダの説明図、第
8図は同リターンヘッダの説明図、第9図a、b、c、
dはそれぞれ同中空回転軸の斜視図、側面図、断面図お
よび断面図、第10図は同中空回転軸の作用を示す説明
図である。 5・・・・・・中空羽根、44・・・・・・給排液ヘッ
ダー、45.46・・・・・・往路、47,48・・・
・・・復路、50・・・・・・中空回転軸、51・・・
・・・仕切板、52 、53・・・・・・往路、52a
、53a・・・・・・往路入口、52b。 53b・・・・・・往路出口、54 、55・・・・・
・復路、54a 、55a−”・復路入口、54b 、
55b−・・・・・復路出口。
Fig. 1 is a partially cutaway perspective view of a conventional rotary heat exchanger, Fig. 2 is an explanatory diagram of a conventional rotary heat exchanger, Fig. 3 is a sectional view of the same side, and Fig. 4 is a perspective view of a conventional rotary heat exchanger. FIG. 5 is an explanatory diagram of a conventional rotary heat exchanger, FIG. 5 is an explanatory diagram of a supply/discharge header, FIG. 6 is an explanatory diagram of a return header, and FIG. 7 is an explanatory diagram of a rotary heat exchanger in an embodiment of the present invention. Supply/drainage liquid to be used...Explanatory diagram of the ladder, Figure 8 is an explanatory diagram of the same return header, Figure 9 a, b, c,
d is a perspective view, a side view, a sectional view, and a sectional view of the hollow rotating shaft, respectively, and FIG. 10 is an explanatory view showing the action of the hollow rotating shaft. 5...Hollow blade, 44...Liquid supply/drain header, 45.46...Outward path, 47,48...
...Return trip, 50...Hollow rotating shaft, 51...
...Partition plate, 52, 53... Outbound, 52a
, 53a... Outbound entrance, 52b. 53b... Outward exit, 54, 55...
・Return route, 54a, 55a-”・Return route entrance, 54b,
55b-・・・Return exit.

Claims (1)

【特許請求の範囲】 1 内部に流体の往路52,53および復路54゜55
を有する中空回転軸50と、中空羽根5にて形成された
多翼回転子とを、2個の往路45 、46および2個の
復路47,4Bと複数個の中継路を有する給排液ヘッダ
ー44を介して接続すると共に、前記給排液ヘッダー4
4中の2個の往路45゜46を回転中心に対しその位置
が180°異なるよう配置し、前記2個の復路47,4
8を回転中心に対しその位置が180°異なりかつ前記
2個の往路45.46に隣接して設けた事を特徴とする
回転式熱交換器。 2 中空回転軸50は内部を十字形に組まれた仕切板5
1により4室に分割し、各室にそれぞれ流体の出口、入
口を設け、2個の流体の往路52゜53および2個の復
路54,55を形成し、前記2個の往路52.53を回
転中心に対しその位置が1800異なるよう設けた事を
特徴とする特許請求の範囲第1項記載の回転式熱交換器
[Claims] 1. Outward paths 52, 53 and inward paths 54, 55 for fluid inside.
A hollow rotating shaft 50 having a rotor and a multi-blade rotor formed of hollow blades 5 are connected to a liquid supply/drainage header having two outward paths 45 and 46, two return paths 47 and 4B, and a plurality of relay paths. 44, and the water supply/drainage header 4
The two outgoing paths 45 and 46 in 4 are arranged so that their positions differ by 180 degrees with respect to the center of rotation, and the two incoming paths 47 and 4
A rotary heat exchanger characterized in that the positions of the heat exchangers 8 and 8 are different from each other by 180° with respect to the center of rotation and are provided adjacent to the two outgoing paths 45 and 46. 2 The hollow rotating shaft 50 has a cross-shaped partition plate 5 inside.
1 is divided into four chambers, each chamber is provided with a fluid outlet and an inlet, respectively, and two fluid outgoing paths 52 and 53 and two inward paths 54 and 55 are formed, and the two outgoing paths 52 and 53 are 2. The rotary heat exchanger according to claim 1, wherein the rotary heat exchanger is provided at a position different from the center of rotation by 1800 degrees.
JP12417476A 1976-10-15 1976-10-15 rotary heat exchanger Expired JPS5941111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12417476A JPS5941111B2 (en) 1976-10-15 1976-10-15 rotary heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12417476A JPS5941111B2 (en) 1976-10-15 1976-10-15 rotary heat exchanger

Publications (2)

Publication Number Publication Date
JPS5349362A JPS5349362A (en) 1978-05-04
JPS5941111B2 true JPS5941111B2 (en) 1984-10-04

Family

ID=14878786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12417476A Expired JPS5941111B2 (en) 1976-10-15 1976-10-15 rotary heat exchanger

Country Status (1)

Country Link
JP (1) JPS5941111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210031421A (en) * 2019-09-11 2021-03-19 박원일 A Rotating Type of a Heat Exchanging Apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201406579WA (en) * 2014-04-16 2015-11-27 Lien Chiow Tan Ambient Heat Engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210031421A (en) * 2019-09-11 2021-03-19 박원일 A Rotating Type of a Heat Exchanging Apparatus

Also Published As

Publication number Publication date
JPS5349362A (en) 1978-05-04

Similar Documents

Publication Publication Date Title
US4389171A (en) Gas compressor of the scroll type having reduced starting torque
JPS60190691A (en) Scroll machine for fluid compression
KR19990023838A (en) Rotary compressor
CA2183966A1 (en) Four-Port Valve
JPH0756274B2 (en) Scroll compressor
US3744942A (en) Rotary sliding vane compressor with hydrostatic bearings
JPS6212350A (en) Electric motor structural body
SE457902B (en) FLUID COMPRESSOR OF SPIRAL WHEEL TYPE WITH MECHANISM BEFORE SETTING THE DEPLACEMENT
JPH0553943B2 (en)
US3723024A (en) Reversible rotary compressor for refrigerators
JPH10246189A (en) Scroll compressor
JP4686919B2 (en) Scroll compressor
JPH051678A (en) Synchronously rotating scroll compressor
JPS5941111B2 (en) rotary heat exchanger
US4008982A (en) Rotary fluid energy converter
JPS5990789A (en) Scroll pump
JPH0245039B2 (en)
US5215452A (en) Compressor having an oil pump ring associated with the orbiting shaft
US5199539A (en) Fluid coupling having a vane pump system
US4708598A (en) Rotary type gas compressor
JPH03234931A (en) Viscous fluid coupling device
JPS61145392A (en) Reversable sealing type compressor unti
JP4682795B2 (en) Expander-integrated compressor and refrigeration cycle apparatus
JP4919773B2 (en) Scroll compressor
JP2811812B2 (en) Viscous fluid coupling device