JPS5940623A - Twisted nematic type liquid crystal display device - Google Patents

Twisted nematic type liquid crystal display device

Info

Publication number
JPS5940623A
JPS5940623A JP57149861A JP14986182A JPS5940623A JP S5940623 A JPS5940623 A JP S5940623A JP 57149861 A JP57149861 A JP 57149861A JP 14986182 A JP14986182 A JP 14986182A JP S5940623 A JPS5940623 A JP S5940623A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal molecules
polarization
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57149861A
Other languages
Japanese (ja)
Inventor
Yutaka Nakagawa
豊 中川
Minoru Akatsuka
赤塚 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57149861A priority Critical patent/JPS5940623A/en
Publication of JPS5940623A publication Critical patent/JPS5940623A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a titled display device adapted to multiplex driving by increasing the twist angle of liquid crystal molecules and specifying the direction of the polarization axis of the polarization plates to be adhered to the top and bottom of a cell. CONSTITUTION:A nematic liquid crystal 4 is sealed between substrates 1A and 1B provided with transparent electrodes 2A, 2B to constitute a liquid crystal cell 5 (a symbol 3 is a sealant), and polarization plates 6A, 6B are disposed on both sides thereof (a symbol 7 is a reflection plate), whereby a twisted nematic type liquid crystal display device is formed. The twist angle of the liquid crystal molecules and the polarization axis direction of the polarization plates in the above-mentioned device are so determined that the relations (i) 46 deg.<=(phi1,phi2)<=60 deg., (ii) 180 deg.<=(phi1+phi2+theta1+theta2)<=210 deg. are satisfied (phi1, phi2 are respectively the angles of the orientation 9 of the liquid crystal molecules near the upper substrate 1A and the orientation 10 of the liquid crystal molecules near the lower substrate 1B when viewed from the observer's direction 8, theta1, theta2 are respectively the angles of the polarization axis 11 of the upper polarization plate 6A and the polarization axis 12 of the lower polarization plate 6B when viewed from the direction 8).

Description

【発明の詳細な説明】 本発明は、マルチプレックス駆動に適したツイストネマ
チック型液晶表示装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a twisted nematic liquid crystal display device suitable for multiplex driving.

液晶表示装置は、低電圧IJjA動、低消費電力等の長
所を有し、ツイストネマナツクモードを中心に各方面で
使用されている。さらに現在は。
Liquid crystal display devices have advantages such as low voltage IJJA operation and low power consumption, and are used in various fields mainly in twist mode. Even more now.

表示容量の増大に伴い、従来のスタディツク駆動からマ
ルチプレックス駆動への要求も高まり、プログラム電卓
、マイコンの端末表示等に使われ始めている。
With the increase in display capacity, the demand for multiplex drives has increased from the conventional study drive, and they are now being used for program calculators, microcomputer terminal displays, etc.

液晶表示装置の容量の増大は今後も増々拡大されるもの
と見なされる。しかし、表示容量の増大、即ちマルチブ
レックス性を高めるにつれて、表示コントラストは低下
する傾向にあり、いかにしてこの表示コントラストを保
持するかが重要なポイントである。
It is expected that the capacity of liquid crystal display devices will continue to increase. However, as the display capacity increases, that is, as the multi-plexing property increases, the display contrast tends to decrease, and an important point is how to maintain this display contrast.

このため、従来偏光板の偏光軸を直交又は平行にしてい
たものを少しずらす。又は観察者方向から見た液晶の配
向方位を左右非対称とする等して観察者方向におけるマ
ージンの向上を計り、表示コントラストを向上させてい
た。
For this reason, the polarization axes of polarizing plates, which were conventionally set perpendicular or parallel, are slightly shifted. Alternatively, the display contrast has been improved by improving the margin in the viewer direction by, for example, making the alignment direction of the liquid crystal asymmetrical when viewed from the viewer direction.

