JPS5940577B2 - Method for producing machining fluid for electrical machining - Google Patents

Method for producing machining fluid for electrical machining

Info

Publication number
JPS5940577B2
JPS5940577B2 JP14250477A JP14250477A JPS5940577B2 JP S5940577 B2 JPS5940577 B2 JP S5940577B2 JP 14250477 A JP14250477 A JP 14250477A JP 14250477 A JP14250477 A JP 14250477A JP S5940577 B2 JPS5940577 B2 JP S5940577B2
Authority
JP
Japan
Prior art keywords
producing
working fluid
conductivity
electrical machining
machining according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14250477A
Other languages
Japanese (ja)
Other versions
JPS5475440A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP14250477A priority Critical patent/JPS5940577B2/en
Priority to GB7845826A priority patent/GB2009242B/en
Priority to FR7833559A priority patent/FR2409815A1/en
Priority to DE19782851482 priority patent/DE2851482A1/en
Publication of JPS5475440A publication Critical patent/JPS5475440A/en
Priority to US06/540,700 priority patent/US4584450A/en
Publication of JPS5940577B2 publication Critical patent/JPS5940577B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/08Working media

Description

【発明の詳細な説明】 本発明は放電加工、ワイヤーカット、放電々解加工、電
解加工、電解研削加工等の電極と被加工体間に加工液を
介在させて通電することにより加工する電気加工に使用
する加工液の製造方法に係る。
Detailed Description of the Invention The present invention is applicable to electric discharge machining, wire cutting, galvanic discharge machining, electrolytic machining, electrolytic grinding, etc., in which machining fluid is interposed between an electrode and a workpiece and electrical current is applied thereto. The invention relates to a method for producing machining fluid used for.

電気加工用液として水を主体とする場合に、通常は水道
水を使用する。
When using water as the main fluid for electrical processing, tap water is usually used.

電解加工する場合は水道水に電解質を混合し、またワイ
ヤーカット等の放電加工する場合はイオン交換樹脂によ
り予定する比抵抗、通常103〜104Ωcm程度に処
理して加工液とするが、このような加工液で銅、鉄、ア
ルミニューム等を加工すると被加工体表面に極めて大き
なエツチピツトを生ずる。この点に関して本発明者は種
々実験したところによると加工液中のクロールイオン(
Cf)が原因していることが判明した。
When performing electrolytic machining, an electrolyte is mixed with tap water, and when performing electric discharge machining such as wire cutting, the machining fluid is treated with an ion exchange resin to a desired specific resistance, usually around 103 to 104 Ωcm. When processing copper, iron, aluminum, etc. with processing fluid, extremely large etch pits are produced on the surface of the workpiece. Regarding this point, the inventor conducted various experiments and found that chloride ions (
Cf) was found to be the cause.

クロールイオンは腐食電位が高いために大きいエツチピ
ツトが生ずるものである。本発明は加工液中からこのよ
うなクロールイオン、クロールイオン発生の塩素を除去
するために提案されたもので、先づ水道水等の原水をイ
オン交換体により処理する。
Chlorine ions have a high corrosion potential and therefore produce large etching pits. The present invention has been proposed to remove such chlorine ions and chlorine generated by chlorine ions from the processing fluid, and first, raw water such as tap water is treated with an ion exchanger.

