JPS5940300A - Method of processing gaseous waste from nuclear fuel reprocessing - Google Patents

Method of processing gaseous waste from nuclear fuel reprocessing

Info

Publication number
JPS5940300A
JPS5940300A JP57151277A JP15127782A JPS5940300A JP S5940300 A JPS5940300 A JP S5940300A JP 57151277 A JP57151277 A JP 57151277A JP 15127782 A JP15127782 A JP 15127782A JP S5940300 A JPS5940300 A JP S5940300A
Authority
JP
Japan
Prior art keywords
gas
nitric acid
zeolite
tower
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57151277A
Other languages
Japanese (ja)
Other versions
JPS6352720B2 (en
Inventor
田村 孝章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGYO KAIHATSU KENKYUSHO KK
KOUGIYOU KAIHATSU KENKYUSHO KK
Original Assignee
KOGYO KAIHATSU KENKYUSHO KK
KOUGIYOU KAIHATSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGYO KAIHATSU KENKYUSHO KK, KOUGIYOU KAIHATSU KENKYUSHO KK filed Critical KOGYO KAIHATSU KENKYUSHO KK
Priority to JP57151277A priority Critical patent/JPS5940300A/en
Publication of JPS5940300A publication Critical patent/JPS5940300A/en
Publication of JPS6352720B2 publication Critical patent/JPS6352720B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、原子力発電所の原子炉で使用済となった核
燃料を再処理する際に発生する放射性物質を含んだ排ガ
スを安全に処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for safely processing exhaust gas containing radioactive materials generated when spent nuclear fuel is reprocessed in a nuclear reactor of a nuclear power plant.

使用済の核燃料を再処理するために、燃料棒をせん断し
てこれを硝酸に溶解させる湿式法が採られているが、こ
の溶解工程で、硝酸の蒸気とともに、放射性ヨウ素をふ
くむヨウ素、トリチウム水をふくむ水、NOz * K
r* X6などを含む排ガスが発生する。このうち硝酸
ミスト、水分(トリチウム水を含む)の大部分はミスト
キャッチャおよびシリカゲル脱湿塔によって捕捉される
が、その排ガス中にはなお、NOx約1vo1.%(N
O2はその9゜チ程度〕、I2220−200pp、 
CO2300ppm程度、I20 )レース(シリカゲ
ル脱湿塔の運転条件にもよるが、露点−10〜−15℃
程度)、微量のKr、Xeなどの放射性ガス(残部は空
気)が含まれている。
In order to reprocess spent nuclear fuel, a wet method is used in which fuel rods are sheared and dissolved in nitric acid.In this dissolution process, along with nitric acid vapor, iodine containing radioactive iodine and tritium water are released. Water containing NOz * K
Exhaust gas containing r*X6 etc. is generated. Most of the nitric acid mist and moisture (including tritiated water) are captured by the mist catcher and silica gel dehumidification tower, but the exhaust gas still contains approximately 1 vol. of NOx. %(N
O2 is about 9 degrees], I2220-200pp,
CO2 about 300ppm, I20) race (depending on the operating conditions of the silica gel dehumidification tower, dew point -10 to -15℃)
), trace amounts of radioactive gases such as Kr and Xe (the remainder is air).

I2  を除去する一つの方法として、Agを担持させ
たゼオライトを使用し、■、をヨウ化銀として回収する
方法が知られているが、効率が悪く。
One known method for removing I2 is to use zeolite supported with Ag and to recover (2) as silver iodide, but this method is inefficient.

理論量の5〜10倍ものAgが必要であるという欠点が
ある。また「モレキュラシープ13X」、「ゼオラムF
9J、「モレキュラシーブ5AJ、「ゼオラムA−5」
などの商品名で市販されているX型又はA型ゼオライト
は、Agなしでも工。
A drawback is that 5 to 10 times the theoretical amount of Ag is required. In addition, “Molecular Sheep 13X” and “Zeolam F
9J, "Molecular Sieve 5AJ," Zeorum A-5"
Type X or Type A zeolites, which are commercially available under trade names such as , can be processed without Ag.