しかし、これらの方式は観察者方向からのマージン11
向上するが、リターデーションを生じやすくなる。観察
方向が少しずtしると急に表示コントラストか低下し、
場合によってtゴ全く視認不能になる等の欠点があシ、
設計自由度の低いものであった。
However, these methods have a margin of 11 from the direction of the observer.
However, retardation is more likely to occur. As the viewing direction changes little by little, the display contrast suddenly decreases.
In some cases, there are drawbacks such as the tgo becoming completely invisible,
The degree of freedom in design was low.

本発明を1従来のかかる欠点を防止し、マージン向上を
めざす場合取り得る手段を多様化可能配してなるツイス
トネマチック型液晶表示装置においで、観察者方向から
見た初期配向方位ψ凰、ψ2 が46°≦ψ1.ψ2≦
60°であり、偏光板の偏光軸の交角の内側光面が伝搬
していく交角でない交角をθl十θ2 としたとき、1
80゜≦ψ、−+−tp、+01十02≦210°であ
ることを特徴とするツイストネマチック型液晶表示装置
である。
The present invention provides (1) a twisted nematic liquid crystal display device in which various measures can be taken in order to prevent such drawbacks of the conventional art and to improve the margin; is 46°≦ψ1. ψ2≦
60°, and when the intersecting angle that is not the intersecting angle at which the inner optical plane propagates is θl + θ2, then 1
The present invention is a twisted nematic liquid crystal display device characterized in that 80°≦ψ, −+−tp, and +0102≦210°.

本発明の液晶表示装置tま、マルチプレックス駆動時の
マージンが向上し、シャープネス、コントラストととも
に良好なものである。
The liquid crystal display device of the present invention has an improved margin during multiplex driving, and has good sharpness and contrast.

本発明のツイストネマチック型液晶表示装置は、マルチ
ブレックス駆動用液晶セルの特性向上を液晶物質のみに
依存せず、基板近傍における液晶分子の初期配向方位を
変えて、液晶のねじれ角を大きくすると共に、偏光板の
配置方向を適当に選ぶことによシ、マルチプレックス駆
動に適した特性をもたらすものである。
The twisted nematic liquid crystal display device of the present invention improves the characteristics of a liquid crystal cell for multiplex driving by not relying only on the liquid crystal material, but by changing the initial alignment direction of liquid crystal molecules near the substrate, increasing the twist angle of the liquid crystal, and increasing the twist angle of the liquid crystal. By appropriately selecting the orientation of the polarizing plates, characteristics suitable for multiplex driving can be achieved.

以下図に従い説明する。第1図は本発明のツイストネマ
チック型液晶表示装置の断面図である。セルの基本的構
成は従来の反射型TN液晶セルと全く同一である。即ち
、透明を極(2A)。
This will be explained below according to the diagram. FIG. 1 is a sectional view of a twisted nematic liquid crystal display device of the present invention. The basic structure of the cell is exactly the same as a conventional reflective TN liquid crystal cell. That is, transparency is the pole (2A).

(2B)を設けた基板(IA)、(IB)を相対向して
クール剤(3)でシールし、ネマチック液晶(4)を注
入して液晶セル(5)を構成し、その両側に偏光板(6
A)、  (6B)を設けさらにその一方の側に反射板
(7)を設置したものである。
The substrates (IA) and (IB) provided with (2B) are facing each other and sealed with a cooling agent (3), and a nematic liquid crystal (4) is injected to form a liquid crystal cell (5), with polarized light on both sides. Board (6
A) and (6B) are provided, and a reflector plate (7) is further installed on one side thereof.

従来、基板(IA)、(IE)近傍における液晶分子の
配列方向けはは90°異なるように配向処理がなされて
いるので、液晶分子は基板間でほぼ90°のらせん構造
をとる。しかるに本発明においては、この液晶分子のら
せん構造が92°以上になるように配向処理し、コレス
テリック液晶又tま光学活性物質を添加【7たネマチッ
ク液晶を用いるとともに、偏光板の結着角度を変えて特
性の向上をねらったものである。
Conventionally, liquid crystal molecules near the substrates (IA) and (IE) are aligned so that they differ by 90 degrees, so the liquid crystal molecules form a helical structure with an angle of about 90 degrees between the substrates. However, in the present invention, the helical structure of the liquid crystal molecules is oriented at 92 degrees or more, cholesteric liquid crystal or nematic liquid crystal to which an optically active substance is added [7] is used, and the binding angle of the polarizing plate is adjusted. The aim was to change the characteristics and improve the characteristics.

