JPS5940575A - Photo driven type semiconductor device - Google Patents

Photo driven type semiconductor device

Info

Publication number
JPS5940575A
JPS5940575A JP57149995A JP14999582A JPS5940575A JP S5940575 A JPS5940575 A JP S5940575A JP 57149995 A JP57149995 A JP 57149995A JP 14999582 A JP14999582 A JP 14999582A JP S5940575 A JPS5940575 A JP S5940575A
Authority
JP
Japan
Prior art keywords
light
light guide
guide
junction
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57149995A
Other languages
Japanese (ja)
Other versions
JPH0468790B2 (en
Inventor
Yoshiaki Tsunoda
角田 良昭
Hideo Matsuda
秀雄 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57149995A priority Critical patent/JPS5940575A/en
Priority to GB08322868A priority patent/GB2127220B/en
Priority to US06/526,807 priority patent/US4695871A/en
Priority to DE19833331451 priority patent/DE3331451A1/en
Publication of JPS5940575A publication Critical patent/JPS5940575A/en
Publication of JPH0468790B2 publication Critical patent/JPH0468790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action

Abstract

PURPOSE:To avoid the break, etc. of a guide without fixing the guide directly on a chip by a method wherein a locating member which transmits and shields light is arranged on the junction, and the guide is passed through the center thereof, when the optical guide is made to oppose to the P-N junction provided in the semiconductor chip. CONSTITUTION:An Si rubber layer 1c is adhered on the semiconductor chip 1 wherein the P-N junction is provided, an aperture is opened by corresponding to the junction, and an optical guide 3 is made opposed thereto. In this constitution, a first locating member 11a in disc form having a fan shaped cut 11c of the center angle at 90 deg.C in order to transmit and shield the light and the second locating member 11b having a fan shaped part 11d which blocks the cut part 11c at the time of rotation are prepared, and the first member 11a is arranged on the rubber layer 1c. Thereafter, the optical guide 3 having an Si rubber 8 at the top end is passed through the centers of the first and second locating members 11a and 11b, and then the transmission and shielding of the light are performed by making the top end rubber 8 abut against the junction surface and thus rotating the member 11b.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は光駆動型半導体装置にかかり、特に高効率で
信頼性の高い光伝送方式の光駆動型半導体装置の構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a light-driven semiconductor device, and more particularly to a structure of a light-driven semiconductor device using a highly efficient and reliable optical transmission method.

〔発明の技術的背景〕[Technical background of the invention]

近年、光トリガツイリスタなど、光信号を制御媒体とし
て光駆動を行なう光駆動型半導体装置が広く用いられる
ようになった。−例の光トリガサイリスタは第1図に示
す構造になっている。すなわち、図における(1)は光
駆動半導体チップ(以降チップと略称)で、その両主面
に形成されたカソード電極層(IC)、アノード電極層
(1a)に夫々圧接するカソード電極(2C)、アノー
ド電極(2a)でカソード、アノードを導出し、カソー
ド側主面のはff中央の光照射域(1g)に4Q号光を
印加することによってサイリスタがトリガされる。前記
信号光を印加するためのライトガイド(3)には光ファ
イバが用いられ、その1端面(3a)が光照射域(1g
)に対接するよう、このl端面に近いライトガイドの側
面の一部が接着剤(4)でチップに固着され、ついでラ
イトガイドは電4へ(2g)に沿ってチップの主面と平
行に外囲器側壁(5)に向けて設けられ、かつ、前記g
t11壁に貫装された管状体(6)の中を通って受光窓
(7)に他主面(3b)が対向する構造となっている。
In recent years, optically driven semiconductor devices such as optically triggered twinristors that perform optical driving using optical signals as a control medium have become widely used. - An example optically triggered thyristor has the structure shown in FIG. That is, (1) in the figure is an optically driven semiconductor chip (hereinafter abbreviated as chip), which has a cathode electrode layer (IC) formed on both main surfaces thereof, and a cathode electrode (2C) that is in pressure contact with the anode electrode layer (1a), respectively. , the cathode and anode are led out by the anode electrode (2a), and the thyristor is triggered by applying No. 4Q light to the light irradiation area (1g) at the center of ff on the main surface on the cathode side. An optical fiber is used as the light guide (3) for applying the signal light, and one end surface (3a) of the light guide (3) has a light irradiation area (1g
), a part of the side surface of the light guide near this end face is fixed to the chip with adhesive (4), and then the light guide is attached to the electrode 4 along (2g) parallel to the main surface of the chip. provided toward the envelope side wall (5), and said g
The other main surface (3b) passes through a tubular body (6) inserted through the t11 wall and faces the light receiving window (7).