を吸着する能力があるという報告もなされている。It has also been reported that it has the ability to adsorb

しかしながら、これらの主結晶格子中のSi:A、8の
比がほぼ等しいゼオライトのほとんどは耐久性がなく、
酸が存在すると容易に結晶構造自体が崩壊して吸着作用
がなくなり吸着剤として使用できなくなるという共通の
欠点を有している。前記のシリカゲル脱湿塔から出た排
ガスはNOxや工、を(3) 含有しているとともに5シリカゲル脱湿塔で脱湿したと
いっても、前述のように露点−10〜−15℃程度の水
分を含有しているので、この排ガスがゼオライトを充填
した吸着塔に入ると、ゼオライト中で酸を生成し、吸着
剤としてのゼオライトの崩壊を招き、実際の吸着操作に
重大な支障をきたす0 この発明は、上記のような従来法の欠点を除去するため
になされたもので1モルデナイト系ゼオライト又は/お
よびクリノプチロライト系ゼオライトが、酸の存在下で
もその結晶構造が崩壊することなく、NOxおよび水分
を効果的に吸着・脱着する性質を有することに着目し、
とのモルデナイト系又は/およびクリノプチロライト系
ゼオライトを吸着剤とする第1次吸着塔に核燃料再処理
排ガスを通してこの排ガス中の水分およびNOxを吸着
分離し、はとんど吸着されなかった残りのI2を含む乾
燥通過ガスを通常の工、除去用第2次吸着装置に送ると
ともに、第1次吸着塔で吸着分離したNOxおよび水分
を脱着して前段の溶解工程お(4) よび脱湿工程に戻すことにより、I2を効果的に分離で
きるとともに、NOxを外部に放出しないようにした核
燃料再処理排ガスの処理方法を提供することを目的とし
ている。
However, most of these zeolites with approximately equal ratios of Si:A, 8 in the main crystal lattice are not durable;
They have a common drawback that in the presence of acid, the crystal structure itself easily collapses and the adsorption effect disappears, making it impossible to use it as an adsorbent. The exhaust gas emitted from the silica gel dehumidifying tower mentioned above contains NOx and gas (3), and even though it is dehumidified in the silica gel dehumidifying tower, the dew point is around -10 to -15°C as mentioned above. When this exhaust gas enters an adsorption tower filled with zeolite, it generates acid in the zeolite, leading to the collapse of the zeolite as an adsorbent, which seriously impedes the actual adsorption operation. 0 This invention was made in order to eliminate the drawbacks of the conventional methods as described above. , focusing on its ability to effectively adsorb and desorb NOx and moisture,
Nuclear fuel reprocessing exhaust gas is passed through a primary adsorption tower using mordenite-based and/or clinoptilolite-based zeolite as an adsorbent, and the water and NOx in this exhaust gas are adsorbed and separated, and the remainder that is not adsorbed is removed. The dry passing gas containing I2 is sent to the secondary adsorption device for removal in the normal process, and the NOx and moisture adsorbed and separated in the primary adsorption tower are desorbed and used in the previous dissolution process (4) and dehumidification. It is an object of the present invention to provide a method for treating nuclear fuel reprocessing exhaust gas that can effectively separate I2 and prevent NOx from being released to the outside by returning it to the process.

つぎに、この発明方法のシステムの工程の一例について
、図面を参照して説明する。図において符号1は、硝酸
を収容した溶解槽で、この溶解槽1内でせん断燃料棒が
硝酸に溶解され、溶液は所定の再処理工程に送られる。
Next, an example of the process of the system of the method of this invention will be explained with reference to the drawings. In the figure, reference numeral 1 denotes a dissolution tank containing nitric acid. Sheared fuel rods are dissolved in nitric acid in this dissolution tank 1, and the solution is sent to a predetermined reprocessing step.