なお、この液晶表示装置の各構成材料は公知の材料が使
用でき、基板は、ガラス、プラスチック等の透明基板に
透明電極をit*層しkもので、必要に応じて8102
. ax2o、等のアンダーコート、BtOZ、 Zr
O□5ポリイミド、シリコン等のオーツ(−コートを設
けても良く、又、電+!iも2層電極とする、透明電極
と金属線との複合電極とする等しても良く、H字セグメ
ント、ドツトマトリクス、多ILドツトマトリクス、ア
ナログ時計)(ターン、バーグラフその他各釉のパター
ンに応用できる。
Note that each constituent material of this liquid crystal display device can be a known material, and the substrate is a transparent substrate made of glass, plastic, etc. with a transparent electrode layered thereon.
.. Undercoat such as ax2o, BtOZ, Zr
O□5 Polyimide, silicone, etc. may be provided with an oat (- coat), and the electrode +!i may also be a two-layer electrode, a composite electrode of a transparent electrode and a metal wire, etc. Segment, dot matrix, multi-IL dot matrix, analog clock) (applicable to turns, bar graphs, and other glaze patterns).

又、シール材もエポキシ樹脂、シリコン樹脂、フッ素樹
脂等各種の熱硬化性樹脂、紫外線硬化型樹脂、フリット
停の無機接着剤、等を使用し又はプラスチック基板の場
合には高周波、熱。
In addition, sealing materials include various thermosetting resins such as epoxy resins, silicone resins, and fluorine resins, ultraviolet curing resins, inorganic adhesives with frit stops, and in the case of plastic substrates, high frequency and heat treatment.

超音波、レーザー等による溶融によるシールも可能であ
シ、液晶を注入して封止されて液晶セルを構成されれば
良い。
It is also possible to seal by melting with ultrasonic waves, laser, etc., or it is sufficient to form a liquid crystal cell by injecting liquid crystal and sealing.

本発明で液晶セルに封入されるネマチック液晶はツイス
トネマチック構造をとる液晶であれば良く、逆配向防止
のためにコレステリック液晶又は光学活性物質を添加し
て用いる。特に液晶の屈折率異方性Δnと液晶セルのギ
ャップd(μm)の積Δn−dがα5〜[17のものの
使用が偏光軸回転にともなう電圧閾値付近で生じる干渉
着色を生じにくく好−ましい。
The nematic liquid crystal sealed in the liquid crystal cell in the present invention may be any liquid crystal having a twisted nematic structure, and cholesteric liquid crystal or an optically active substance is added to prevent reverse orientation. In particular, it is preferable to use a liquid crystal with a product Δn-d of the refractive index anisotropy Δn of the liquid crystal and the gap d (μm) of the liquid crystal cell between α5 and [17] because interference coloring that occurs near the voltage threshold due to polarization axis rotation is less likely to occur. stomach.

以下左旋性のセルについて説明を行うが、右旋性のセル
についても対称性だ0を考慮すれば全く同等に説明でき
る。
A levorotary cell will be explained below, but a dextrorotatory cell can be explained in exactly the same way if the symmetry 0 is taken into account.

第2図は、基板近傍における液晶分子と偏光板の偏光軸
との位置関係を示す模式図である。
FIG. 2 is a schematic diagram showing the positional relationship between liquid crystal molecules and the polarization axis of a polarizing plate in the vicinity of the substrate.

ここで(9)は上側基板の近傍における液晶分子の配向
方位(初期配向方位)であり、(10)11下側基板の
近傍における液晶分子の配向方位であり、観察者方向(
8)から見た場合の角度を夫々sII+1.P2 とす
る。
Here, (9) is the orientation direction of liquid crystal molecules in the vicinity of the upper substrate (initial orientation direction), (10) 11 is the orientation direction of liquid crystal molecules in the vicinity of the lower substrate, and the viewer direction (
8) respectively sII+1. Let it be P2.