使用するイオン交換体はアニオン交換体、またはアニオ
ン交換体を主体とするイオン交換体を使用して処理し、
比抵抗を少なくとも105ΩCm以上に処理する。この
ように処理することによつて水中からクロールイオンを
除去し、そのイオン濃度を充分低下させることができる
。通常1ppm以下にすることができる。次にこのよう
にして処理された水に対して塩素イオン以外の電導度調
整剤を混合し、混合量を制御して用途に応じた電気電導
度にする。ワイヤーカツト放電加工用では103〜10
4Ωc禮度、電解加工用では10−2〜10−3Ωc禮
度に調整する。混合する電導度調整剤としてはNO3,
SO4,CO3,PO4,CH3CO2,COOH等の
酸基類、KOH,NaOH,Ca(0H)2,NH4(
0H)等の塩基類が無毒で且つ安価でろる。また電解加
工用液を造る場合は従来使用されているKNO3,KN
O2,NaNO3,NaNO2,NaCO3,Na2S
O4等の塩類を用いる。
The ion exchanger used is an anion exchanger or an ion exchanger mainly composed of anion exchangers.
Treat the specific resistance to at least 105ΩCm or higher. By treating in this manner, chlorine ions can be removed from water and the ion concentration can be sufficiently reduced. Usually, it can be reduced to 1 ppm or less. Next, a conductivity modifier other than chlorine ions is mixed with the water treated in this manner, and the amount of the mixture is controlled to adjust the conductivity to suit the application. 103-10 for wire cut electric discharge machining
It is adjusted to 4 Ωc fragility, and for electrolytic processing to 10-2 to 10-3 Ωc frugality. The conductivity modifier to be mixed is NO3,
Acid groups such as SO4, CO3, PO4, CH3CO2, COOH, KOH, NaOH, Ca(0H)2, NH4(
Bases such as OH) are non-toxic and inexpensive. In addition, when making electrolytic processing fluid, the conventionally used KNO3, KN
O2, NaNO3, NaNO2, NaCO3, Na2S
Use salts such as O4.

また前記電導調整剤に加えて防錆剤(表面界活性剤を含
む)を混合することが好ましい。
Moreover, it is preferable to mix a rust preventive agent (including a surface surfactant) in addition to the conductivity regulator.

イオン交換体にはイオン交換樹脂、イオン交換膜、イオ
ン交換紙、イオン交換繊維、イオン交換液及び無機イオ
ン交換体等があるがいずれでもよく、その内のアニオン
交換体を主として利用する。
Ion exchangers include ion exchange resins, ion exchange membranes, ion exchange paper, ion exchange fibers, ion exchange liquids, and inorganic ion exchangers, and any of them may be used, and among these, anion exchangers are mainly used.

勿論カチオン交換体の混合体を用いることもできる。実
施例を説明すれば、アニオン交換膜を使用して水道水を
処理し、比抵抗5×105ΩCmに処理した。
Of course, mixtures of cation exchangers can also be used. To explain an example, tap water was treated using an anion exchange membrane to have a specific resistance of 5×10 5 ΩCm.

そしてこれを利用してワイヤーカツト放電加工用液を作
るとき、防錆剤(界面活性剤)としてSOrbitOl
CH2OH(CHOH)4CH20Hを1(fl)とラ
ウリル脂肪族を0.01%を混合し、更に電導度調整剤
としてNaOHを混合し、液抵抗値を1×104Ω傭に
調整した。ワイヤーカツト放電加工はSK8材の6W!
L厚さの板材を力旺した。ワイヤーには0.2rIL7
!LφのCu線電極を使用し、加工送り速度5m7IL
/Mmで加工した。加工部分より約2.5rILmの位
置のエツチピツト数は1mm当り2個程度で、従来通常
811程度ピツトが生じていたのに比較して極めて少な
くできた。従来水道水をイオン交換処理するとき、通常
はアニオン交換樹脂とカチオン交換樹脂を半々程度混合
して用い、イオン交換処理して予定する導電度の、例え
ば前記ワイヤーカツトの場合1×104ΩCmの抵抗値
に調整して加工液としていたものであるから、イオン交
換処理しても水道水中の塩素イオンはあまり除去されず
、高濃度のクロールイオンが残留していた。
When using this to make wire cut electrical discharge machining fluid, SOrbitOl is used as a rust preventive agent (surfactant).
1 (fl) of CH2OH(CHOH)4CH20H and 0.01% of lauryl aliphatic were mixed, and NaOH was further mixed as a conductivity adjusting agent to adjust the liquid resistance value to 1×10 4 Ω. Wire cut electrical discharge machining with 6W of SK8 material!
Made of L-thick board material. 0.2rIL7 for the wire
! Using Lφ Cu wire electrode, machining feed rate 5m7IL
/Mm. The number of etching pits at a position approximately 2.5rILm from the processed part was about 2 per 1 mm, which was extremely small compared to the conventional method, which usually had about 811 pits. Conventionally, when tap water is subjected to ion exchange treatment, an anion exchange resin and a cation exchange resin are usually used in a half-and-half mixture, and the planned conductivity of the ion exchange treatment is, for example, a resistance value of 1 x 104 ΩCm in the case of the above-mentioned wire cut. Since the processing fluid had been prepared by adjusting the chlorine ion to 100%, the chlorine ions in the tap water were not significantly removed even after the ion exchange treatment, and a high concentration of chlorine ions remained.