また溶解槽1から発生した硝酸ミストを含む排ガスは、
コンデンサおよびミストセパレータからなる前処理装置
2を通ることによって硝酸ミスト、水分(トリチウム水
を含む)などの大部分の除去を受けたのち、シリカゲル
などの乾燥剤を充填した脱湿塔3を通り、露点−15℃
〜−10℃程度になるまで脱湿される。脱湿塔3を出た
通過ガスは、前述のとおり、02+N2+に、+X6m
I2+NO2*NO+H20などからなる。
In addition, the exhaust gas containing nitric acid mist generated from the dissolution tank 1 is
After passing through a pre-treatment device 2 consisting of a condenser and a mist separator to remove most of the nitric acid mist and water (including tritiated water), it passes through a dehumidification tower 3 filled with a desiccant such as silica gel. Dew point -15℃
It is dehumidified until the temperature reaches about -10°C. The passing gas leaving the dehumidification tower 3 is converted into 02+N2+ and +X6m as described above.
It consists of I2+NO2*NO+H20, etc.

なお、脱湿塔3の再生時に取出された脱着水はトリチウ
ム水を含有しているので、トリチウム水蒸留回収工程に
送られる。
Note that since the desorbed water taken out during regeneration of the dehumidification tower 3 contains tritiated water, it is sent to the tritiated water distillation recovery process.

一方、脱湿塔3を通過した通過ガスは、NOxおよび水
分を主として除去するために吸着装置4に導かれる。吸
着装置4は、この例では、それぞれモルデナイト系又は
/およびクリノプチロライト系ゼオライトからなる吸着
剤を充填した3基の吸着”f 4 a * 4 b *
 4 cからなっている。脱湿塔3の通過ガスはまず第
1の吸着塔4a内にその底部から導入され、内部の吸着
剤の作用でI2.N01NO2,I20が吸着される。
On the other hand, the gas that has passed through the dehumidification tower 3 is led to an adsorption device 4 to mainly remove NOx and moisture. In this example, the adsorption device 4 has three adsorption units "f 4 a * 4 b *
It consists of 4 c. The gas passing through the dehumidification tower 3 is first introduced into the first adsorption tower 4a from the bottom, and is converted into I2. N01NO2 and I20 are adsorbed.

モルデナイト又は/およびクリノプチロライト系ゼオラ
イト吸着剤は、X型又はA型ゼオライトと比較してI2
を吸着する能力は低いが、酸によって崩壊することはな
く、またN02はそのまま吸着され、NOは吸着された
のちにNO2に酸化された形態で吸着される。この酸化
性能は、モルデナイト系又は/およびクリノプチロライ
ト系ゼオライト吸着剤に、銅、クロム。
Mordenite or/and clinoptilolite based zeolite adsorbents have I2
Although it has a low adsorption ability, it does not disintegrate with acids, and NO2 is adsorbed as is, and NO is adsorbed and then adsorbed in the form of oxidized NO2. This oxidation performance is based on mordenite-based and/or clinoptilolite-based zeolite adsorbents, copper, and chromium.

鉄、コバルト、ニッケル等の元素を活性セ〉クーとして
担持させておくことによってさらに向上する。
Further improvement can be achieved by supporting elements such as iron, cobalt, nickel, etc. as active security.

図示の例では、第1の吸着塔4aを通過したガスは、第
2の吸着塔4bに供給され、この第2の吸着塔4bを通
過したガスがI2吸着塔5に送られるようになっている
。そして図の状態では、第3の吸着塔4Cの脱着が行わ
れている。吸着を連続的に行うために、各吸着塔4a、
4b、4cは、吸着2.吸着1.脱着の3つの工程を順
次に行うように所定の順序で切換えられる。すなわち吸
着1工程では、吸着剤の吸着能力の差により、吸着の進
行にともなってまず工、が流出し、ついでN。
In the illustrated example, the gas that has passed through the first adsorption tower 4a is supplied to the second adsorption tower 4b, and the gas that has passed through the second adsorption tower 4b is sent to the I2 adsorption tower 5. There is. In the state shown in the figure, the third adsorption tower 4C is being desorbed. In order to perform adsorption continuously, each adsorption tower 4a,
4b and 4c are adsorption 2. Adsorption 1. Switching is performed in a predetermined order so that the three steps of attachment and detachment are carried out sequentially. That is, in the first adsorption step, due to the difference in the adsorption capacity of the adsorbent, as the adsorption progresses, first the oxide flows out, and then the N flows out.