寸だ、光トリガサイリスクで第2図に要部が示されるラ
イトガイドがチップ(1)の受光域に1端面(3a)で
接し、ライトガイド1はチップの主面に垂直に上方へ伸
びカンード電極(2c)を貫通した構造がある。、そし
てライトガイドの上記工端面(3a)にライトガイドと
屈折率がほぼ等しく伸縮性のある一例のシリコンゴム(
8)を付着させ、硬粘性液状シリコンで付着させる何者
の際のその表面張力を>r++用してその端面に半球型
に形成している。
The light guide, the main part of which is shown in Figure 2, is in contact with the light-receiving area of the chip (1) at one end surface (3a), and the light guide 1 extends upward perpendicularly to the main surface of the chip. There is a structure that penetrates the canned electrode (2c). , and an example of stretchable silicone rubber (having a refractive index almost equal to that of the light guide) is placed on the end surface (3a) of the light guide.
8) and is formed into a hemispherical shape on the end face by applying the surface tension of the hard and viscous liquid silicone to >r++.

〔背景技術の問題点〕[Problems with background technology]

上記従来の技術によると、チップの狭小な受光域にライ
トガイドの1端面を正確に取着けることがきわめて困難
で、例えば第3図に示す実線のライトガイドの望渣しい
取着位置のときは光伝達面積は(A)で示されるが、こ
れがずれた場合はライトガイドの端面の一部が図の破線
で示される取着位置となり、表面の電極膜上に一部が乗
り上げ光伝達面積が(A’) l/jて示されろものと
なり、前記望捷しい取着位1Nの場合の(A)よりも低
減され光伝達効率が低下する重大な欠点がある。
According to the above-mentioned conventional technology, it is extremely difficult to accurately attach one end surface of the light guide to the narrow light receiving area of the chip. The light transmission area is shown in (A), but if this is shifted, part of the end face of the light guide will be at the attachment position shown by the broken line in the figure, and a part of it will ride on the electrode film on the surface, reducing the light transmission area. (A') l/j, which has the serious drawback that the light transmission efficiency is lower than that of (A) in the case of the desired attachment position 1N.

次に、接着剤を用いて強固に取着けるものでは、ザイリ
スタ本体の作動に伴なって熱的ストレスや機械的のスト
レスによってライトガイドにクラックが入ったり、折れ
たりする。これは主電、極となる銅とガラスの熱膨張係
数の差に基づくもので、その熱歪を長さ50間のライト
ガイドにつき計算すると次のようになる。
Next, in the case where the light guide is firmly attached using an adhesive, the light guide may crack or break due to thermal stress or mechanical stress as the Zyristor main body operates. This is based on the difference in thermal expansion coefficient between copper and glass, which serve as the main electrode and pole, and the thermal strain calculated for a light guide with a length of 50 mm is as follows.

銅の熱膨張率・・・  17 X 10  (deg 
 )ガラスの熱膨張率・・・0.5 X 10  (d
eg  )dl=βJ!、dT(βは熱膨張率)からd
T=1001)にて 1dl=(17xlO−0,5xlO)x50xlo。
Thermal expansion coefficient of copper... 17 x 10 (deg
) Coefficient of thermal expansion of glass...0.5 x 10 (d
eg)dl=βJ! , dT (β is the coefficient of thermal expansion) to d
1dl=(17xlO-0,5xlO)x50xlo at T=1001).

= 0.0825mm 斜上の削算によっても明らかなように大きな歪量となる
= 0.0825mm As is clear from the reduction on the slope, the amount of distortion is large.

〔発明の目的〕[Purpose of the invention]

この発明は上記背景技術の問題点に鑑みてなされた光駆
動型半導体装置の改良構造を提供する。
The present invention provides an improved structure of a light-driven semiconductor device, which has been made in view of the problems of the background art described above.