又、(11)は上側偏光膜の偏光軸であシ、(12) 
iま下側偏光膜の偏光軸であシ、観察者方向(8)から
見た場合の角度を夫々θ1.θ2とする。
Also, (11) is the polarization axis of the upper polarizing film, (12)
The polarization axis of the lower polarizing film is θ1. Let it be θ2.

この場合、この2枚の偏光板の交角θl+θ2は、偏光
面が伝搬していく方向の交角(180゜−01−02)
と逆側の交角となる。
In this case, the intersection angle θl+θ2 of these two polarizing plates is the intersection angle of the direction in which the polarization plane propagates (180°-01-02)
This is the intersection angle on the opposite side.

ここでtよ、偏光板の偏光軸が基板近傍における液晶分
子の長軸方向と直角寄シ(上貼り)に位置づけられてい
るが、この他に液晶分子の長軸方向と平行寄り(11貼
り)に位置づける方法がある。この2つの偏光板の貼付
方法について5enseこのようにした場合、本発明で
は46゜≦ψ1.ψ2≦60°とされ、180°≦ψl
+ψ2十θ1+θ2≦210°とされる。
Here, at t, the polarization axis of the polarizing plate is positioned perpendicular to the long axis direction of the liquid crystal molecules near the substrate (top layer), but in addition to this, the polarization axis of the polarizer is positioned parallel to the long axis direction of the liquid crystal molecules (11 points). ) There is a way to position it. Regarding the method of attaching these two polarizing plates, if 5ense is used in this way, in the present invention, 46°≦ψ1. ψ2≦60°, 180°≦ψl
+ψ20θ1+θ2≦210°.

これはψl、ψ2は45°未満の方向への変化ではマル
チプレックス性が低下するため46゜以上とされ、60
°を越えると駆動電圧が上昇するため同一電圧ではコン
トラストの低下が著しくなるためψ1.ψ2は、46°
≦ψl、ψ2≦60°とされる。
This is because ψl and ψ2 are set to be 46° or more because the multiplex property decreases if the change is less than 45°, and 60°
ψ1. ψ2 is 46°
≦ψl, ψ2≦60°.

又、θ1.θ、は△θ−ψ1+ψ2−(180°−01
−θ2)でみた場合Δθ−Ω〜60°の範囲′J′! 内が良く、口°番 の方向への回転はマルチプレックス
特i生が低下するため好ましくなく、1〜50°回転さ
せることが好−ましく、この範囲内に最適値が存在する
Also, θ1. θ, is △θ−ψ1+ψ2−(180°−01
-θ2), the range 'J' from Δθ-Ω to 60°! Rotation in the direction of the opening number is not preferable because the multiplex characteristic deteriorates, and it is preferable to rotate it by 1 to 50 degrees, and the optimum value exists within this range.

観察者方向と明視方向を一致させるためにはθl−θ2
.ψl=ψ2とすることが好ましい。このようにθ1=
θ2.ψl−ψ2 とすると観察者方向が明視方向と一
致し、観察者側から見た場合最も見易くかつ左右へ観察
者が移動しても急減に表示コントラストが低下するよう
なことがない。
In order to match the observer direction and the clear vision direction, θl−θ2
.. It is preferable that ψl=ψ2. In this way, θ1=
θ2. When ψl - ψ2, the viewer's direction coincides with the clear vision direction, and the display contrast is most easily seen when viewed from the viewer's side, and the display contrast does not suddenly decrease even if the viewer moves from side to side.