したがつてこの従来法により処理された加工液(水)で
は前記したようにエツチピツト数が増大していたが、本
発明では原水の水道水をイオン交換体、それも主として
アニオン交換体を使用して処理し、加工用液として使用
最適とする液抵抗よりもずつと高抵抗値になるまで処理
し、実質的にクロールイオンが残留しないように、クロ
ールイオン濃度を充分に下げ、少なくとも1ppm以下
に処理し、この処理水を用いて電導調整剤を混合して所
要の液抵抗、前記ワイヤーカツト用の場合は104ΩC
mに調整して使用するものでろるから、この加工液中に
はクロールイオンが混合することなく加工でき前記エツ
チピツトを減少させることができる。ワイヤーカツトの
加工は液抵抗が従来のものと同程度に調整されているこ
とによつて、放電は安定して発生し加工スピードが低下
することなく、能率の良い加工を可能ならしめる。また
電動度調整剤とともに防錆剤、表面活性剤を混合したこ
とによつて電導度調整剤は水に良く混合し、また加工面
に吸着して表面を保護するから加工面に錆の発生を防止
し水加工液による加工が安定して行なえる効果がある。
Therefore, processing fluid (water) treated by this conventional method has an increased number of etch pits as described above, but in the present invention, the raw tap water is treated with an ion exchanger, mainly an anion exchanger. The solution is treated until the resistance value gradually becomes higher than the optimum liquid resistance for use as a processing fluid, and the concentration of chloride ions is sufficiently lowered to at least 1 ppm or less so that substantially no chloride ions remain. The treated water is mixed with a conductivity regulator to obtain the required liquid resistance, 104ΩC for the wire cut.
Since the processing fluid can be adjusted to m, processing can be carried out without mixing chlorine ions into the processing liquid, and the etch pits can be reduced. When machining wire cuts, the liquid resistance is adjusted to the same level as conventional ones, so electric discharge occurs stably and machining speed is not reduced, making it possible to perform efficient machining. In addition, by mixing the conductivity modifier with a rust preventive agent and a surfactant, the conductivity modifier mixes well with water and adsorbs to the machined surface to protect the surface, preventing rust from forming on the machined surface. This has the effect of preventing this and allowing stable machining using water machining fluids.

な於以上はワイヤーカツト放電加工をする場合の加工液
について説明したが、電解加工、電解研削加工用の加工
液を作るときは、イオン交換処理によつてクロールイオ
ンを充分除去した処理水に電導度調整剤としてKNO3
,KNO2,NaNO2,NaNO2,Na2cO3,
Na2sO4等の塩類を混合し、最終液抵抗を10−3
Ωc禮度にすればよい。
The above has explained the machining fluid used in wire cut electrical discharge machining, but when making machining fluid for electrolytic machining and electrolytic grinding, it is necessary to use treated water that has sufficiently removed chlorine ions through ion exchange treatment to conduct electricity. KNO3 as a degree adjuster
, KNO2, NaNO2, NaNO2, Na2cO3,
Mix salts such as Na2sO4 and make the final liquid resistance 10-3.
It is enough to set it to Ωc felicity.