〔発明の概要〕[Summary of the invention]

この発明は光駆動型半導体装置にかかり、チップを気密
に保持1−たパッケージと、パッケージに半導体素子の
主面に非垂直に信号光を導入する光透過窓と前記半導体
素子主面の受光域との間を折曲して連結するライトガイ
ドと、前記ライトガイドの端面に取着された伸縮性の透
光部材と、嵌合面とこの一部にライトガイドを保持する
開孔を有する一対の定位部材と、定位部材の一方を前記
チップに位置ぎめして同着する定位部材の固着手段と、
受光域に被着された伸縮性の透光部材層とを有し、ライ
トガイドにおけるチップ側の端面の透光部材が前記透光
部材層を介して受光域に接続していることを特徴とする
The present invention relates to a light-driven semiconductor device, and includes a package that airtightly holds a chip, a light transmitting window for introducing signal light non-perpendicularly to the main surface of the semiconductor element, and a light-receiving area on the main surface of the semiconductor element. a pair of light guides that are bent and connected to each other; a stretchable light-transmitting member attached to the end surface of the light guide; and a fitting surface and a hole that holds the light guide in a part of the light guide. a positioning member, and a positioning member fixing means for positioning and attaching one of the positioning members to the chip;
and a stretchable light-transmitting member layer adhered to the light-receiving region, and the light-transmitting member on the chip-side end surface of the light guide is connected to the light-receiving region via the light-transmitting member layer. do.

〔発明の実施例〕[Embodiments of the invention]

以下にこの発明を1実施例の光駆動型づイリスクにつき
図面を参照して背児技術との相違点を詳細に把、明する
Hereinafter, with reference to the drawings, the present invention will be explained in detail with reference to the drawings regarding one embodiment of the light-driven squirrel.

第4図ないし第6図に定位部材による固着方法を示す。4 to 6 show a fixing method using a positioning member.

まず、定位部材Ql)は、第1の定位部材(lla)と
第2の定位部材(llb)とからなる。第1の定位部材
は一例の中心角が90°なる扇形状の大部(llc)を
有する円板、第2の定位部材(]、llbは第1の定位
部材の大部(lie)を充填する扇形部((lid)を
有するとともに、第1の定位部材の円板部分の外周に嵌
合する環状部(lie)を備える。また、両部材の中心
部には嵌合させて円形の開孔(llf)を形成する切欠
(llf’) 、 (llf″)を備える。
First, the localization member Ql) consists of a first localization member (lla) and a second localization member (llb). The first localization member is a disk having a sector-shaped large portion (llc) with a central angle of 90°, and the second localization member (], llb fills the large portion (lie) of the first localization member. It has a fan-shaped part ((lid)) and an annular part (lie) that fits on the outer periphery of the disc part of the first localization member. Notches (llf') and (llf'') forming holes (llf) are provided.

斜上の定位部材はチップの表面に第1の定位部材(ll
a)を第5図に示すように接着剤層(]O1で接着し、
この接着時に開孔(llf)を受光域に正対させる。
The diagonal positioning member is attached to the first positioning member (ll) on the surface of the chip.
a) is bonded with an adhesive layer (]O1 as shown in Fig. 5,
During this bonding, the opening (llf) is made to directly face the light receiving area.

ついでライトガイド(3)の、予め端部に伸縮性の透光
部材の例えばシリコンゴム(6)を付着させたその一方
の端部を開孔に挿入【−1第2の定位部材(llb)を
ライトガイドに挿通させて近づけ嵌合させた状態が第6
図にも示される。
Next, one end of the light guide (3), to which a stretchable transparent member such as silicone rubber (6) has been attached in advance, is inserted into the opening [-1 second localization member (llb)]. The state in which the light guide is inserted into the light guide and fitted close together is the sixth state.
Also shown in the figure.

さらにこの発明は、」二記ライトガイドの端面のシリコ
ンゴム(8)が受光域に接する部分の受光域の表面に被
着さねた屈折率が等しく、伸縮性の透光部材で一例のシ
リコンゴム層DIを介して接続されている。
Furthermore, the present invention provides a stretchable light-transmitting member having an equal refractive index, in which the silicone rubber (8) on the end face of the light guide is adhered to the surface of the light-receiving area at the portion in contact with the light-receiving area. They are connected via a rubber layer DI.

斜上のシリコンゴムは、ぞの附着時に粘液状であるので
その表面張力を利用すれば図示の如く半球状に形成され
るが、成形を施して任意の形状にしてもよい。
Since the silicone rubber on the diagonal is in the form of mucus when it is applied, its surface tension can be used to form a hemispherical shape as shown in the figure, but it may also be molded into any desired shape.