およびNO2が順次に流出する。また吸着2工程では、
やはりI2かまず流出し、そのまま放置すればつぎKN
Oが流出する。ここで重要なことは、吸着2工程にある
吸着塔4bがNoを流出する前に、脱着を完了した吸着
塔と切換えることで、これによって後段の処理工程にN
oが混入するのを防止して、排出ガろの処理が面倒にな
るのを避けることができる。
and NO2 sequentially flow out. In addition, in the second adsorption step,
After all, I2 leaks out first, and if you leave it as it is, then KN
O flows out. What is important here is to switch the adsorption tower 4b in the second adsorption step to the adsorption tower that has completed desorption before the NO flows out.
It is possible to prevent o from being mixed in and to avoid troublesome disposal of the discharged gall.

2つの吸着塔4aおよび4bを順次に通過することによ
って、脱湿塔3を通過した通過ガス中に含まれていた水
分およびNOxの゛全部と、■、の一部が吸着除去され
、したがって吸着塔4bを出て(7) I2吸着塔5に供給されるガスは、02 I N 2 
+ K 1 tXe、I2などからなる完全にドライな
ものとなる。
By sequentially passing through the two adsorption towers 4a and 4b, all of the moisture and NOx contained in the gas that has passed through the dehumidification tower 3 and a part of The gas exiting the column 4b (7) and supplied to the I2 adsorption column 5 is 02 I N 2
+ K 1 It becomes a completely dry substance consisting of tXe, I2, etc.

工2吸着塔5は、Agを担持し、もしくは担持しない公
知のX型又はA型ゼオライトを充填したもので、供給さ
れたガス中に含まれている工、を吸着して工、またはA
gIとして保持する。したがってI2吸着塔5を通過し
た通過ガスは、O2゜N2.Kr、Xeなどを含むが、
■、や水分やNoXは完全に除去されていて、通常のK
r、Xe等の分離工程に送られる。この工、吸着工程お
よびその後の処理は通常のものと同じであるので、その
詳細な説明は省略するが、この工程で処理するガスは水
分を含んでいないので、I2吸着塔5内のゼオライトは
酸による変質や劣化や崩壊を起すことはなく、またNO
xも存在しないので放出ガスに対する後処理工程を容易
にする。
The adsorption tower 5 is filled with known X-type or A-type zeolite, which may or may not support Ag, and adsorbs Ag or A contained in the supplied gas.
Retain as gI. Therefore, the gas passing through the I2 adsorption tower 5 is O2°N2. Contains Kr, Xe, etc.
■, moisture, and NoX are completely removed, and normal K
It is sent to the separation process of r, Xe, etc. This process, adsorption process, and subsequent treatment are the same as normal ones, so a detailed explanation will be omitted. However, since the gas treated in this process does not contain water, the zeolite in the I2 adsorption tower 5 It does not cause alteration, deterioration or disintegration due to acids, and is free from NO
Since x is also not present, the post-treatment process for the released gas is facilitated.

一方、吸着2工程および吸着1工程を終えた吸着塔4C
の脱着は、この吸着塔4cを200〜500℃程度の温
度に加熱するが、あるいは加熱しつつ吸着塔4c内に過
熱スチームなどの追出しガ(8〕 スを少量通すことによって行うことができる。このよう
にして吸着塔4Cから取出した脱着ガス(これはNO2
と少量の水分およびI2からなる)は、つぎの吸収槽6
内で、別途に供給される水又は稀薄な硝酸と接触する。
On the other hand, the adsorption tower 4C which has completed the adsorption 2nd step and the adsorption 1st step
Desorption can be carried out by heating the adsorption tower 4c to a temperature of about 200 to 500°C, or by passing a small amount of expelling gas (8) such as superheated steam into the adsorption tower 4c while heating. The desorption gas extracted from the adsorption tower 4C in this way (this is NO2
and a small amount of water and I2) is transferred to the next absorption tank 6.
Inside, it comes into contact with water or dilute nitric acid, which is supplied separately.