以上の定義のもとに実施例を示す。第1表は上貼りの条
件のもとに液晶分子のねじれ角を変えて特性の変化を調
べたものである。実施例におけるネマチック型液晶は、 より構成される。′また液晶分子の初期配向方向の交差
角が大きくなると液晶分子V1交差角の小さい方へねじ
扛で逆配向するので、これを防止するためコレステリッ
ク液晶を添加して、あらかじめ所望の方向へ液晶分子を
゛回転しておき、実質上80°の交差角と同尋になるよ
うにし/こ。
Examples will be shown based on the above definitions. Table 1 shows the results of examining changes in properties by changing the twist angle of liquid crystal molecules under overlaying conditions. The nematic liquid crystal in the example is composed of: 'Furthermore, when the intersection angle of the initial alignment direction of the liquid crystal molecules becomes large, the liquid crystal molecules are reversely oriented in the direction of the smaller V1 intersection angle by screwing, so to prevent this, cholesteric liquid crystal is added and the liquid crystal molecules are aligned in advance in the desired direction. Rotate it so that it is essentially the same angle as the 80° intersection angle.

即ちコレステリック7i′j晶の碌加によるピッチ会P
(μlI])、セルギャップをd(μm)、初期配向の
交差角をψ1+ψz(aeg)  とすると(1/P 
X 360 ”::−9’s −+−t12−80即ち
 P″ニー□□ μm ψ1+ψ2−80 となるように、コレステリック液晶を添加し/(。
In other words, the pitch meeting P due to the addition of cholesteric 7i'j crystals
(μlI]), the cell gap is d (μm), and the intersection angle of the initial orientation is ψ1+ψz (aeg), then (1/P
Cholesteric liquid crystal is added so that X 360"::-9's -+-t12-80, that is, P"knee □□ μm ψ1+ψ2-80/(.

実施例1けψl−ψ2=55°とし1、△θ−0゜とし
た例であり、実施シリ2 kJ’、 9’を一ψ2−5
5゜0°の例である。
Example 1 This is an example in which ψl-ψ2 = 55° and 1, △θ-0°.
This is an example of 5°0°.

ここで△θは液晶分子のねじれ角(ψ!十ψ2)と、光
が液晶セル内を伝搬していくときに偏光面が回転する角
度(180°−θl−02)の差で△θ−(ψ1+ψ2
)−(180°−θl−θ2)である。
Here, △θ is the difference between the twist angle of the liquid crystal molecules (ψ! + ψ2) and the angle at which the plane of polarization rotates (180° - θl - 02) when light propagates inside the liquid crystal cell. (ψ1+ψ2
)-(180°-θl-θ2).

2411表 第1表中M85G *  M890 +  Mqlll
  はマトリックス駆動の目安となるパラメーターで、
萌二者が立ち上り特性の急峻性、三番目が視角依存性を
示し、 MBso ” Vso (θ−10°)/ Vso (
θ−10°)M日90− Vso (θ;10°)/V
+o(θ=10°)’q1o −Vso (θ−40°
)/ V2O(θ−10°)で定義しである。また0は
液晶セルの法線方向から明視方向へ測った角度、Vll
l) l vso + Vlllはそれぞれ相対輝度が
90チ、50%、10%となる電圧である。
2411 Table 1 M85G * M890 + Mqllll
is a parameter that serves as a guideline for matrix drive,
The second one shows the steepness of the rise characteristic, and the third one shows the viewing angle dependence.
θ-10°) M day 90- Vso (θ; 10°)/V
+o (θ=10°)'q1o −Vso (θ−40°
)/V2O(θ-10°). Also, 0 is the angle measured from the normal direction of the liquid crystal cell to the clear viewing direction, Vll
l) l vso + Vllll are the voltages at which the relative brightness is 90ch, 50%, and 10%, respectively.

液晶分子のねじノを角を92°より大きくするとMo5
(1、Msg。及びMqto tまほぼ増加傾向を示し
、その結果Ma5(1・MqIO及びMUeo ” M
qtoもit ti増加傾向を示した。その代表例とし
て比較例(ψ1=ψ2−45°、Δθ−0°)と実施例
1(ψ1−ψ2−55°、△θ=0°)を第1表に示す
が、その差は明白であった1、しかしψl十ψ2が12
0゜を越えると、コントラストが急に低下する傾向かあ
った。
If the angle of the screw of the liquid crystal molecule is larger than 92°, Mo5
(1, Msg. and Mqto t showed an almost increasing trend, and as a result, Ma5 (1.
qto also showed an increasing trend of it ti. As typical examples, Comparative Example (ψ1=ψ2-45°, Δθ-0°) and Example 1 (ψ1-ψ2-55°, Δθ=0°) are shown in Table 1, and the difference is obvious. There was 1, but ψl + ψ2 was 12
When the angle exceeded 0°, there was a tendency for the contrast to suddenly decrease.