Claims (1)

【特許請求の範囲】 1 原水をイオン交換体により比抵抗を少なくとも10
^5Ωcm以上に処理し、該処理水に塩素イオンを含ま
ない電導度調整剤を混合し、混合量を制御して用途に応
じた電気電導度にすることを特徴とする電気加工用加工
液の製造方法。 2 原水をイオン交換体により比抵抗を少なくとも10
^5Ωcm以上に処理し、該処理水に防錆剤(表面活性
剤を含む)と共に塩素イオンを含まない電導度調整剤を
混合し、混合量を制御して用途に応じた電気電導度にす
ることを特徴とする電気加工用加工液の製造方法。 3 イオン交換体として、アニオン交換体を使用する特
許請求の範囲第1項に記載の電気加工用加工液の製造方
法。 4 イオン交換体として、アニオン交換体を主体とする
イオン交換体を使用する特許請求の範囲第1項に記載の
電気加工用加工液の製造方法。 5 イオン交換体として、アニオン交換体を使用する特
許請求の範囲第2項に記載の電気加工用加工液の製造方
法。 6 イオン交換体として、アニオン交換体を主体とする
イオン交換体を使用する特許請求の範囲第2項に記載の
電気加工用加工液の製造方法。 7 電導度調整剤として、NO_3、SO_4、CO_
3、PO_4、CH_3CO_2等の酸基類を用いる特
許請求の範囲第1項に記載の電気加工用加工液の製造方
法。 8 電導度調整剤として、KOH、NaOH、Ca(O
H)_2、NH_4(OH)等の塩基類を用いる特許請
求の範囲第1項に記載の電気加工用加工液の製造方法。 9 電導度調整剤として、NO_3、SO_4、CO_
3、PO_4、CH_3CO_2等の酸基類を用いる特
許請求の範囲第2項に記載の電気加工用加工液の製造方
法。 10 電導度調整剤として、KOH、NaOH、Ca(
OH)_2、NH_4(OH)等の塩基類を用いる特許
請求の範囲第2項に記載の電気加工用加工液の製造方法
。 11 電導度調整剤として、KNO_3、KNO_2、
NaNO_3、NaNO_2、Na_2CO_3、Na
_2SO_4等の塩類を用いる特許請求の範囲第1項に
記載の電気加工用加工液の製造方法。 12 電導度調整剤として、KNO_3、KNO_2、
NaNO_3、NaNO_2、Na_2CO_3、Na
_2SO_4等の塩類を用いる特許請求の範囲第2項に
記載の電気加工用加工液の製造方法。
[Claims] 1. Raw water is treated with an ion exchanger to reduce the specific resistance to at least 10.
A working fluid for electrical machining that is treated to have a conductivity of 5 Ωcm or higher, mixed with a conductivity regulator that does not contain chlorine ions, and controlled in the amount of the treated water to adjust the conductivity to suit the application. Production method. 2. Raise the specific resistance of raw water to at least 10 using an ion exchanger.
^ Treated to 5Ωcm or more, and mixed a conductivity regulator that does not contain chlorine ions with a rust preventive agent (including a surfactant) into the treated water, and control the amount of the mixture to adjust the conductivity according to the application. A method for producing a machining fluid for electrical machining, characterized in that: 3. The method for producing a working fluid for electrical machining according to claim 1, wherein an anion exchanger is used as the ion exchanger. 4. The method for producing a working fluid for electrical machining according to claim 1, wherein an ion exchanger mainly consisting of an anion exchanger is used as the ion exchanger. 5. The method for producing a working fluid for electrical machining according to claim 2, wherein an anion exchanger is used as the ion exchanger. 6. The method for producing a working fluid for electrical machining according to claim 2, wherein an ion exchanger mainly consisting of an anion exchanger is used as the ion exchanger. 7 As conductivity regulators, NO_3, SO_4, CO_
3. The method for producing a working fluid for electrical machining according to claim 1, using acid groups such as PO_4 and CH_3CO_2. 8 KOH, NaOH, Ca(O
H) The method for producing a working fluid for electrical machining according to claim 1, using bases such as _2 and NH_4 (OH). 9 As conductivity regulators, NO_3, SO_4, CO_
3. The method for producing a working fluid for electrical machining according to claim 2, which uses acid groups such as PO_4 and CH_3CO_2. 10 KOH, NaOH, Ca(
The method for producing a working fluid for electrical machining according to claim 2, which uses bases such as OH)_2 and NH_4(OH). 11 As conductivity regulators, KNO_3, KNO_2,
NaNO_3, NaNO_2, Na_2CO_3, Na
The method for producing a working fluid for electrical machining according to claim 1, which uses salts such as _2SO_4. 12 As conductivity regulators, KNO_3, KNO_2,
NaNO_3, NaNO_2, Na_2CO_3, Na
The method for producing a working fluid for electrical machining according to claim 2, which uses salts such as _2SO_4.
JP14250477A 1977-11-28 1977-11-28 Method for producing machining fluid for electrical machining Expired JPS5940577B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14250477A JPS5940577B2 (en) 1977-11-28 1977-11-28 Method for producing machining fluid for electrical machining
GB7845826A GB2009242B (en) 1977-11-28 1978-11-23 Electroerosion machining
FR7833559A FR2409815A1 (en) 1977-11-28 1978-11-28 PROCESS AND APPARATUS FOR PREPARING ELECTRO-EROSION MACHINING LIQUID
DE19782851482 DE2851482A1 (en) 1977-11-28 1978-11-28 METHOD AND DEVICE FOR PREPARING A WORKING FLUID FOR ELECTROCHEMICAL EROSION
US06/540,700 US4584450A (en) 1977-11-28 1983-10-11 Method of preparing a machining fluid for electroerosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14250477A JPS5940577B2 (en) 1977-11-28 1977-11-28 Method for producing machining fluid for electrical machining