この吸収槽6内では、3NO2+H20→2HNO,+
 No  ・・・(1)の反応で硝酸とNoとが約2=
1の比率で生成する。このうち水分を含むNoガスは糸
路7を通って前記の脱湿塔3に導かれ、また硝酸水溶液
は、必要ならば酸濃度調整槽9で蒸留などの手段により
濃度を調整されたのち、溶解槽1に戻される。
In this absorption tank 6, 3NO2 + H20 → 2HNO, +
No...In the reaction of (1), nitric acid and No are about 2=
Generate at a ratio of 1. Of these, the No gas containing moisture is led to the dehumidification tower 3 through the thread 7, and the concentration of the nitric acid aqueous solution is adjusted by means such as distillation in an acid concentration adjustment tank 9 if necessary. It is returned to the dissolution tank 1.

ただし、この吸収を効率よく行うと、水との共沸混合比
である69チ濃度の硝酸が得られるので、そのまま溶解
槽1に戻すことができる。このようにして、この系では
NOxに関してほぼ完全な閉回路で循環させることがで
きる。これに反して通常の排ガス処理法である苛性ソー
ダ洗滌法を用いると、生成するNaNO3、NaNO2
等は循環使用することは不可能であり、累積して増える
大量のこれらの中和生成塩を随伴する高放射能元素と共
に、隔離保管しなげればならない、という欠点をまぬか
れえない。それ故、本方法によれば、結果的に放射性廃
棄物の大幅な減容化となる。
However, if this absorption is carried out efficiently, nitric acid with a concentration of 69%, which is an azeotropic mixing ratio with water, can be obtained, so it can be returned to the dissolution tank 1 as it is. In this way, this system allows a nearly completely closed circuit circulation for NOx. On the other hand, when the caustic soda washing method, which is a normal exhaust gas treatment method, is used, NaNO3 and NaNO2 are generated.
It is impossible to recycle them, and the disadvantage is that they must be stored in isolation along with the highly radioactive elements that accompany the accumulating large amounts of these neutralized salts. Therefore, this method results in a significant volume reduction of radioactive waste.