この実施例1では、比較例に比してMo2(1゜M2B
5及びMqto  のいずnもが大きくな9.その結果
M85(1・M(1+o及びMBso ” M(1+o
  が増大して優れたマルチプレックス性を示した。
In this Example 1, Mo2 (1°M2B
9. Both n of 5 and Mqto are large. As a result, M85(1・M(1+o and MBso ” M(1+o
was increased and showed excellent multiplexability.

この実施例1とは逆に、ψ1+ψ2を90″未満とした
場合には、マルチプレックス特性tま低下した。
Contrary to this Example 1, when ψ1+ψ2 was less than 90'', the multiplex characteristic t deteriorated.

又、液晶分子のねじれ角ψ1+ψ2を92−120°と
するとともに、Δθ即ψ1+ψ1+θ1+θ2−180
°fro’から30°の範囲内で変化させることにより
、さらにマルチプレックス特性が向上した。これは実施
例2と実施例1の比較からも明らかであり、実施例2は
ψ1−ψ2−55゛ とし、θ皿−〇、−45°とした
例でろり△θ−20°となり、偏光軸の回転とともにM
 qr oが増加し、 Mo56及びMsg6 の若干
の低下にもかかわらずMa2O−Mqto及びMemo
 ”Mqto Vi増加し、マルチプレックス性は向上
した。ただ[7゜この△θは0〜60°の範囲内で通常
このマルチプレックス性が最良となる点を有するため液
晶劇料、ψ等により実験により最適値を求めCば良い。
Also, the twist angle ψ1+ψ2 of the liquid crystal molecules is 92-120°, and Δθ is ψ1+ψ1+θ1+θ2-180.
By changing the angle within a range of 30° from °fro', the multiplex characteristics were further improved. This is clear from the comparison between Example 2 and Example 1. In Example 2, the angle was ψ1-ψ2-55゛, and in the example with the θ plate -〇, -45°, the fillet was △θ-20°, and the polarization was M as the axis rotates
Ma2O-Mqto and Memo increased despite an increase in qro and a slight decrease in Mo56 and Msg6.
``Mqto Vi increased, and the multiplex property improved.However, [7°] This △θ usually has a point where the multiplex property is best within the range of 0 to 60°, so experiments using liquid crystal material, ψ, etc. It is sufficient to find the optimum value using C.

この△θも実施例2の方向と逆、即ちΔθ〈0°の方向
への回転はマルチプレックス性を低下させた。
Rotation of this Δθ in the direction opposite to that of Example 2, that is, in the direction of Δθ<0°, deteriorated the multiplex property.

又、液晶分子のねじれ角町十ψ2T&:11 U’以外
とし7’(場合も△θを0〜30°変化させることyc
より実施例2と同様な結果が得られた。
In addition, if the twist angle of the liquid crystal molecules is 1ψ2T&:11 other than 7' (also change △θ by 0 to 30°yc
Results similar to those in Example 2 were obtained.

以上のように本発明においては、液晶分子のねじれ角を
大きくし、偏光板の回転角を大きくするほどマルチプレ
ックス性は向上するが、あまり液晶分子のねじfL角を
大きくするとコントラストが低下する。またあまり偏光
板を回転して△θを大きくすると、偏光軸と液晶分子の
長軸方向が直角よυ大きくずれるためリターデーション
による背駿着色が目立つようになると共に角度依存性も
低下してくる。そこでこれらについて検討を行った結果
、液晶分子のねじれ角については 46°<tpl、  ψ2<、60゜ また偏光板の回転角についてはu O<Δθ〈60゜で
あることを見い出した。
As described above, in the present invention, as the twist angle of the liquid crystal molecules is increased and the rotation angle of the polarizing plate is increased, the multiplex property is improved, but if the screw angle fL of the liquid crystal molecules is increased too much, the contrast deteriorates. Furthermore, if the polarizing plate is rotated too much to increase △θ, the polarization axis and the long axis direction of the liquid crystal molecules will deviate from the right angle by a large amount, which will make back coloring due to retardation noticeable and the angle dependence will also decrease. . As a result of studying these, it was found that the twist angle of the liquid crystal molecules is 46°<tpl, ψ2<60°, and the rotation angle of the polarizing plate is uO<Δθ<60°.