Publications (2)

Publication Number Publication Date
JPS5475440A JPS5475440A (en) 1979-06-16
JPS5940577B2 true JPS5940577B2 (en) 1984-10-01

Family

ID=15316869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14250477A Expired JPS5940577B2 (en) 1977-11-28 1977-11-28 Method for producing machining fluid for electrical machining

Country Status (1)

Country Link
JP (1) JPS5940577B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2513473B2 (en) * 1986-10-16 1996-07-03 株式会社ソディック Machining fluid for electrical discharge machining
CN100537101C (en) * 2005-05-23 2009-09-09 三菱电机株式会社 Machining liquid quality control device and method, and electro-discharge machining device
CN113399766B (en) * 2021-06-02 2022-06-14 贵州大学 Test method of electrolyte for high-speed steel roll material electrolytic grinding

Also Published As

Publication number Publication date
JPS5475440A (en) 1979-06-16

Similar Documents

Publication Publication Date Title
US4584450A (en) Method of preparing a machining fluid for electroerosion
US4189381A (en) Waste water treatment
KR20060070488A (en) Boron separation and recovery
KR101053291B1 (en) Liquid control method, liquid control device and discharge processing device using the same
US5143645A (en) Method for suppressing process dust emissions using a salt of a fatty acid as a foaming agent
US4219416A (en) Process for recovering molybdenum and tungsten from mining wastewater
CN115038822A (en) Solid electrolyte for dry electropolishing of metals with active moderator
CN105923853A (en) Process for preparing phosphoric acid and alkali from phosphate wastewater
JPS5940577B2 (en) Method for producing machining fluid for electrical machining
EP0807457A1 (en) Process for removing selenium from a selenium ion containing liquid
US3669858A (en) Electrochemical machining
JP2003145163A (en) Electric deionization device and electric deionization method
JPS58174286A (en) Treatment of waste water containing heavy metal complex salt
JPS5927299B2 (en) Method and device for controlling machining fluid for electrical machining
US3242062A (en) Fluorine-cuntaining electrolyte for electrolytic cutting of metals
US3357905A (en) Electrolyte composition and method of electrolytically removing stock from workpiece
AU6608586A (en) Process for treating a liquid involving cation exchange and selective removal of nitrate ions from the liquid, and ion exchange resin mixtures suitable for use therein
CA1139080A (en) Stripping and recovery of dichromate in electrolytic chlorate systems
US3630865A (en) Sequestering agents as additives for alkali chlorates
JP3555732B2 (en) Pure water production method
US3401104A (en) Electrochemical machining process and electrolyte composition of chlorides and phosphates
ZOUHAIR12 et al. Modeling and Optimization of water recovery the sludge from beneficiation process of phosphate ore using Experimental Design Methodology
JPS582280B2 (en) Improved electrical machining fluid
JPS6158235B2 (en)
JP2670999B2 (en) Method for recycling and recovering alkaline waste liquid of nitrate