以上のようにこの発明によれば、核燃料の再処理工程で
発生した排ガスからゼオライトによって放射性ヨウ素を
吸着除去するに際して、酸によっては分解され難いモル
デナイト系又は/およびクリノプチロライト系ゼオライ
トからなる吸着剤によって吸着処理し7てまず水分およ
びNOxを除去し、このガス中のヨウ素を後段のX型又
はA型ゼオライトによって除去するようにしたので、I
2吸着用のゼオライトが酸による崩壊を受けることがな
く、そのヨウ素吸着能力を最大限に発揮させることがで
きる。またモルデナイト系又は/およびクリノプチロラ
イト系ゼオライト吸着剤によって吸着されたNOxは再
び溶解槽または脱湿塔に返送されるので系内を循環する
だけで、外部に排出されることがなく、放射性廃棄物処
理上、大きな減容化を果すこととなり、環境保全の面で
きわめて有利である。
As described above, according to the present invention, when radioactive iodine is adsorbed and removed by zeolite from exhaust gas generated in a nuclear fuel reprocessing process, an adsorbent made of mordenite-based and/or clinoptilolite-based zeolite, which is difficult to decompose with acids, is used. First, water and NOx are removed by adsorption treatment with a gaseous agent, and iodine in this gas is removed by an X-type or A-type zeolite in the subsequent stage.
Zeolite for 2 adsorption is not degraded by acid, and its iodine adsorption ability can be maximized. In addition, NOx adsorbed by the mordenite-based and/or clinoptilolite-based zeolite adsorbent is returned to the dissolution tank or dehumidification tower, so it only circulates within the system and is not discharged to the outside, making it radioactive. This results in a significant volume reduction in waste treatment, which is extremely advantageous in terms of environmental conservation.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明方法の工程の一例を示すフローシートであ
る。 1・・・溶解槽、2・・・前処理装置、3・・・脱湿塔
、4・・・吸着装置、4a、4b、4c・・・吸着塔、
5・・・I2吸着塔、6・・・吸収槽、7,8・・・糸
路、9・・・酸濃度調整槽。 特許出願人   財団法人 工業開発研究所1、事件の
表示 昭和57年詩許願第 151277  号2°発明’ 
cl) 名Kh  核燃料再処理排ガスの処理方法3、
 補正をする者 事件との関係    特許出願人 住  所 氏 名格称)  財団法人 工業開発研究所4、代理人 住  所 〒151東京都渋谷区代々木2丁目11番1
2号本祠ビル7階別紙のとおシ ロ、補正の内容 (1)明細書の特許請求の範囲を別紙のとおシ補正する
。 (2)明細書第4頁第19行の「送るとともに、」゛を
「送るととにより、I2およびNOxを効果的に除去す
ることができる核燃料再処理排ガスの処理方法を提供す
ることを目的としている。さらに」と補正する。 (3)同第5頁第2行〜第4行の「放出しない・・曲目
的としている。」を「放出しないように処理することが
可能である。」と補正する。 (4)同第10頁第16行〜第17行の「NOxは・・
・・・・返送されるので系内を」を「NOxを脱着した
脱着ガスを再び溶解槽または脱湿槽に返送した場合には
、NOxは系内を」と補正する。 r2) 補正後の特許請求の範囲 (1)使用済核燃料を再処理のために硝酸に溶解させる
際に発生するNOxを含む排気ガスを処理する方法にお
いて、上記排ガスを脱湿塔に導入して脱湿する工程と、
上記脱湿塔を通過した通過ガスを、モルデナイト系ゼオ
ライト又は/およびクリノプチロライト系ゼオライトか
らなる吸着剤を充填した吸着塔に導入して残余の水分及
びNOxを主として吸着させる工程と、上記吸着塔を通
過した乾燥ガスを、X型又はA型ゼオライトを充填した
工2吸着塔に導入してヨウ素を吸着保持させる工程と、
クリノプチロライト系ゼオライト又は/およびモルデナ
イト系ゼオライトからなる吸着剤を充填した上記吸着塔
の脱着操作により生じた主として水とNO2とからなる
脱着ガスを取出すことを特徴とする核燃料再処理排ガス
の処理方法。 (2)使用済核燃料を再処理のために硝酸に溶解させる
際に発生するNOxを含む排気ガスを処理する方法にお
いて、上記排ガス、を脱湿塔に導入して脱湿する工程と
、上記脱湿塔を通過した通過ガスを、モルデナイト系ゼ
オライト又は/およびクリノプチロライト系ゼオライト
からなる吸着剤を充填した吸着塔に導入して残余の水分
およびNOxを主として吸着させる工程と、上記吸着塔
を通過した乾燥ガスを、X型又はA型ゼオライトを充填
′した■2吸着塔に導入してヨウ素を吸着保持させる工
程と、クリノプチロライト系ゼオライト又は/およびモ
ルデナイト系ゼオライトからなる吸着剤を充填した上記
吸着塔の脱着操作にょシ生じた主として水とN02、と
から、なる脱着ガスを、別途に供給された水又は稀薄な
硝酸と接触させて上記脱着ガス中に含まれているNO2
を水に吸収させることによって硝酸とNOガスとを生成
させる工程と、この工程で生成した硝酸は上記再処理の
ための硝酸として使用し、NOを含むガスは上記脱湿塔
に返送することにより、N0xK関してナナホ閉サイク
ルで循環させる工程とからなることを特徴とする核燃料
再処理排ガスの処理方法。
The figure is a flow sheet showing an example of the steps of the method of this invention. 1... Dissolution tank, 2... Pretreatment device, 3... Dehumidification tower, 4... Adsorption device, 4a, 4b, 4c... Adsorption tower,
5... I2 adsorption tower, 6... Absorption tank, 7, 8... Yarn path, 9... Acid concentration adjustment tank. Patent Applicant Industrial Development Research Institute 1, Incident Indication 1981 Poetry Permit No. 151277 2° Invention'