また、液晶の屈折率異方性Δnとセルギャップd(μm
)との積△n−dはマルチプレックス駆動時に光学的に
大きな影響を与えるパンメーターであるが、本発明にお
いてはとのΔn・dが0.5〜0.7μmにおいて特に
すぐれた効果が児い出された。即ち、Δn−dがこの範
囲のセルFj背景色的にも許容できる色相であシかつ、
偏光軸を大きく回転した場合に△n−dが1μm以上の
セルにおいて電圧閾値付近で起こる干渉による着色が兄
えにくい特長がある。このため、本発明の効果を最大限
に利用でき、従来△n−d;di(15〜0.7μmの
セルにおいて欠点であった光学的特性の急峻性の欠如が
容易に改善できる。
In addition, the refractive index anisotropy Δn of the liquid crystal and the cell gap d (μm
) is a pan meter that has a large optical effect during multiplex drive, but in the present invention, a particularly excellent effect is obtained when Δn・d is 0.5 to 0.7 μm. I was taken out. That is, Δn−d is a hue that is acceptable also in terms of the background color of cell Fj in this range, and
It has the advantage that when the polarization axis is largely rotated, coloring due to interference that occurs near the voltage threshold in a cell where Δn-d is 1 μm or more is difficult to increase. Therefore, the effects of the present invention can be utilized to the fullest, and the lack of steepness in optical characteristics, which was a drawback in conventional cells of Δn-d;di (15 to 0.7 μm), can be easily improved.

以上のように、本発明はTN型液晶セルにおいて液晶分
子のねじれ角?従来の90°よシも太きくし、かつ液晶
セルの上下に貼付する偏光板の偏光軸を適当な方向に回
転することによシ、すぐれたマルチプレックス特性が得
られるものである。
As described above, the present invention is based on the twist angle of liquid crystal molecules in a TN type liquid crystal cell. Excellent multiplex characteristics can be obtained by making the comb wider than the conventional 90° angle and by rotating the polarizing axes of the polarizing plates attached above and below the liquid crystal cell in an appropriate direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:TN型液晶衣示装イuの断面図。 第2図:液晶分子及び偏光軸との位置関係を示す模式図
。 IA、IB:基板 2A、2B:透明電極 6に、6B:偏光板
FIG. 1: A cross-sectional view of a TN type liquid crystal display device. Figure 2: Schematic diagram showing the positional relationship between liquid crystal molecules and the polarization axis. IA, IB: Substrate 2A, 2B: Transparent electrode 6, 6B: Polarizing plate

Claims (1)