なお、この発明はチップの受光域(主面)K対してライ
トガイドが垂直に外囲器を貫通する型のものにも適用で
きる。また、透光部材もシリコンゴムに限られず屈折率
等を考慮して適宜選定してよい。さらに光トリガサイリ
スクやフォトトランジスタに限られず広く半導体装置に
適用することができる。
Note that the present invention can also be applied to a type in which the light guide penetrates the envelope perpendicularly to the light receiving area (principal surface) K of the chip. Further, the light-transmitting member is not limited to silicone rubber, and may be appropriately selected in consideration of the refractive index and the like. Furthermore, it can be applied to a wide range of semiconductor devices, not limited to optical trigger transistors and phototransistors.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、ライトガイドをチップに固着させな
いので銅とガラスとの熱膨張係数の差によって生ずるラ
イトガイドのクラックや折れの発生が防止できる顕著な
効果がある。
According to this invention, since the light guide is not fixed to the chip, there is a remarkable effect of preventing the light guide from cracking or bending caused by the difference in thermal expansion coefficients between copper and glass.

次に、受光域に対し定位部劇によってライトガイドの端
部が偏りなく接触されることから受光域直下で電子−正
孔対が均一に発生するので、初期点弧領域の狭小、臨界
オン電流上昇率(ターンオン時の立上りの急峻な電流に
より一すイリスクが熱破壊を起すことのない最大許容オ
ン電流上昇率、d i /d を耐量)の低下が防止さ
れる。
Next, since the end of the light guide is evenly brought into contact with the light-receiving area due to the positioning mechanism, electron-hole pairs are generated evenly under the light-receiving area, resulting in a narrow initial ignition area and critical on-current. A decrease in the rate of increase (maximum allowable rate of increase in on-state current that does not cause thermal breakdown due to the steep current rise at turn-on, d i /d is the withstand amount) is prevented.

さらに、斜上の定位部利によってもチップ構造の微細化
とチップの特性の向上に対する高度の要望が充たせ々〈
なりつつあるため、感光域にシリコンゴム層を被着さぜ
ることによって、第7し」に示すようにライトガイドの
取着に微小偏りがあっても、(一般に微小(It■すΔ
Xによって光伝導効率は第8図に示すように顕著に低減
を見るものである。)図中に破線矢印で示したようにシ
リコンゴムの屈折率によって受光域の全域に拡張し、そ
の全面積(A)が有効になる。このため、光トリガ感度
も低下させることなく受光域全面が均一に点弧するので
di/dt耐量も低下しない顕著な利点がある。
Furthermore, the use of diagonal positioning units continues to satisfy the high demands for miniaturization of chip structures and improvement of chip characteristics.
Therefore, by applying a silicone rubber layer to the photosensitive area, even if there is a slight deviation in the attachment of the light guide, as shown in Section 7, it is generally possible to
As shown in FIG. 8, the photoconductive efficiency is significantly reduced by X. ) As shown by the broken line arrow in the figure, the refractive index of the silicone rubber extends the entire light receiving area, and the entire area (A) becomes effective. Therefore, since the entire light receiving area is ignited uniformly without reducing the optical trigger sensitivity, there is a remarkable advantage that the di/dt tolerance does not decrease.