cl) Name Kh Nuclear fuel reprocessing exhaust gas treatment method 3,
Relationship with the case of the person making the amendment Patent applicant Address: Industrial Development Research Institute 4, Agent Address: 2-11-1 Yoyogi, Shibuya-ku, Tokyo 151
Contents of the amendments to the appendix on the 7th floor of Honshi Building No. 2 (1) The scope of claims in the specification will be amended to the appendix. (2) An object of the present invention is to provide a method for treating nuclear fuel reprocessing exhaust gas that can effectively remove I2 and NOx by replacing "while sending" with "while sending" in line 19 of page 4 of the specification. It is corrected to ``furthermore''. (3) In the 5th page, lines 2 to 4, "Do not emit...It is intended for music purpose." is corrected to "It is possible to process it so that it does not emit." (4) “NOx is...” on page 10, lines 16-17.
. . . "In the system because it is returned" is corrected to "If the desorbed gas that has desorbed NOx is returned to the dissolution tank or dehumidification tank, NOx will be in the system." r2) Amended Claims (1) A method for treating exhaust gas containing NOx generated when dissolving spent nuclear fuel in nitric acid for reprocessing, which comprises introducing the exhaust gas into a dehumidification tower. The process of dehumidifying
A step in which the gas that has passed through the dehumidification tower is introduced into an adsorption tower filled with an adsorbent made of mordenite zeolite and/or clinoptilolite zeolite to mainly adsorb residual moisture and NOx; A step in which the dry gas that has passed through the tower is introduced into a second adsorption tower filled with X-type or A-type zeolite to adsorb and retain iodine;
Treatment of nuclear fuel reprocessed exhaust gas, characterized by extracting desorbed gas mainly consisting of water and NO2 produced by the desorption operation of the adsorption tower filled with an adsorbent made of clinoptilolite-based zeolite and/or mordenite-based zeolite. Method. (2) A method for treating exhaust gas containing NOx generated when dissolving spent nuclear fuel in nitric acid for reprocessing, which includes a step of introducing the exhaust gas into a dehumidification tower to dehumidify it; A step of introducing the gas that has passed through the wet tower into an adsorption tower filled with an adsorbent made of mordenite zeolite or/and clinoptilolite zeolite to mainly adsorb residual moisture and NOx; The passed dry gas is introduced into the adsorption tower filled with X-type or A-type zeolite to adsorb and retain iodine, and the adsorbent made of clinoptilolite-based zeolite or/and mordenite-based zeolite is filled. The desorption gas mainly composed of water and N02 produced during the desorption operation of the adsorption tower is brought into contact with separately supplied water or dilute nitric acid to remove the NO2 contained in the desorption gas.
A step in which nitric acid and NO gas are generated by absorbing the nitric acid into water, and the nitric acid generated in this step is used as nitric acid for the reprocessing, and the gas containing NO is returned to the dehumidification tower. A method for treating nuclear fuel reprocessing exhaust gas, comprising a step of circulating NOxK in a closed cycle.