【特許請求の範囲】 イストネマナツク型液晶表示装置において、観察者方向
から見た初期配向方位ψ1.ψ2が46°≦ψ重+ t
p2≦60°で弗シ、偏光板の偏光軸の交角の内側光面
が伝搬していく交角でない交角をθl+02 としたと
き、180゜≦91−■−ψλ+θl+θ2≦210°
あることを特徴とするツイストネマチック型液晶表示装
置。 (2)  ネマナツク液晶の屈折率異方性△nと液晶セ
ルのギャップa(pm)との積△n−dが、α5≦Δn
−a≦α7μmであることを特徴とする特許請求の範囲
第1項記載のツイストネマチック型液晶表示装置。 (3)181’≦ψ1+ψ2+θl+θ2≦210° 
であることを特徴とする特許纏^求の範囲第1項記載の
ツイストネマチック型液晶表示装置。
[Claims] In an istnemanac type liquid crystal display device, an initial alignment direction ψ1. ψ2 is 46°≦ψweight+t
When p2≦60°, the intersecting angle that is not the intersecting angle at which the inner optical surface of the intersecting angle of the polarization axes of the polarizing plate propagates is θl+02, then 180°≦91−■−ψλ+θl+θ2≦210°
A twisted nematic liquid crystal display device characterized by: (2) The product △n-d of the refractive index anisotropy △n of the Nemanak liquid crystal and the gap a (pm) of the liquid crystal cell is α5≦Δn
The twisted nematic liquid crystal display device according to claim 1, characterized in that -a≦α7 μm. (3) 181'≦ψ1+ψ2+θl+θ2≦210°
A twisted nematic liquid crystal display device according to item 1 of the claimed patent application, characterized in that:
JP57149861A 1982-08-31 1982-08-31 Twisted nematic type liquid crystal display device Pending JPS5940623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57149861A JPS5940623A (en) 1982-08-31 1982-08-31 Twisted nematic type liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149861A JPS5940623A (en) 1982-08-31 1982-08-31 Twisted nematic type liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS5940623A true JPS5940623A (en) 1984-03-06

Family

ID=15484251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149861A Pending JPS5940623A (en) 1982-08-31 1982-08-31 Twisted nematic type liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS5940623A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105527A (en) * 1984-10-30 1986-05-23 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPS62279315A (en) * 1986-05-28 1987-12-04 Ricoh Co Ltd Liquid crystal display element
JPS6374030A (en) * 1986-09-12 1988-04-04 エフ ホフマン―ラ ロシュ アーゲー Liquid crystal display
US5479281A (en) * 1992-05-15 1995-12-26 Gec-Marconi Limited Display devices
US8007184B2 (en) 2004-11-24 2011-08-30 Nsk Ltd. Self-aligning roller bearing with retainer and manufacturing method for self-aligning roller bearing retainer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249854A (en) * 1975-10-17 1977-04-21 Seiko Epson Corp Liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249854A (en) * 1975-10-17 1977-04-21 Seiko Epson Corp Liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105527A (en) * 1984-10-30 1986-05-23 Matsushita Electric Ind Co Ltd Liquid crystal display device
JPS62279315A (en) * 1986-05-28 1987-12-04 Ricoh Co Ltd Liquid crystal display element
JPS6374030A (en) * 1986-09-12 1988-04-04 エフ ホフマン―ラ ロシュ アーゲー Liquid crystal display
US5479281A (en) * 1992-05-15 1995-12-26 Gec-Marconi Limited Display devices
US8007184B2 (en) 2004-11-24 2011-08-30 Nsk Ltd. Self-aligning roller bearing with retainer and manufacturing method for self-aligning roller bearing retainer

Similar Documents

Publication Publication Date Title
JP5767687B2 (en) Liquid crystal display device and manufacturing method thereof
US20010048501A1 (en) Fringe field switching mode liquid crystal display
JP2546898B2 (en) Liquid crystal display
JPS5940623A (en) Twisted nematic type liquid crystal display device
JPS6052827A (en) Liquid crystal display element
JPS62279315A (en) Liquid crystal display element
JPS58143319A (en) Liquid crystal display element
JPS6073525A (en) Liquid crystal display element
JP2522647B2 (en) Polarization conversion element
JPS62163015A (en) Liquid crystal display element
JP2008003512A (en) Liquid crystal display element
JPS6145229A (en) Liquid-crystal display element
JPH095754A (en) Liquid crystal display element
JPS6410814B2 (en)
JPH01147430A (en) Liquid crystal display element
JPS62145215A (en) Liquid crystal display element
JPH07301794A (en) Liquid crystal display device
JPH0440411A (en) Liquid crystal display element
JPH0273327A (en) Liquid crystal display element
JP2567820B2 (en) Liquid crystal display
JP2673533B2 (en) Liquid crystal display device
JPS59116725A (en) Liquid-crystal display element
JP2008275736A (en) Liquid crystal display device
JPS62222218A (en) Liquid crystal display element
JPS62287225A (en) Liquid crystal optical switch device