虜だ、受光域にシリコンゴム層を被着させても光伝送効
率にはほとんど影響なく、ライトガイド端との接続によ
る縦方向の応力に対してクッションになる効果もある。
I'm hooked. Even if a silicone rubber layer is applied to the light-receiving area, it has almost no effect on the light transmission efficiency, and it also has the effect of cushioning against the longitudinal stress caused by the connection with the light guide end.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光トリガザイリスタの断面図、第2図は第1図
の要部の断面図、第3図は従来の欠点を示す断面図、第
4図ないし第6図はこの1実施例にかかる定位部材を示
し第4図は斜視図、第5図は断面図、第6図は上面図、
第7図は1実施例を説明するだめの断面図、第8図ヒラ
イトガイドの偏りと光伝達効率との相関を示す線図であ
る。 1     チップ 2、’l 、 2C,5パッケージ 3      ライトガイド 8      シリコンゴム 11a    第1の定位部材 11b     第2の定位部利 18    シリコンゴム層 代理人 弁理士 井 上 −男 第  1 図 第  2 図 第  3 図 第  4 図 第  5 図 第  6 図
Fig. 1 is a cross-sectional view of the optical trigger zyristor, Fig. 2 is a cross-sectional view of the main part of Fig. 1, Fig. 3 is a cross-sectional view showing the conventional drawbacks, and Figs. 4 to 6 are one example of this embodiment. 4 is a perspective view, FIG. 5 is a cross-sectional view, and FIG. 6 is a top view,
FIG. 7 is a cross-sectional view for explaining one embodiment, and FIG. 8 is a diagram showing the correlation between the bias of the highlight guide and the light transmission efficiency. 1 Chip 2, 'l, 2C, 5 package 3 Light guide 8 Silicone rubber 11a First localization member 11b Second localization part 18 Silicone rubber layer agent Patent attorney Inoue 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 光駆動型半導体素子を気密に保持したパッケージと、前
記パッケージに半導体素子の主面に非垂rM VC信号
光を導入する光透過窓と前記半導体素子主面の受光域と
の間を折曲して連結するライトガイドと、前記ライトガ
イドの端面に取着された伸縮性の透光部材と、一対で嵌
合面とこの嵌合面の−g(Sにライトガイドを保持する
開孔を有する定位部材と、前記定位部材の一方を半導体
素子に位置き′めして固着する定位部材の固着手段と、
前記受光域に被着された伸縮性の透光部材層とを有し、
ライトガイドにおける半導体素子側端面の透光部側が前
記透光部材層を介して受光域に接続していることを特徴
とする光駆動型半導体装置。
A package that airtightly holds an optically driven semiconductor element, and a light transmitting window that introduces non-perpendicular M VC signal light into the main surface of the semiconductor element into the package and a light receiving area of the semiconductor element main surface are bent. a pair of light guides connected together, a stretchable light-transmitting member attached to an end face of the light guide, and a pair of fitting surfaces and -g(S) of the fitting surfaces having an opening for holding the light guide. a positioning member; a positioning member fixing means for positioning and fixing one of the positioning members to a semiconductor element;
a stretchable light-transmitting member layer deposited on the light-receiving area;
1. A light-driven semiconductor device, wherein a light-transmitting portion side of an end face of the light guide on the semiconductor element side is connected to a light-receiving region via the light-transmitting member layer.
JP57149995A 1982-08-31 1982-08-31 Photo driven type semiconductor device Granted JPS5940575A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57149995A JPS5940575A (en) 1982-08-31 1982-08-31 Photo driven type semiconductor device
GB08322868A GB2127220B (en) 1982-08-31 1983-08-25 Light-triggered semiconductor device and light guide thereto
US06/526,807 US4695871A (en) 1982-08-31 1983-08-26 Light-triggered semiconductor device
DE19833331451 DE3331451A1 (en) 1982-08-31 1983-08-31 LIGHT-CONTROLLED SEMICONDUCTOR ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57149995A JPS5940575A (en) 1982-08-31 1982-08-31 Photo driven type semiconductor device

Publications (2)

Publication Number Publication Date
JPS5940575A true JPS5940575A (en) 1984-03-06
JPH0468790B2 JPH0468790B2 (en) 1992-11-04

Family

ID=15487159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57149995A Granted JPS5940575A (en) 1982-08-31 1982-08-31 Photo driven type semiconductor device

Country Status (1)

Country Link
JP (1) JPS5940575A (en)

Also Published As

Publication number Publication date
JPH0468790B2 (en) 1992-11-04

Similar Documents

Publication Publication Date Title
US3976877A (en) Opto-electronic photocoupling device and method of manufacturing same
JP4050402B2 (en) Optoelectronic device and manufacturing method thereof
US3963920A (en) Integrated optical-to-electrical signal transducing system and apparatus
EP2413171A1 (en) Laterally coupled optical fiber component and processing method thereof
JP2600616B2 (en) Optical coupling device
US6227723B1 (en) Substrate for mounting an optical component and optical module provided with the same
JPS61228681A (en) Light coupling semiconductor device
US4017962A (en) Integrated array of optical fibers and thin film optical detectors, and method for fabricating the same
EP0081554B1 (en) Led having self-aligned lens
JPS5940575A (en) Photo driven type semiconductor device
GB2127220A (en) Light-triggered semiconductor device and light guide thereto
JPH06268246A (en) Optically coupled apparatus
JP3990113B2 (en) Optoelectronic device and manufacturing method thereof
JPH11233810A (en) Photocoupler and its manufacture
JP2001094191A (en) Optical semiconductor module and manufacturing method therefor
JP3145836B2 (en) Optical coupling element and method for producing photoconductor used therein
JPS59159568A (en) Photo driven type semiconductor device
JPH05218491A (en) Optical coupling device
JPS59123263A (en) Light-driven type semiconductor device
JPH07114253B2 (en) Method for manufacturing semiconductor device
JPS6254974A (en) Optical coupling semiconductor device
WO2023162259A1 (en) Optical waveguide element, and optical modulation device and optical transmission apparatus using same
JP3266376B2 (en) Optical package
JPS62216244A (en) Manufacture of semiconductor device
JPH11218650A (en) Optical module