Claims (1)

【特許請求の範囲】[Claims] 使用済核燃料を再処理のために硝酸に溶解させる際に発
生するNOxを含む排気ガスを処理する方法において、
上記排ガスを脱湿塔に導入して脱湿する工程と、上記脱
湿塔を通過した通過ガスを、モルデナイト系ゼオライト
又は/およびクリノプチロライト系ゼオライトからなる
吸着剤を充填した吸着塔に導入して残余の水分およびN
Oxを主として吸着させる工程と、上記吸着塔を通過し
た乾燥ガスを、X型又はA型ゼオライトを充填したI2
吸着塔に導入してヨウ素を吸着保持させる工程と、クリ
ノプチロライト系ゼオライト又は/およびモルデナイト
系ゼオライトからなる吸着剤を充填した上記吸着塔の脱
着操作により生じた主として水とN02とからなる脱着
ガスを、別途に供給された水又は稀薄な硝酸と接触させ
て上記脱着ガス中に含まれているN02を水に吸収させ
ることによって硝酸とNoガスとを生成させる工程と、
この工程で生成した硝酸は上記再処理のための硝酸とし
て使用し、Noを含むガスは上記脱湿塔に返送すること
により、NOxに関してほぼ閉サイクルで循環させる工
程とからなることを特徴とする核燃料再処理排ガスの処
理方法。
In a method for treating exhaust gas containing NOx generated when dissolving spent nuclear fuel in nitric acid for reprocessing,
Introducing the above exhaust gas into a dehumidification tower to dehumidify it, and introducing the gas that has passed through the dehumidification tower into an adsorption tower filled with an adsorbent made of mordenite-based zeolite and/or clinoptilolite-based zeolite. and remaining moisture and N
A step of mainly adsorbing Ox, and a step of transferring the dry gas that has passed through the adsorption tower to I2 filled with X-type or A-type zeolite.
Desorption consisting mainly of water and N02 produced by the step of introducing iodine into an adsorption tower and adsorbing and holding iodine, and the desorption operation of the adsorption tower filled with an adsorbent made of clinoptilolite zeolite or/and mordenite zeolite. A step of generating nitric acid and No gas by bringing the gas into contact with separately supplied water or dilute nitric acid to absorb N02 contained in the desorption gas into the water;
The nitric acid produced in this step is used as nitric acid for the above-mentioned reprocessing, and the NOx-containing gas is returned to the dehumidification tower to circulate the NOx in an almost closed cycle. A method for treating nuclear fuel reprocessing exhaust gas.
JP57151277A 1982-08-31 1982-08-31 Method of processing gaseous waste from nuclear fuel reprocessing Granted JPS5940300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57151277A JPS5940300A (en) 1982-08-31 1982-08-31 Method of processing gaseous waste from nuclear fuel reprocessing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57151277A JPS5940300A (en) 1982-08-31 1982-08-31 Method of processing gaseous waste from nuclear fuel reprocessing

Publications (2)

Publication Number Publication Date
JPS5940300A true JPS5940300A (en) 1984-03-05
JPS6352720B2 JPS6352720B2 (en) 1988-10-19

Family

ID=15515157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57151277A Granted JPS5940300A (en) 1982-08-31 1982-08-31 Method of processing gaseous waste from nuclear fuel reprocessing

Country Status (1)

Country Link
JP (1) JPS5940300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919286A (en) * 1997-03-06 1999-07-06 Air Products And Chemicals, Inc. PSA process for removel of nitrogen oxides from gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919286A (en) * 1997-03-06 1999-07-06 Air Products And Chemicals, Inc. PSA process for removel of nitrogen oxides from gas

Also Published As

Publication number Publication date
JPS6352720B2 (en) 1988-10-19

Similar Documents

Publication Publication Date Title
Haefner Methods of gas phase capture of iodine from fuel reprocessing off-gas: a literature survey
JP6671204B2 (en) Gas separation equipment
JP3824838B2 (en) Noble gas recovery method
JPS5940300A (en) Method of processing gaseous waste from nuclear fuel reprocessing
JPS63305924A (en) Method and apparatus for purifying gas containing hydrogen isotope
JPS58190799A (en) Method and device for seperating krypton from radioactive gaseous waste
JP3628439B2 (en) Concentration method of krypton in oxygen-nitrogen mixed gas
JP5852422B2 (en) Purification method of ultra-high purity nitrogen gas
KR100650505B1 (en) A process for treatment of tritium-containing exhaust
CA1172828A (en) Iodine removal from a gas phase
US4277256A (en) Process for the purification of gases containing radioactive substances
JPH02112796A (en) Device for treating radioactive gaseous waste
JP2011115772A (en) Method and apparatus for treating waste liquid
JPS6380831A (en) Removal of iodine in gas
JPH0871368A (en) Removal of iodine in exhaust gas
JP3788814B2 (en) Solvent recovery method
JPS5852199B2 (en) How to use trilithium
JP2005090988A (en) Drying method and dryer system of tritium-including heavy water handling facility
RU2716828C1 (en) Method of separating molybdenum-99 from fuel of a solution reactor and device for its implementation
JP7499100B2 (en) Gas treatment apparatus and method
JP2000266891A (en) Recycle method for nitrogen oxide in offgas of uranium denitration process
RU2143756C1 (en) Method for fractional cleaning of gases from harmful chemical agents and radioactive materials formed in dissolving nuclear wastes
JP2013071115A (en) Organic solvent recovery system
JPH0582917B2 (en)
JPS59198399A (en) Method of processing nuclear fuel reprocessing gaseous waste